Uniqueness of hyperspaces for Peano continua

Rodrigo Hernández-Gutiérrez, Alejandro Illanes and Verónica Martínez-de-la-Vega

March 3, 2010

Abstract

For a metric continuum X and a positive integer n, let $C_n(X)$ be the hyperspace of nonempty closed subsets of X with at most n components. We say that X has unique hyperspace $C_n(X)$ provided that, if Y is a continuum and $C_n(X)$ is homeomorphic to $C_n(Y)$, then X is homeomorphic to Y. In this paper we study which Peano continua X have unique hyperspace $C_n(X)$. We find some sufficient and also some necessary conditions for a Peano continuum X to have unique hyperspace $C_n(X)$. Our results generalize all the previous known results on this subject. We also give some significant examples.

Key Words and Phrases: Almost Meshed, Continuum, Dendrite, Hyperspace, Local Dendrite, Meshed, Unique Hyperspace, Peano continuum.

1 Introduction

A continuum is a nondegenerate compact connected metric space. A Peano continuum is a locally connected continuum. For a continuum X and $n \in \mathbb{N}$, consider the following hyperspaces:

$$2^X = \{ A \subset X : A \text{ is closed and nonempty} \},$$

$$C(X) = \{ A \in 2^X : A \text{ is connected} \},$$

$$C_n(X) = \{ A \in 2^X : A \text{ has at most } n \text{ components} \}.$$

All the hyperspaces considered are metrized by the Hausdorff metric H_X. Note that $C(X) = C_1(X)$.

We say that a continuum X has unique hyperspace $C_n(X)$ provided that the following implication holds: if Y is a continuum and $C_n(X)$ is homeomorphic to $C_n(Y)$, then X is homeomorphic to Y.

Given a continuum X, let

$$G(X) = \{ p \in X : p \text{ has a neighborhood } M \text{ in } X \text{ such that } M \text{ is a finite graph} \},$$

and $P(X) = X - G(X)$.

1
A free arc in X is an arc $\alpha \subset X$, with end points p and q such that $\alpha - \{ p, q \}$ is open in X. The continuum X is said to be almost meshed provided that the set $G(X)$ is dense in X, and an almost meshed continuum X is meshed provided that X has a basis of neighborhoods B such that for each element $U \in B$, $U - P(X)$ is connected. A dendrite is a locally connected continuum without simple closed curves. Let \mathcal{D} denote the class of dendrites with a closed set of end points.

Using the results of R. Duda in [11, 9.1], G. Acosta [1, Theorem 1] observed that finite graphs different from both an arc and a simple close d curve have unique hyperspace $C(X)$. A. Illanes proved in [16] and [17] that finite graphs have unique hyperspaces $C_n(X)$, for each $n \geq 2$.

In [13] D. Herrera-Carrasco showed that if X is in \mathcal{D} and X is not an arc, then X has unique hyperspace $C(X)$. This result was extended in [15], where D. Herrera-Carrasco and F. Macías-Romero proved that if $X \in \mathcal{D}$, then X has unique hyperspace $C_n(X)$ for every $n \geq 3$. The case $n = 2$ has also been solved. It was more difficult so the two papers [14] and [18] were needed to complete its solution. G. Acosta and D. Herrera-Carrasco [2] have shown that if X is a dendrite and $X \notin \mathcal{D}$, then there are uncountable many non-homeomorphic continua Y such that $C(X)$ is homeomorphic to $C(Y)$. Thus, a dendrite X that is not an arc belongs to \mathcal{D} if and only if X has unique hyperspace $C(X)$.

Recently [3], G. Acosta, D. Herrera-Carrasco and F. Macías-Romero have proved that if X is a locally \mathcal{D}-continuum (that is, X is a continuum such that each point has a basis of neighborhoods B such that each element in B is an element of \mathcal{D}) that is not an arc, then X has unique hyperspace $C(X)$.

On the other hand, the well-known Curtis-Schori theorem (see [9] and [10]) states that if X is a Peano continuum containing no free arcs, then $C(X)$ is homeomorphic to the Hilbert cube. This is why the problem of determining whether a Peano continuum X has unique hyperspace is open only when X contains free arcs.

In this paper we are interested in studying which Peano continua X have unique hyperspace $C_n(X)$. The main results are the following.

A. If a Peano continuum has a nonempty open subset without free arcs (that is, X is not almost meshed), then X does not have unique hyperspace $C_n(X)$ for any $n \in \mathbb{N}$ (Theorem 20). Thus, for a Peano continuum X to have unique hyperspace, we at least need X to be almost meshed.

B. If X is meshed we obtain a completely opposite result (Theorem 37). For $n \neq 1$, X has unique hyperspace $C_n(X)$. If further X is neither an arc nor a simple closed curve, then X has unique hyperspace $C(X)$ (Theorem 37). Recall that if X is either an arc or a simple closed curve, then $C(X)$ is a 2-cell. Thus, the problem of determining if a Peano continuum X has unique hyperspace $C_n(X)$ is open only when X is almost meshed but not meshed.

C. The class of meshed continua contains the following classes: (a) finite graphs, (b) \mathcal{D}, (c) locally \mathcal{D} continua. Hence, Theorem 37 covers all the known cases of continua X having unique hyperspace $C_n(X)$.

D. If X is almost meshed and $X - P(X)$ is disconnected, then X does not have unique hyperspace $C(X)$ (Corollary 23).
E. Let \(Z_0 = ([−1, 1] \times \{0\}) \cup (\bigcup\{\{-1/m\} \times [0, 1/m] : m \geq 2\} \). Then \(Z_0 \) plays an important role in this topic:

(a) if a dendrite \(X \) contains \(Z_0 \), then \(X \not\in \mathcal{D} \) and \(X \) does not have unique hyperspace \(C(X) \) ([2]);
(b) \(Z_0 \) is almost meshed, \(\mathcal{P}(Z_0) = \{(0, 0)\}, Z_0 - \mathcal{P}(Z_0) \) is disconnected;
(c) \(Z_0 \) is not meshed (Lemma 3);
(d) The dendrite \(Z_3 = Z_0 \cup (\bigcup\{-1/m\} \times [0, 1/m] : m \geq 2) \) has unique hyperspace \(C_2(Z_3) \) (Example 39);
(e) if we add the segment \(\{0\} \times [0, 1] \) to \(Z_3 \), that is, if \(Z_1 = Z_3 \cup (\{0\} \times [0, 1]) \), then \(Z_1 \) does not have unique hyperspace \(C_2(Z_1) \) (Example 43);
(f) if we add the arc \(L = (\{-1, 1\} \times [0, 1]) \cup ([−1, 1] \times \{1\}) \), that is, if \(Z_2 = Z_0 \cup L \), then \(Z_2 - \mathcal{P}(Z_2) \) is connected, \(Z_2 \) is not meshed and \(Z_2 \) has unique hyperspace \(C(Z_2) \) (Example 38).

\[\begin{align*}
Z_0 & \quad \quad \quad Z_1 \\
\begin{array}{c}
Z_3 \\
\begin{array}{c}
Z_2
\end{array}
\end{array}
\end{align*} \]

Figure 1

A discussion about uniqueness of other hyperspaces can be found in the introduction of [18].

2 Meshed and almost meshed continua

Given a continuum \(X \) and a subset \(A \) of \(X \), we denote the interior of \(A \) in \(X \) by \(A^\circ \) or \(\text{int}_X(A) \). For \(\varepsilon > 0, p \in X \) and \(A \subset X \), let \(B(\varepsilon, p) \) denote the \(\varepsilon \)-ball around \(p \) in \(X \) and let \(N(\varepsilon, A) = \bigcup\{B(\varepsilon, a) : a \in A\} \). Given \(A \in \mathcal{C}_n(X) \), we denote by \(\dim_A[C_n(X)] \) the dimension of the space \(C_n(X) \) at the element \(A \). Let

\[\mathcal{F}A(X) = \bigcup\{J^\circ : J \text{ is a free arc in } X\}. \]
Given \(n \in \mathbb{N} \) and a continuum \(X \), let

\[
\mathfrak{F}_n(X) = \{ A \in C_n(X) : \dim_A [C_n(X)] \text{ is finite} \}.
\]

The set \(\mathfrak{F}_1(X) \) is simply denoted by \(\mathfrak{F}(X) \).

Given subsets \(U_1, \ldots, U_m \) of \(X \), let \(\langle U_1, \ldots, U_m \rangle = \{ A \in C_n(X) : A \subset U_1 \cup \ldots \cup U_m \text{ and } A \cap U_i \neq \emptyset \text{ for each } i \in \{1, \ldots, m\} \} \). It is known (see [23, 4.24]) that the family of all sets of the form \(\langle U_1, \ldots, U_m \rangle \), where \(m \in \mathbb{N} \) and each \(U_i \) is open in \(X \), is a basis for the topology in \(C_n(X) \).

We describe some examples in the Euclidean plane \(\mathbb{R}^2 \). Given two different points \(p, q \in \mathbb{R}^2 \), let \(pq \) denote the convex segment joining them.

Let \(Z_0 = ([−1, 1] \times \{0\}) \cup (\bigcup \{ [0, \frac{1}{n}] : m \geq 2 \}) \). Then \(Z_0 \) is a dendrite, \(Z_0 \notin \mathcal{D} \), \(\mathcal{P}(Z_0) = \{(0, 0)\} \), \(Z_0 \) is almost meshed but \(Z_0 \) is not meshed.

Let \(F_ω = \bigcup \{ (0,0)(\frac{1}{m}, \frac{1}{m^2}) : m \in \mathbb{N} \} \). Then \(F_ω \) is a dendrite, \(F_ω \notin \mathcal{D} \), \(\mathcal{P}(F_ω) = \{(0,0)\} \), \(F_ω \) is almost meshed but \(F_ω \) is not meshed.

In [5] it was proved that a dendrite \(X \) is in \(\mathcal{D} \) if and only if \(X \) does not contain a topological copy of neither \(Z_0 \) nor \(F_ω \).

Note that meshed continua do not need to be local dendrites. For example, the continuum \(X \) described in Example 10.38 of [23] (Figure 10.38 (a)) is meshed and \(\mathcal{P}(X) \) is the segment \(A_0 = [0, 1] \times \{0\} \).

The following lemma is easy to prove.

Lemma 1 Let \(X \) be a continuum. Then \(\text{cl}_X(G(X)) = \text{cl}_X(\mathcal{F}_A(X)) \). Therefore, \(X \) is almost meshed if and only if \(\mathcal{F}_A(X) \) is dense in \(X \).

Lemma 2 If \(X \) is a meshed continuum, then \(X \) is a Peano continuum.

Proof. Let \(B \) be a basis of neighborhoods of \(X \) such that, for each element \(U \in \mathcal{B} \), \(U - \mathcal{P}(X) \) is connected. Since \(X \) is almost meshed, \(\mathcal{P}(X) \supseteq \emptyset \). Thus, for each \(U \in \mathcal{B} \), \(\text{int}_X(U) \subset \text{cl}_X(U - \mathcal{P}(X)) \). Therefore, the family \(\{ \text{cl}_X(U - \mathcal{P}(X)) : U \in \mathcal{B} \} \) is a basis of connected neighborhoods for \(X \). Hence, \(X \) is connected im kleinen and then \(X \) is locally connected.

Lemma 3 Let \(X \) be a continuum. Then \(X \) is meshed if and only if \(X \) is almost meshed and \(X \) has a basis \(\mathcal{D} \) of open connected subsets of \(X \) such that, for each element \(U \in \mathcal{D} \), \(U - \mathcal{P}(X) \) is connected.

Proof. The sufficiency is immediate from the definition of meshed continuum. Now, suppose that \(X \) is meshed. Let \(B \) be a basis of neighborhoods of \(X \) such that, for each element \(U \in \mathcal{B} \), \(U - \mathcal{P}(X) \) is connected. Let \(p \in X \) and \(W \) be an open subset of \(X \) such that \(p \in W \). Let \(U \in \mathcal{B} \) be such that \(p \in \text{int}_X(U) \subset U \subset W \). By Lemma 2, there exists an open connected subset \(Z \) of \(X \) such that \(p \in Z \subset \text{int}_X(U) \). Since \(\mathcal{P}(X) \) is a closed subset of \(X \), for each \(x \in U - \mathcal{P}(X) \) there exists an open and connected subset of \(V_x \) of \(X \) such that \(x \in V_x \subset W - \mathcal{P}(X) \). Let \(V = Z \cup (\bigcup \{ V_x : x \in U - \mathcal{P}(X) \}) \). Clearly \(V \) is an open subset of \(X \) such that \(p \in V \subset W \). Since \((U - \mathcal{P}(X)) \cup (\bigcup \{ V_x : x \in U - \mathcal{P}(X) \}) \) is a connected subset of \(V - \mathcal{P}(X) \) and \(Z - \mathcal{P}(X) \subset U - \mathcal{P}(X) \), we obtain that
\[V - \mathcal{P}(X) = (U - \mathcal{P}(X)) \cup (\bigcup \{ V_z : x \in U - \mathcal{P}(X) \}) \] is an open connected subset of \(X \). Since \(V - \mathcal{P}(X) \subset V \subset \text{cl}_X(V - \mathcal{P}(X)) \), we conclude that \(V \) is connected. This completes the proof of the Lemma. ■

Theorem 4 Let \(X \) be a Peano continuum, \(n \in \mathbb{N} \) and \(A \in C_n(X) \). Then the following are equivalent.

(a) \(\dim_A[C_n(X)] \) is finite,

(b) there exists a finite graph \(D \) contained in \(X \) such that \(A \subset D^o \),

(c) \(A \cap \mathcal{P}(X) = \emptyset \).

Proof. (a) \(\Rightarrow \) (b). Let \(k \) be the number of components of \(A \). In the case that \(k = 1 \), since \(\dim_A[C(X)] \leq \dim_A[C_n(X)] \), we obtain that \(\dim_A[C(X)] \) is finite. Thus, Claim 1 in Lemma 2.2 of [18] guarantees the existence of \(D \). Suppose then that \(k > 1 \). Let \(A_1, \ldots, A_k \) be the components of \(A \). Let \(Z_1, \ldots, Z_k \) be pairwise disjoint subcontinua of \(X \) such that \(A_i \subset Z_i^o \) for each \(i \in \{1, \ldots, k\} \).

Let \(\varphi : C(Z_1) \times \ldots \times C(Z_k) \to (Z_1, \ldots, Z_k) \cap C_k(X) \) be given by \(\varphi(B_1, \ldots, B_k) = B_1 \cup \ldots \cup B_k \). Notice that \(\varphi \) is a homeomorphism. Given \(i \in \{1, \ldots, k\} \),

\[\dim_{A_i}[C(Z_i)] \leq \dim_{A_1, \ldots, A_i}([C(Z_1) \times \ldots \times C(Z_k)] = \dim_A([Z_1, \ldots, Z_k]) \cap C_k(X)] \leq \dim_A[C_n(X)] < \infty. \]

Since \(C(Z_i) \) is a neighborhood of \(A_i \) in \(C(X) \), \(\dim_A[C(Z_i)] = \dim(A_i[C(Z_i)]) \). Since \(A_i \) is connected, by the first case we considered \((k = 1) \), there exists a finite graph \(D_{A_i} \) contained in \(X \), such that \(A_i \subset D_{A_i} \). We may assume that \(D_i \subset Z_i \). Since the finite graphs \(D_1, \ldots, D_k \) are pairwise disjoint and \(X \) is arcwise connected [23, 8,23], it is possible to construct a finite number of arcs \(\alpha_1, \ldots, \alpha_r \) in \(X \) such that \(D = D_1 \cup \ldots \cup D_k \cup \alpha_1 \cup \ldots \cup \alpha_r \) is a finite graph. Since \(A \subset D^o \), the proof of (a) \(\Rightarrow \) (b) is finished.

(b) \(\Rightarrow \) (a). Suppose that \(A \subset D^o \) for some finite graph \(D \) in \(X \). Then \(C_n(D) \) is a neighborhood of \(A \) in \(C_n(X) \). Thus, \(\dim_A[C_n(X)] = \dim_A[C_n(D)] \). By the main result in [21], \(\dim_A[C_n(D)] \) is finite (in fact, in Theorem 2.4 of [21] there is an explicit formula for computing \(\dim_A[C_n(D)] \)).

(b) \(\Rightarrow \) (c) is immediate from the definition of \(\mathcal{P}(X) \).

(c) \(\Rightarrow \) (b). Suppose that \(A \cap \mathcal{P}(X) = \emptyset \). For each point \(a \in A \), let \(D_a \) be a finite graph in \(X \) such that \(a \in \text{int}_X(D_a) \). Then there exists a finite graph \(F_a \) in \(X \) such that \(a \in \text{int}_X(F_a) \subset F_a \subset \text{int}_X(D_a) - \mathcal{P}(X) \). By the compactness of \(A \), there exist \(m \in \mathbb{N} \) and \(a_1, \ldots, a_m \in A \) such that \(A \subset \text{int}_X(F_{a_1}) \cup \ldots \cup \text{int}_X(F_{a_m}) \). Let \(F = F_{a_1} \cup \ldots \cup F_{a_m} \). Notice that \(F \) is a subcontinuum of \(X \) such that \(A \subset F^o \).

Since each point \(p \in F \) belongs to the interior in \(X \) of a finite graph contained in \(X \), it is easy to check that \(F \) satisfies conditions (1) and (2) of Theorem 9.10 in [23]. Thus, \(F \) is a finite graph. This completes the proof of the Theorem. ■

Theorem 5 For a Peano continuum \(X \) the following are equivalent.

(a) \(X \) is meshed,

(b) for each \(n \in \mathbb{N} \), \(\mathfrak{S}_n(X) \) is dense in \(C_n(X) \),

(c) there exists \(n \in \mathbb{N} \) such that \(\mathfrak{S}_n(X) \) is dense in \(C_n(X) \).
Proof. (a) ⇒ (b). Suppose that X is meshed. Let $n \in \mathbb{N}$, $A \in C_n(X)$ and $\varepsilon > 0$. Let A_1, \ldots, A_k be the components of A. We assume that $N(\varepsilon, A_1), \ldots, N(\varepsilon, A_k)$ are pairwise disjoint. For each $a \in A$, by Lemma 3, there exists an open connected subset U_a of X such that $a \subset U_a \subset B(\varepsilon, a)$ and the open set $V_a = U_a - P(X)$ is connected. Notice that V_a is nonempty. Fix a point $b(a)$ in V_a. Given $i \in \{1, \ldots, k\}$, by the compactness of A_i, there exist $m \in \mathbb{N}$ and $a_1, \ldots, a_m \in A_i$ such that $A_i \subset U_{a_1} \cup \ldots \cup U_{a_m} \subset N(\varepsilon, A_i)$. Let $U = U_{a_1} \cup \ldots \cup U_{a_m}$ and $V = V_{a_1} \cup \ldots \cup V_{a_m}$. Notice that U is connected. We see that V is connected. Suppose to the contrary that V is disconnected. Then, we may assume that there exists $r \in \{1, \ldots, m-1\}$ such that $(V_{a_1} \cup \ldots \cup V_{a_r}) \cap (V_{a_{r+1}} \cup \ldots \cup V_{a_m}) = \emptyset$. Since U is connected, the open set $W = (U_{a_1} \cup \ldots \cup U_{a_r}) \cap (U_{a_{r+1}} \cup \ldots \cup U_{a_m})$ is nonempty. Since $\text{int}_X(P(X)) = \emptyset$, $(V_{a_1} \cup \ldots \cup V_{a_r}) \cap (V_{a_{r+1}} \cup \ldots \cup V_{a_m}) = W - P(X)$ is nonempty, a contradiction. Therefore, V is connected. By Theorem 8.26 of [23], V is arcwise connected. Hence, there exists a tree $T_i \subset V$ such that $\{b(a_1), \ldots, b(a_m)\} \subset T_i$. Clearly, $H_X(A_i, T_i) < 2\varepsilon$ and $T_i \cap P(X) = \emptyset$. Let $T = T_1 \cup \ldots \cup T_k \subset C_n(X)$. Then $H_X(A, T) < 2\varepsilon$ and $T \cap P(X) = \emptyset$. By Theorem 4, $\dim_T[C_n(X)]$ is finite, so $T \in \mathcal{F}_n(X)$.

(b) ⇒ (c) is immediate.

(c) ⇒ (a). Suppose that $\mathcal{F}_n(X)$ is dense in $C_n(X)$. First, we see that $G(X)$ is dense in X. Let $p \in X$ and $\varepsilon > 0$. Then there exists $A \in \mathcal{F}_n(X)$ such that $H_X(p, A) < \varepsilon$. By Theorem 4, there exists a finite graph D contained in X such that $A \subset D^\circ$. Fix a point $a \in A$. Then $a \in B(\varepsilon, p)$ and D is a neighborhood of a. Thus, $a \in B(\varepsilon, p) \cap G(X)$. Therefore, $G(X)$ is dense in X.

Now suppose that X is not meshed. Then there exist $p \in X$ and a neighborhood W of p such that, for each open subset U of X such that $p \in U \subset W$, $U - P(X)$ is not connected. Since X is a Peano continuum, there exists an open connected subset V of X such that $p \in V \subset W$. Then $V - P(X) = S \cup T$, where S and T are disjoint open nonempty subsets of X. Fix $x \in T$ and pairwise different points $p_1, \ldots, p_n \in S$. Since V is arcwise connected, there exists an arc $\alpha \subset V$ such that α joins x to a point p_i and $\alpha \cap \{p_1, \ldots, p_n\} = \{p_i\}$. We may suppose that $i = n$. Let $A = \{p_1, \ldots, p_{n-1}\} \cup \alpha \subset C_n(X)$. Let $\varepsilon > 0$ be such that $B(\varepsilon, p_1), \ldots, B(\varepsilon, p_{n-1}), N(\varepsilon, \alpha)$ are pairwise disjoint, $B(\varepsilon, p_1) \cup \ldots \cup B(\varepsilon, p_n) \subset S$, $B(\varepsilon, x) \subset T$ and $N(\varepsilon, \alpha) \subset V$. By the density of $\mathcal{F}_n(X)$, there exists $B \in \mathcal{F}_n(X)$ such that $H_X(B, A) < \varepsilon$. Notice that B is contained in the union of the sets $B(\varepsilon, p_1), \ldots, B(\varepsilon, p_{n-1}), N(\varepsilon, \alpha)$ and intersects each one of them. Thus, the components of B are the sets $B_1 = B \cap B(\varepsilon, p_1), \ldots, B_{n-1} = B \cap B(\varepsilon, p_{n-1})$ and $B_n = B \cap N(\varepsilon, \alpha)$. Notice that $B_n \cap B(\varepsilon, p_n) \neq \emptyset$ and $B_n \cap B(\varepsilon, x) \neq \emptyset$. Thus, B_n is connected, $B_n \subset V$ and B_n intersects S and T. This implies that $B_n \cap P(X) \neq \emptyset$ and, by Theorem 4, $B \notin \mathcal{F}_n(X)$, a contradiction. This proves that X is meshed and completes the proof of the theorem. ■

Theorem 6 The class of meshed continua contains the following classes.

(a) finite graphs,
(b) \mathcal{D},
(c) locally \mathcal{D} continua.

Proof. Since the class of locally \mathcal{D} continua contains class \mathcal{D} and all the finite graphs, we only need to check that locally \mathcal{D} continua are meshed. Let X be a locally \mathcal{D} continuum. Clearly, X is a Peano continuum. By Theorem 3.9 of [3], $\mathfrak{F}(X)$ is dense in $C(X)$, so Theorem 5 implies that X is meshed. ■

3 Free arcs

A free circle S, in a continuum X, is a simple closed curve S in X such that there exists $p \in S$ such that $S - \{p\}$ is open in X. A maximal free arc is a free arc in X which is maximal with respect to inclusion. Let

$$\mathfrak{A}(X) = \{J \subset X : J \text{ is a maximal free arc in } X\}$$

$$\mathfrak{A}_S(X) = \mathfrak{A}(X) \cup \{S \subset X : S \text{ is a free circle in } X\}.$$

A simple triod is a continuum T homeomorphic to the cone over the discrete space $\{1, 2, 3\}$. The point of T corresponding to the vertex of the cone is called the vertex of T.

Given an arc J in a continuum X and points x, y in J, let $[x, y]^J$ be the subarc of J joining x and y, if $x \neq y$, and $[x, y]^J = \{x\}$, if $x = y$. We also define $[x, y] = [x, y]^J - \{y\}$ and $(x, y) = [x, y]^J - \{x, y\}$.

The following lemma is easy to prove.

Lemma 7 Let X be a continuum and let J be a free arc in X. Then:

(a) no point of J° can be the vertex of a simple triod in X,

(b) if J and K are free arcs in X and $J^\circ \cap K^\circ \neq \emptyset$, then $J \cup K$ is a free arc or a free circle in X.

Lemma 8 For a Peano continuum X, let $\{J_m\}_{m=1}^\infty$ be a sequence of pairwise different elements of $\mathfrak{A}_S(X)$ and $x_m \in J_m$, for each $m \in \mathbb{N}$. If $\lim x_m = x$ for some $x \in X$, then $\lim J_m = \{x\}$ (in $C(X)$).

Proof. Note that X is neither an arc nor a simple closed curve. For each $m \in \mathbb{N}$, $x_m \in \text{cl}_X(J_m)$, so we may assume that $x_m \in J_m$. For each $m \in \mathbb{N}$, $\text{Fr}_X(J_m)$ is a nonempty subset of X with at most two elements. Thus, we can put $\text{Fr}_X(J_m) = \{p_m, q_m\}$. Suppose that the sequence $\{J_m\}_{m=1}^\infty$ does not converge to $\{x\}$ in $C(X)$. Since $C(X)$ is compact, there exists a subsequence of $\{J_m\}_{m=1}^\infty$ that converges to some $A \in C(X)$, where $A \neq \{x\}$. We may assume that $\lim J_m = A$, $\lim p_m = p$ and $\lim q_m = q$, for some $p, q \in X$. Note that $p, q, x \in A$. Since $A \neq \{x\}$, we can choose an element $y \in A - \{p, q\}$. Then there exists a sequence $\{y_m\}_{m=1}^\infty$ in X such that $y_m \in J_m$, for each $m \in \mathbb{N}$ and $\lim y_m = y$. By Lemma 3 of [14], $J_m \cap J_k = \emptyset$, if $m \neq k$. Thus, $y \notin J_m$, for every $m \in \mathbb{N}$. Let U be an open connected (then arcwise connected) set in X such that $y \in U$ and $p, q \notin \text{cl}_X(U)$. Let $m_0 \in \mathbb{N}$ be such that, for each $m \geq m_0$,
Let \(y_m \in U \). For each \(m \geq m_0 \), let \(\alpha_m \) be an arc in \(U \) with end points \(y_m \) and \(y \). Since \(y \notin J^0_p \), \(\alpha_m \) contains one of the points \(p_m \) or \(q_m \). This implies that \(p \in \text{cl}_X(U) \) or \(q \in \text{cl}_X(U) \), a contradiction. This completes the proof of the Lemma. \(\blacksquare \)

Lemma 9 Let \(X \) be a Peano continuum and \(J \) a free arc with an end point \(e \) such that \(e \in J^0 \). Then there exists a free arc \(K \) such that \(J \subset K \), \(e \) is an end point of \(K \), \(e \in K^0 \) and \(K \) contains every free arc in \(X \) containing \(J \).

Proof. We may assume that \(X \) is not an arc. Let \(\mathcal{F} = \{ L \subset X : L \) is a free arc in \(X \) such that \(J \subset L \} \). Given \(L \in \mathcal{F} \) let \(p_L \) and \(q_L \) be the end points of \(L \). We claim that \(e \notin \{ p_L, q_L \} \). Suppose to the contrary that \(e \notin \{ p_L, q_L \} \). Since \(e \in J^0 \), there exist points \(x, y \in L \) such that \(e \in \{ x, y \}_L \subset J \). This is a contradiction since \(e \) is an end point of \(J \). Hence, \(e \notin \{ p_L, q_L \} \) and we may assume that the end points of \(L \) are \(p_L \) and \(e \). Since \(e \in J^0 \), we have that \(e \in L^0 \). Thus, \(L - \{ p_L \} \) is open in \(X \).

By Lemma 7 (a), it follows that if \(L, M \in \mathcal{F} \), then \(L \subset M \) or \(M \subset L \).

Let \(U = \bigcup \{ L - \{ p_L \} : L \in \mathcal{F} \} \) and \(K = \text{cl}_X(U) \). We claim that \(K \neq U \). Suppose to the contrary that \(K = U \). Since \(K \) is compact and \(L - \{ p_L \} \) is open for each \(L \in \mathcal{F} \), by the previous paragraph, there exists \(L \in \mathcal{F} \) such that \(K = L - \{ p_L \} \). This is impossible since \(L - \{ p_L \} \) is not compact. Hence, \(K \neq U \).

Fix a point \(p \in K - U \). Since \(X \) is arcwise connected, there exists an arc \(M \) in \(X \) joining \(p \) and \(e \).

We see that \(K = M \). Let \(L \in \mathcal{F} \) and \(z \in L - \{ e, p_L \} \). Then \(X - \{ z \} = (X - [z, e]_L) \cup ([z, e]_L \setminus \{ e \}) \) is a separation of \(X - \{ z \} \). Thus, \(z \) separates \(p \) and \(e \) in \(X \). Hence, \(z \in M \). We have shown that \(L - \{ e, p_L \} \subset M \). Therefore, \(U \subset M \) and \(K \subset M \). Since \(p, e \in K \), we conclude that \(K = M \). Thus, \(U \) is a connected subset of the arc \(M \), \(e \in U \) and \(p \in \text{cl}_X(U) \). This implies that \(U = M - \{ p \} = K - \{ p \} \). Since \(U \) is open in \(X \), we have that \(K \) is a free arc. Thus, \(K \in \mathcal{F} \). Given \(L \in \mathcal{F} \), since \(K \) is closed in \(X \) and \(L - \{ p_L \} \subset K \), we have \(L \subset K \). This completes the proof of the Lemma. \(\blacksquare \)

Lemma 10 Let \(X \) be a Peano continuum and let \(J \) be a free arc. Then there exists \(K \in \mathfrak{S}(X) \) such that \(J \subset K \).

Proof. We may assume that \(X \) is not a simple closed curve and \(J \) is not contained in a free circle in \(X \). Let \(x, y \) be the end points of \(J \). Fix points \(p, q \in (x, y)_J \) such that \([x, p]_J \cap [q, y]_J = \emptyset \). Let \(Y = X - (p, q)_J \). Then \(Y \) is a compact subset of \(X \). Let \(X_p \) and \(X_q \) be the components of \(Y \) containing \(p \) and \(q \), respectively. Notice that \(\text{Fr}_X(Y) = \{ p, q \}, [x, p]_J \subset X_p \) and \([q, y]_J \subset X_q \).

By the Boundary Bumping Theorem (Theorem 5.4 of [23]), each component of \(Y \) contains either \(p \) or \(q \). This implies that \(Y = X_p \cup X_q \) and we have that either \(X_p = X_q = Y \) or \(X_p \cap X_q = \emptyset \). Clearly, \(Y \) is locally connected and each \(X_p \) and \(X_q \) are Peano continua. Notice that \([x, p]_J \) is a free arc of \(X_p \) and \(p \in \text{int}_{X_p}([x, p]_J) \). By Lemma 9, there exists a free arc \(K_p \) of \(X_p \) such that \([x, p]_J \subset K_p \) and \(p \) is an end point of \(K_p \). Then \(p \in \text{int}_{X_p}(K_p) \) and \(K_p \) contains every free arc in \(X_p \) containing \([x, p]_J \). Similarly, \([q, y]_J \) is a free arc of \(X_q \).
q ∈ int_{X, q}([q, y]_J) and there exists a free arc K_q of X_q such that $[q, y]_J ⊂ K_q$. Let p_0 (resp., q_0) be the other end point of K_p (resp., K_q).

Since $[x, p]_J$ is an open arc of X_p and $p ∈ int_{X_q}([x, p]_J)$, p is an end point of each arc in X_p containing p. If $p ∈ (q, q_0)_{K_q}$, then $p ∈ X_p ∩ X_q$ and $X_p = X_q$. This implies that p is not an end point of the arc $[q, q_0]_{K_q} ⊂ X_p$, a contradiction. Hence, $p ∉ (q, q_0)_{K_q}$. Since $Fr_X(X_q) ⊂ \{p, q\}$, we have that $(q, q_0)_{K_q}$ is an open set in X_q such that $(q, q_0)_{K_q} ⊂ int_{X}(X_q)$. Hence, $(q, q_0)_{K_q}$ is open in X.

Similarly, $(p, p_0)_{K_p}$ is open in X. Thus, K_p and K_q are free arcs in X. Since $\emptyset ≠ (x, p)_J ⊂ K_p ∩ [x, q]_J$ and J is not contained in a free circle in X, by Lemma 7(b), $K_p ∩ [x, q]_J = K_p ∪ [p, q]_J$ is a free arc in X. Similarly, $K_q ∩ [p, q]_J$ is a free arc in X. Applying again Lemma 7 (b), $K_p ∪ [p, q]_J ∪ K_q = K_p ∪ J ∪ K_q$ is a free arc in X with end points p_0 and q_0.

Suppose that L is a free arc in X such that $K_p ∪ J ∪ K_q ⊂ L$. Suppose that the end points of L are u and v and $[u, p_0]_L ∩ [q_0, v]_L = \emptyset$. Then $[u, p]_L ⊂ X − (p, q)_J$ and $[u, p]_L ⊂ X_p$. By the maximality of K_p, $[u, p]_L = K_p = [p_0, p]_L$. This implies that $u = p_0$. Similarly, $v = q_0$. Hence, $L = K_p ∪ J ∪ K_q$. We have shown that $K_p ∪ J ∪ K_q$ is maximal. This ends the proof of the Lemma.

Lemma 11 Let X be a Peano continuum and $A ∈ C_n(X)$. Then $dim_A[C_n(X)] ≥ 2n$ and, if $dim_A[C_n(X)] = 2n$, then there exist $k ∈ \mathbb{N}$ and elements $J_1, \ldots, J_k ∈ \mathfrak{A}_S(X)$ such that $A ∈ \{J_1^0, \ldots, J_k^0\}$, where each component of A is contained in some J_i^0.

Proof. We may assume that $dim_A[C_n(X)]$ is finite. Let A_1, \ldots, A_k be the components of A. By Theorem 4, there exists a finite graph D contained in X such that $A ⊂ D^0$. Then $C_n(D)$ is a neighborhood of A in $C_n(X)$. Thus, $dim_A[C_n(X)] = dim_A[C_n(D)]$. By Theorem 2.4 of [21],

$$dim_A[C_n(D)] = 2n + \sum_{x ∈ R(D) ∩ A} (ord_D(x) − 2)$$

where $R(D)$ is the set of ramification points of the graph D and $ord_D(x)$ is the order of the point x in D. Since $ord_D(x) ≥ 3$ for each $x ∈ R(D)$, $dim_A[C_n(X)] ≥ 2n$ and, if $dim_A[C_n(X)] = 2n$, then $R(D) ∩ A = \emptyset$. Now, assume that $dim_A[C_n(X)] = 2n$, then for each $i ∈ \{1, \ldots, k\}$ there exists a free arc L_i in D such that $A_i ⊂ int_D(L_i)$. Since $A ⊂ D^0$, $A_i ⊂ int_X(L_i)$ so we may assume that $L_i ⊂ D^0$. This implies that L_i is a free arc in X. By Lemma 10, there exists $J_i ∈ \mathfrak{A}_S(X)$ such that $L_i ⊂ J_i$. Therefore, $A ∈ \{J_1^0, \ldots, J_k^0\}$.

4 Continua that are not almost meshed

Given a continuum X and a nonempty closed subset K of X, let

$$C_n^K(X) = \{A ∈ C_n(X) : K ⊂ A\}, \quad \text{and} \quad C_n(X, K) = \{A ∈ C_n(X) : A ∩ K ≠ \emptyset\}.$$
Given $A, B \in 2^X$ such that $A \subseteq B$, an order arc from A to B is a continuous function $\alpha : [0, 1] \to 2^X$ such that $\alpha(0) = A$, $\alpha(1) = B$ and, if $0 \leq s < t \leq 1$, then $\alpha(s) \subseteq \alpha(t)$. It is known (see Lemma 15.2 of [19]) that if $A \subseteq B$, then there exists an order arc from A to B if and only if each component of B intersects A. Given a closed subset \mathcal{G} of 2^X, we call \mathcal{G} a growth hyperspace provided that for every $A \in \mathcal{G}$ and $B \in 2^X$ such that $A \subseteq B$ and each component of B intersects A, we have $B \in \mathcal{G}$ (equivalently, there is an order arc from A to B). Note that the sets $C_n(X)$, $C_n^K(X) = \{A \in C_n(X) : K \subseteq A\}$ and $C_n(X, K) = \{A \in C_n(X) : A \cap K \neq \emptyset\}$ are growth hyperspaces. By the comments at the end of section 2 of [8, Section 2], if X is a Peano continuum and $\mathcal{G} \subset 2^X$ is a growth hyperspace, then \mathcal{G} is an AR.

A compactum is a compact metric space. A map is a continuous function. Given a compactum Y with metric d, a closed subset A of Y is said to be a Z-set in Y provided that for each $\varepsilon > 0$ there is a continuous function $f_\varepsilon : Y \to Y - A$ such that $d(f_\varepsilon(y), y) < \varepsilon$ for all $y \in Y$. A continuous function between compacta $f : Y_1 \to Y_2$ is called a Z-map provided that $f(Y_1)$ is a Z-set in Y_2.

Given two disjoint continua X and Y, and points $p \in X$ and $y \in Y$, let $X \cup_p Y$ be the continuum obtained by attaching X to Y (identifying p to y).

Given a continuum X, a metric d for X is said to be convex provided that for each two points $p, q \in X$, there exists an isometry $\gamma : [0, d(p, q)] \to X$ such that $\gamma(0) = p$ and $\gamma(d(p, q)) = q$. It is known that X is a Peano continuum if and only if X admits a convex metric (see [6] and [22]).

Given a continuum X, $\varepsilon > 0$ and $A \in 2^X$, define $C_d(\varepsilon, A)$, the generalized closed d-ball in X of radius ε about A, by $C_d(\varepsilon, A) = \{x \in X : d(x, A) \leq \varepsilon\}$. If X is Peano continuum with a convex metric d, then for every $A \in C_n(X)$ and $\varepsilon > 0$, $C_d(\varepsilon, A) \in C_n(X)$.

Definition 12 Given a Peano continuum X with convex metric d and $\varepsilon > 0$, define $\Phi_\varepsilon : 2^X \to 2^X$ by $\Phi_\varepsilon(A) = C_d(\varepsilon, A)$.

Remark 13 By [19, Proposition 10.5] Φ_ε is a map within ε of the identity map. Also notice that if \mathcal{G} is a growth hyperspace, $A \in \mathcal{G}$ and $\varepsilon > 0$, then $\Phi_\varepsilon(A) \in \mathcal{G}$.

We will use the following characterization by Toruńczyk of the Hilbert cube ([24], see Theorem 9.3 of [19]).

Theorem 14 (Toruńczyk’s Theorem). Let Y be an AR. If the identity map on Y is a uniform limit of Z-maps, then Y is a Hilbert cube.

Lemma 15 Let X be a Peano continuum, R a closed subset of $\mathcal{P}(X)$ and $K \in C(X)$ such that $\text{int}_X(K) \cap R \neq \emptyset$. Then $C_n^K(X)$ is a Z-set of $C_n(X, R)$.

Proof. Notice that $C_n^K(X)$ is a closed subset of $C_n(X, R)$. We show that for each $\varepsilon > 0$ there is a map, $g_\varepsilon : C_n(X, R) \to C_n(X, R) - C_n^K(X)$ such that $H_X(g_\varepsilon(A), A) < \varepsilon$ for all $A \in C_n(X, R)$.

Let $\varepsilon > 0$ and fix a point $p \in \text{int}_X(K) \cap R$. We may assume that $X \neq B(\varepsilon, p) \subset \text{int}_X(K)$. By Theorem 8.10 of [23], there exist $m \in \mathbb{N}$ and Peano
subcontinua X_1, \ldots, X_m of X such that for each $i \in \{1, \ldots, m\}$, diameter(X_i) < $\frac{\epsilon}{2}$ and $X = X_1 \cup \ldots \cup X_m$. We may assume that $\{i \in \{1, \ldots, m\} : p \in X_i\} = \{1, \ldots, r\}$ where $r < m$. Define the star of p by $\text{St}(p) = X_1 \cup \ldots \cup X_r$. Notice that $\text{St}(p) \subset \text{int}_X(K)$.

Let $F = \{ j \in \{1, \ldots, m\} : p \notin X_j \text{ and } X_j \cap \text{St}(p) \neq \emptyset \}$. Since $\text{St}(p) \neq X$ and $X = X_1 \cup \ldots \cup X_m$ is connected, it follows that $F \neq \emptyset$. For each $j \in F$, fix a point $p_j \in X_j \cap \text{St}(p)$. Note that by Proposition 10.7 of [19], $\text{St}(p)$ is a locally connected continuum and therefore it is arcwise connected. Thus, it is possible to construct a tree $T \subset \text{St}(p)$ such that $\{p_j : j \in F\} \subset T$. Hence, $T \cap X_j \neq \emptyset$ for each $j \in F$.

Let $Y = T \cup (\bigcup \{ X_j : j \in F \})$. By Proposition 10.7 of [19], Y is a Peano continuum, since $C(Y)$ a growth hyperspace, $C(Y)$ is an AR. Notice that $Y \subset \text{int}_X(K)$.

Let $Z = Y \cap R$. Notice that $p \in Z$ and $C(Y, Z)$ is an AR $(C(Y, Z)$ is a growth hyperspace).

Define $\alpha : Y \to C(Y)$ by $\alpha(y) = \{ y \}$ and let $\beta : Z \to C(Y, Z)$ be given by $\beta(z) = \{ z \}$. By [19, Theorem 9.1] β can be extended to a map $\overline{\beta} : (\text{St}(p) \cup Y) \cap R \to C(Y, Z)$. Notice that $\overline{\beta}|_Z = \alpha|_Z$. Thus, the function $\alpha \cup \overline{\beta} : ((\text{St}(p) \cup Y) \cap R) \cup Y \to C(Y)$ defined by

$$(\alpha \cup \overline{\beta})(x) = \begin{cases} \alpha(x), & \text{if } x \in Y, \\ \overline{\beta}(x), & \text{if } x \in (\text{St}(p) \cup Y) \cap R, \end{cases}$$

is a well-defined map.

By [19, Theorem 9.1], we can extend $\alpha \cup \overline{\beta}$ to a map $\overline{\alpha} : \text{St}(p) \cup Y \to C(Y)$.

Now extend $\overline{\alpha}$ to a function $\gamma : X \to C(X)$ by the formula

$$\gamma(x) = \begin{cases} \overline{\alpha}(x), & \text{if } x \in \text{St}(p) \cup Y, \\ \{ x \}, & \text{if } x \in X \setminus (\text{St}(p) \cup Y), \end{cases}$$

Since $\text{cl}_X(\{x \in (\text{St}(p) \cup Y)) \cap \text{St}(p) \cup Y \cup X_j : j \in F\} \subset Y, \gamma$ is a well-defined map.

Notice that if $x \in R \cap (\text{St}(p) \cup Y)$, then $\gamma(x) = \overline{\alpha}(x) = (\alpha \cup \overline{\beta})(x) = \overline{\beta}(x) \in C(Y, Z)$. Therefore, γ has the following property:

$$(*) \text{ For every } x \in R \cap (\text{St}(p) \cup Y), \gamma(x) \cap R \neq \emptyset.$$

Define $g_e : C_n(X) \to C_n(X)$ as $g_e(A) = \bigcup \{ \gamma(x) : x \in A \}$. Using [7, Lemma 2.2], it is easy to see that g_e is a well-defined map.

Given $x \in \text{St}(p) \cup Y$, since diameter($\text{St}(p) \cup Y) < \epsilon$ and $\gamma(x) \subset Y$, we have that $H_X(\{x \}, \gamma(x)) < \epsilon$. This implies that $H_X(A, g_e(A)) < \epsilon$ for each $A \in C_n(X)$.

Now we prove that g_e maps $C_n(X, R)$ into $C_n(X, R) - C_n^R(X)$. Let $A \in C_n(X, R)$ and fix a point $a \in A \cap R$. If $a \in X \setminus (\text{St}(p) \cup Y)$, then $\gamma(a) = \{ a \} \subset R$, so $g_e(A) \subset C_n(X, R)$. If $a \in \text{St}(p) \cup Y$, then $a \in R \cap (\text{St}(p) \cup Y)$. By property $(*)$, $\gamma(a) \cap R \neq \emptyset$, so $g_e(A) \subset C_n(X, R)$.

Notice that, by definition of $\mathcal{P}(X)$, p does not have a neighborhood homeomorphic to a finite graph. Since $\text{St}(p) - (\bigcup \{ X_j : j \in F \})$ is an open subset of
Theorem 14 has been verified and we obtain that C is a set.

Hence, $g \in X$ for the assumption of Theorem 14 for $C_\mathcal{D}$. Then $C_\mathcal{D}$ is convex, and the Peano continuum \mathcal{D} is not homeomorphic to \mathcal{D}_1. Let $\mathcal{D}_2 = C_\mathcal{D}(\mathcal{D}_1 \cup \mathcal{D}_2)$. If \mathcal{D}_2 is a Hilbert cube, then $\mathcal{D}_2 = C_\mathcal{D}(\mathcal{D}_1 \cup \mathcal{D}_2)$. We only need to show that $\Phi_\mathcal{D}|_{C_\mathcal{D}(\mathcal{D}_1 \cup \mathcal{D}_2)}$ is a Z-map.

Since R is compact, there are finitely many points p_1, \ldots, p_s of R such that $R \subset C_\mathcal{D}(\mathcal{D}_1 \cup \mathcal{D}_2)$. For each $i \in \{1, \ldots, s\}$, let $K_i = C_\mathcal{D}(\mathcal{D}_1 \cup \mathcal{D}_2, \{p_i\})$. Since \mathcal{D} is convex, K_i is a continuum and $p_i \in \text{int}_{\mathcal{D}}(K_i) \cap R$.

Applying Lemma 15, we obtain that $C_{\mathcal{D}^n}(\mathcal{D})$ is a Z-set in $C_\mathcal{D}(\mathcal{D}_1 \cup \mathcal{D}_2)$. By [19, Exercise 9.4], the set $\mathcal{G} = C_{\mathcal{D}^n}(\mathcal{D}) \cup \ldots \cup C_{\mathcal{D}^n}(\mathcal{D})$ is a Z-set in $C_\mathcal{D}(\mathcal{D}_1 \cup \mathcal{D}_2)$. By the choice of K_i, it is easy to see that for each $A \in C_\mathcal{D}(\mathcal{D}_1 \cup \mathcal{D}_2)$ there exists $j \in \{1, \ldots, s\}$ such that $\Phi_\mathcal{D}(A) = C_{\mathcal{D}^n}(\mathcal{D}) \subset \mathcal{G}$. Therefore, $\Phi_\mathcal{D}|_{C_\mathcal{D}(\mathcal{D}_1 \cup \mathcal{D}_2)} \subset \mathcal{G}$.

Since a closed subset of a Z-set is a Z-set, we conclude that $\Phi_\mathcal{D}|_{C_\mathcal{D}(\mathcal{D}_1 \cup \mathcal{D}_2)}$ is a Z-map within \mathcal{D} of the identity map. Therefore, the second assumption of Theorem 14 has been verified and we obtain that $C_\mathcal{D}(\mathcal{D}_1 \cup \mathcal{D}_2)$ is a Hilbert cube.

Theorem 17 (Anderson’s Homogeneity Theorem). If $h : A \to B$ is a homeomorphism between Z-sets in a Hilbert cube \mathcal{Q}, then h extends to a homeomorphism of \mathcal{Q} onto \mathcal{Q}.

The proof of the following result is similar to the proof of Theorem 5.1 of [2].

Theorem 18 Let X be a Peano continuum and $p \in X$. Then there exists an uncountable family \mathcal{D} of pairwise non homeomorphic dendrites such that

(a) for each $D \in \mathcal{D}$, D does not contain free arcs,

(b) the Peano continuum $X \cup_p D$ is not homeomorphic to X, and

(c) if $B \neq D$ are elements of \mathcal{D}, then $X \cup_p B$ and $X \cup_p D$ are not homeomorphic.

Lemma 19 Let X, Y and D be continua and p a point of Y such that $Y = X \cup_D Y$ and $X \cap D = \{p\}$. Suppose that E is a closed subset of X that contains p. Then $\text{Fr}_{C_\mathcal{D}(X)}(C_\mathcal{D}(X, E)) = \text{Fr}_{C_\mathcal{D}(Y)}(C_\mathcal{D}(Y, E \cup D)).$
Proof. It follows form the easy to prove following facts: $C_n(Y) - C_n(Y, E \cup D) = C_n(X) - C_n(X, E) \subset C_n(X)$ and $C_n(X) \cap C_n(Y, E \cup D) = C_n(X, E)$.

Now, we are ready to prove the main results of this section.

Theorem 20 Let X be a Peano continuum that is not almost meshed. Then for every $n \in \mathbb{N}$, X does not have unique hyperspace $C_n(X)$.

Proof. We assume that the metric for X is convex. Since X is not almost meshed, there exist a point $p \in \mathcal{P}(X)$ and an $\varepsilon > 0$ such that $B_{2\varepsilon}(p) \subset \mathcal{P}(X)$. Let $E = C_d(\varepsilon, \{p\})$. Notice that E is a continuum with the properties that $E = \text{cl}_X(\text{int}_X(E))$ and $E \subset \mathcal{P}(X)$. By Theorem 16, $C_n(X, E)$ is a Hilbert cube.

Let $Y = X \cup_p D$, where D is a locally connected continuum without free arcs. By Theorem 18 we can choose D in such a way that X and Y are not homeomorphic.

We show that $C_n(X)$ is homeomorphic to $C_n(Y)$. First notice that $E \cup D$ and Y satisfy the hypothesis of Lemma 16, and therefore $C_n(Y, E \cup D)$ is a Hilbert Cube. Assume also that the metric for Y is convex.

Claim 1. $\text{Fr}_{C_n(X)}(C_n(X, E))$ is a Z-set of $C_n(X, E)$ and $\text{Fr}_{C_n(Y)}(C_n(Y, E \cup D))$ is a Z-set of $C_n(Y, E \cup D)$.

Let $\delta > 0$ and consider $\Phi_\delta|_{C_n(X, E)} : C_n(X, E) \to C_n(X, E)$ as in Definition 12. By Remark 13, $\Phi_\delta|_{C_n(X, E)}$ is within δ of the identity map. Since $E = \text{cl}_X(\text{int}_X(E))$, if $A \in C_n(X, E)$, then $\Phi_\delta(A) \cap \text{int}_X(E) \neq \emptyset$. Therefore, $\Phi_\delta(A) \notin \text{Fr}_{C_n(X)}(C_n(X, E))$ and $\Phi_\delta|_{C_n(X, E)} : C_n(X, E) \to C_n(X, E) - (\text{Fr}_{C_n(X)}(C_n(X, E)))$. We have proved that $\text{Fr}_{C_n(X)}(C_n(X, E))$ is a Z-set in $C_n(X, E)$. The proof that $\text{Fr}_{C_n(Y)}(C_n(Y, E \cup D))$ is a Z-set of $C_n(Y, E \cup D)$ is analogous so the claim is proved.

By Lemma 19, the identity map $\text{id} : \text{Fr}_{C_n(X)}(C_n(X, E)) \to \text{Fr}_{C_n(Y)}(C_n(Y, E \cup D))$ is a well-defined homeomorphism. By Claim 1 and Theorem 17, the identity map id can be extended to a homeomorphism $h_1 : C_n(X, E) \to C_n(Y, E \cup D)$.

We define a homeomorphism $h : C_n(X) \to C_n(Y)$ as follows.

$$h(A) = \begin{cases} h_1(A), & \text{if } A \in C_n(X, E), \\ A, & \text{if } A \in C_n(X) - C_n(X, E). \end{cases}$$

Hence, $C_n(X)$ is homeomorphic to $C_n(Y)$ and the Theorem is proved.

Corollary 21 Let X be a Peano continuum that is not almost meshed. Then there exists an uncountable family \mathcal{Y} of pairwise non-homeomorphic Peano continua such that:

(A) for each $Y \in \mathcal{Y}$, X is not homeomorphic to Y,

(B) for each $n \in \mathbb{N}$ and each $Y \in \mathcal{Y}$, $C_n(X)$ is homeomorphic to $C_n(Y)$.

Proof. Let \mathcal{D} be as in Theorem 18. Fix a point $p \in \text{int}_X(\mathcal{P}(X))$. Let $\mathcal{Y} = \{X \cup_p D : D \in \mathcal{D}\}$.

13
5 Almost meshed continua without unique hyperspace

In this section we show a class of almost meshed Peano continua that do not have unique hyperspace $C_m(X)$.

Theorem 22 Let X be an almost meshed Peano continuum and $n \in \mathbb{N}$. Suppose that there exist a closed subset R of $\mathcal{P}(X)$ and pairwise disjoint nonempty open sets U_1, \ldots, U_{n+1} such that

(a) $X = R = U_1 \cup \ldots \cup U_{n+1}$ and

(b) for each $i \in \{1, \ldots, n+1\}$, $R \subset \text{cl}_X(U_i)$.

Then X does not have unique hyperspace $C_m(X)$ for every $m \leq n$.

Proof. Let $m \leq n$. By Theorem 16, $C_m(X, R)$ is a Hilbert cube.

Fix a point $p \in R$ and let $Y = X \cup_p D$, where D is a locally connected continuum without free arcs. By Theorem 18, we can choose D in such a way that X and Y are not homeomorphic. We show that $C_m(X)$ is homeomorphic to $C_m(Y)$. Notice that $R \cup D$ is a closed subset of $\mathcal{P}(Y)$. By Theorem 16, $C_m(Y, R \cup D)$ is a Hilbert cube. Assume that the metrics for X and Y are convex.

Claim 2. $\text{Fr}_{C_m(Y)}(C_m(Y, R \cup D))$ is a Z-set in $C_m(Y, R \cup D)$.

Let $\epsilon > 0$ and consider the map $\Phi_{\epsilon} : C_m(Y, R \cup D) \rightarrow C_m(Y, R \cup D)$ of Definition 12. By Remark 13, $\Phi_{\epsilon} : C_m(Y, R \cup D)$ is within ϵ of the identity map so we only have to prove that $\Phi_{\epsilon}(C_m(Y, R \cup D)) \cap \text{Fr}_{C_m(Y)}(C_m(Y, R \cup D)) = \emptyset$.

Let $A \subset C_m(Y, R \cup D)$.

Case 1. $A \cap R \neq \emptyset$.

By (b), $\Phi_{\epsilon}(A) \cap U_i \neq \emptyset$, for every $i \in \{1, \ldots, n+1\}$. Consider a sequence $\{A_j\}_{j=1}^{\infty}$ of elements of $C_m(Y)$ such that $\lim A_j = \Phi_{\epsilon}(A)$. Then there exists $M \in \mathbb{N}$ such that for each $j \geq M$ and every $i \in \{1, \ldots, n+1\}$, $A_j \cap U_i \neq \emptyset$.

Given $j \geq M$, since A_j has at most m components and $m < n+1$, we have $A_j \cap (R \cup D) \neq \emptyset$. Thus, $A_j \subset C_m(Y, R \cup D)$ and $\Phi_{\epsilon}(A)$ can not be approached by continua that do not intersect $R \cup D$. Hence, $\Phi_{\epsilon}(A) \notin \text{Fr}_{C_m(Y)}(C_m(Y, R \cup D))$.

Case 2. $A \cap R = \emptyset$.

In this case $p \notin A$ and $\Phi_{\epsilon}(A) \cap (D - \{p\}) \neq \emptyset$. Since $D - \{p\}$ is open in Y, we have that $\Phi_{\epsilon}(A) \notin \text{Fr}_{C_m(Y)}(C_m(Y, R \cup D))$.

By Cases 1 and 2, we obtain that $\Phi_{\epsilon} |_{C_m(Y, R \cup D)} : C_m(Y, R \cup D) \rightarrow C_m(Y, R \cup D) - (\text{Fr}_{C_m(Y)}(C_m(Y, R \cup D)))$. This proves Claim 2.

Claim 3. $\text{Fr}_{C_m(X)}(C_m(X, R))$ is a Z-set in $C_m(X, R)$.

The proof is similar and easier to the one in Claim 2 since we only need to consider Case 1.

By Lemma 19, the identity map $id : \text{Fr}_{C_m(X)}(C_m(X, R)) \rightarrow \text{Fr}_{C_m(Y)}(C_m(Y, R \cup D))$ is a homeomorphism. By Claims 2, 3 and Theorem 17, the identity map
id can be extended to a homeomorphism \(h_1 : C_m(X, R) \to C_m(Y, R \cup D) \). We define a homeomorphism \(h : C_m(X) \to C_m(Y) \) as follows:

\[
h(A) = \begin{cases} h_1(A), & \text{if } A \in C_m(X, R), \\ A, & \text{if } A \in C_m(X) - C_m(X, R). \end{cases}
\]

Hence, \(C_m(X) \) is homeomorphic to \(C_m(Y) \) and the theorem is proved. \(\blacksquare \)

Corollary 23 Let \(X \) be an almost meshed Peano continuum such that \(X - \mathcal{P}(X) \) is disconnected. Then \(X \) does not have unique hyperspace \(C(X) \).

Proof. Suppose that \(X - \mathcal{P}(X) = U \cup V \), where \(U \) and \(V \) are nonempty open disjoint subsets of \(X \). Since \(X \) is almost meshed, \(\text{int}_X(\mathcal{P}(X)) = \emptyset \). Thus, \(X = \text{cl}_X(U) \cup \text{cl}_X(V) \) and \(R = \text{cl}_X(U) \cap \text{cl}_X(V) \) is a nonempty closed subset of \(\mathcal{P}(X) \). Let \(W = X - \text{cl}_X(U) \) and \(Z = X - \text{cl}_X(V) \). Hence, \(W \) and \(Z \) are nonempty open disjoint subsets of \(X \) such that \(V \subset W, U \subset Z \) and \(R \subset \text{cl}_X(W) \cap \text{cl}_X(Z) \). By Theorem 22, the Corollary follows. \(\blacksquare \)

Corollary 24 Let \(X \) be an almost meshed Peano continuum satisfying the conditions of Theorem 22. Then there exists an uncountable family \(\mathcal{Y} \) of pairwise non-homeomorphic Peano continua such that:

(A) for each \(Y \in \mathcal{Y} \), \(X \) is not homeomorphic to \(Y \),

(B) for each \(Y \in \mathcal{Y} \) and each \(m \leq n \), \(C_m(X) \) is homeomorphic to \(C_m(Y) \).

Corollary 25 Let \(X \) be a dendrite that is not a tree and \(k = \sup\{\text{ord}_X(p) : p \in \mathcal{P}(X)\} \), notice \(k \in \mathbb{N} \cup \{\omega\} \). Then for every \(m < k \), \(X \) does not have unique hyperspace \(C_m(X) \).

Proof. If \(X \) is not almost meshed, then by Theorem 20, \(X \) does not have unique hyperspace \(C_m(X) \) for every \(m \in \mathbb{N} \). If \(X \) is almost meshed and \(m < k \), there exists a point \(q \in \mathcal{P}(X) \) such that \(\text{ord}_X(q) \geq m + 1 \). Hence, \(X \) and the closed subset \(\{q\} \) satisfy the conditions of Theorem 22 for \(m \) and the Corollary follows. \(\blacksquare \)

6 Meshed continua have unique hyperspaces

Given a continuum \(X \) and \(n \in \mathbb{N} \), let

\[
\mathcal{B}_n(X) = \{ A \in C_n(X) : A \text{ has a neighborhood in } C_n(X) \text{ that is a } 2n\text{-cell} \},
\]

\[
\mathcal{B}_n^0(X) = \{ A \in C_n(X) : A \text{ has a neighborhood } \mathcal{M} \text{ in } C_n(X) \text{ that is a } 2n\text{-cell} \text{ and } A \text{ belongs to the manifold boundary of } \mathcal{M} \},
\]

\[
\Gamma_n(X) = \{ A \in C_n(X) - \mathcal{B}_n(X) : A \text{ has a basis of open neighborhoods } \mathcal{U}_A \text{ in } C_n(X) \text{ such that, for each } U \in \mathcal{U}_A, \dim U = 2n \text{ and } U \cap \mathcal{B}_n(X) \text{ is arcwise connected} \}.
\]
As usual, we denote \(\mathfrak{B}(X) = \mathfrak{B}_1(X) \) and \(\mathfrak{B}^0(X) = \mathfrak{B}_1^0(X) \).

Define

\[
\mathfrak{A}_E(X) = \{ J \in \mathfrak{A}(X) : \text{there exists an end point } p \text{ of } J \text{ such that } p \in J^o \}.
\]

In the case that \(J \in \mathfrak{A}_E(X) \) and \(p \) is an end point of \(J \) such that \(p \in J^o \), \(p \) is said to be an extreme of \(X \).

Lemma 26 Let \(X \) be a Peano continuum and \(A \in C(X) \). Then the following are equivalent:

(a) \(A \in \mathfrak{B}^0(X) \),

(b) there is \(J \in \mathfrak{A}_S(X) \) such that one of the following two conditions hold:

1. \(A = \{ p \} \), for some \(p \in J^o \),

2. \(J \in \mathfrak{A}_E(X) \) and there exists an extreme \(p \) of \(X \) such that \(p \in A \subset J^o \).

Proof. (a) \(\Rightarrow \) (b). Suppose that \(A \in \mathfrak{B}^0(X) \). Then \(\dim_A |C(X)| = 2 \). Lemma 11 implies that there exists \(J \in \mathfrak{A}_S(X) \) such that \(A \subset J^o \). Let \(\mathcal{M} \) be a 2-cell in \(C(X) \) such that \(A \in \text{int}_{C(X)}(\mathcal{M}) \subset \text{int}_{C(X)}(C(J)) \) and \(A \) belongs to the boundary, as manifold, of \(\mathcal{M} \). Thus, \(\mathcal{M} \) is a neighborhood of \(A \) in \(C(J) \). Since \(J \) is either an arc or a simple closed curve, by the geometric models of \(C(J) \) constructed in Examples 5.1 and 5.2 of [19], we obtain that one of the conditions (1) or (2) holds.

(b) \(\Rightarrow \) (a). Let \(J \in \mathfrak{A}_S(X) \) be such that \(A \subset J^o \). Then \(C(J) \) is a neighborhood of \(A \) in \(C(X) \). By the models in Examples 5.1 and 5.2 of [19], in both cases, (1) and (2), there exists a neighborhood \(\mathcal{M} \) of \(A \) in \(C(J) \) such that \(\mathcal{M} \) is a 2-cell, \(A \) belongs to the boundary, as manifold, of \(\mathcal{M} \) and \(\mathcal{M} \subset \text{int}_{C(X)}(C(J)) \). Then \(\mathcal{M} \) is a neighborhood of \(A \) in \(C(X) \). Therefore, \(A \in \mathfrak{B}^0(X) \).

Theorem 27 Let \(X \) be a Peano continuum that is not an arc. Then there exists a homeomorphism \(h : \text{cl}_X(FA(X)) \to \text{cl}_{C(X)}(\mathfrak{B}^0(X)) \) such that \(h(p) = \{ p \} \) for each \(p \in \text{cl}_X(FA(X)) - \bigcup \{ J^o : J \in \mathfrak{A}_E(X) \} \) and, if \(h(p) \cap P(X) \neq \emptyset \), then \(p \in P(X) \) or \(p \) is an end point of \(J \), for some \(J \in \mathfrak{A}_E(X) \), where \(J \cap P(X) \neq \emptyset \) and \(p \in J^o \).

Proof.

By Example 5.2 of [19], we can assume that \(X \) is not a simple closed curve.

Given \(J \in \mathfrak{A}_E(X) \), let \(p_J \) and \(q_J \) be the end points of \(J \), where \(p_J \in J^o \). Since \(X \) is not an arc, \(q_J \notin J^o \). Fix a homeomorphism \(h_J : [0,1] \to J \) such that \(h_J(0) = q_J \) and \(h_J(1) = p_J \).

Let

\[
W = \bigcup \{ J - \{ q_J \} : J \in \mathfrak{A}_E(X) \}.
\]

Then \(W \) is an open subset of \(X \) and \(W \subset FA(X) \).

Define \(h : \text{cl}_X(FA(X)) \to \text{cl}_{C(X)}(\mathfrak{B}^0(X)) \) as follows
Using Lemma 26 it can be shown that h is a well-defined function. Clearly, h is continuous at each point of W. Thus, in order to conclude that h is continuous, take a sequence $\{x_m\}_{m=1}^\infty$ of points of W such that $\lim x_m = x$ for some $x \notin W$. We need to show that $\lim h(x_m) = \{x\}$. For each $m \in \mathbb{N}$, let $J_m \in \mathfrak{A}_E(X)$ such that $x_m \in J_m$. We may assume that $J_m \neq J_k$, if $m \neq k$, and that $\lim p_{J_m} = q$, for some $q \in X$. By Lemma 8, $\lim J_m = \{q\}$. Since $h(x_m) \subset J_m$ and $x_m \in J_m$ for each $m \in \mathbb{N}$, we have that $\lim h(x_m) = \{q\}$ and $\lim x_m = q$. Therefore, $q = x$ and $\lim h(x_m) = \{x\}$. This completes the proof that h is continuous.

It is easy to see that h is one-to-one. In order to show that h is onto, note that by Lemma 26, $\mathfrak{B}^0(X) \subset h(cl_X (\mathcal{F}A(X)))$. Hence, $cl_{\mathcal{C}(X)}(\mathfrak{B}^0(X)) \subset h(cl_X (\mathcal{F}A(X)))$. Thus, h is onto.

Finally, take $p \in cl_X (\mathcal{F}A(X))$ such that $h(p) \cap \mathcal{P}(X) \neq \emptyset$. In the case that $h(p) = \{p\}$, we obtain that $p \in \mathcal{P}(X)$. In the case that $h(p) \neq \{p\}$, then $p \in J - \{q\} = J^o$ for some $J \in \mathfrak{A}_E(X)$. Since $h(p) \cap \mathcal{P}(X) \neq \emptyset$, $h(p) \neq J^o$. Hence, $h(p) = J = h_j([0, 1])$ and we are done.

Lemma 28 Let X be a Peano continuum and $n \geq 3$. Then $\Gamma_n(X) = \{A \in C_n(X) : A$ is connected and there exists $J \in \mathfrak{A}_S(X)$ such that $A \subset J^o\} = \mathfrak{B}(X)$.

Proof. Let $A \in \Gamma_n(X)$. By Lemma 11 and Theorem 4, $\dim_3 [C_n(X)] = 2n$, there exist $k \in \mathbb{N}$, elements $J_1, \ldots, J_k \in \mathfrak{A}_E(X)$ such that $A \in \langle J_1^o, \ldots, J_k^o \rangle$ and a finite graph D in X such that $A \subset D^o$. Then $C_n(D)$ is a neighborhood of A in $C_n(X)$. Thus, we may assume that the basis of open neighborhoods \mathfrak{B}_J in the definition of $\Gamma_n(X)$ satisfies that for each $U \in \mathfrak{B}_J$, $U \subset C_n(D)$. Hence, \mathfrak{B}_J is a basis of neighborhoods of A in $C_n(D)$ such that for each $U \in \mathfrak{B}_J$, $\dim U = 2n$ and $U \subset \mathfrak{B}_n(X)$ is arcwise connected. Given $U \in \mathfrak{B}_J$ and $B \in U \subset \mathfrak{B}_n(X)$, B has a neighborhood M in $C_n(X)$ that is a $2n$-cell. Then there exists an $2n$-cell $N \subset M$ such that $B \in \text{int}_{C_n(X)}(N) \subset U \cap M \subset C_n(D)$. Thus, N is a $2n$-cell that is a neighborhood of B in $C_n(D)$. Hence, $B \in U \cap \mathfrak{B}_n(D)$. We have shown that $U \cap \mathfrak{B}_n(X) \subset U \cap \mathfrak{B}_n(D)$. The other inclusion is easy to prove. Hence, $U \cap \mathfrak{B}_n(X) = U \cap \mathfrak{B}_n(D)$ and $U \cap \mathfrak{B}_n(D)$ is arcwise connected. Since $A \in U - \mathfrak{B}_n(X) = U - \mathfrak{B}_n(D)$, we have proved that $A \in \Gamma_n(D)$. By Lemma 3.6 of [17], A is connected and we may assume that $A \subset J^o$.

Now suppose that $A \in C_n(X)$ is such that A is connected and there exists $J \in \mathfrak{A}_S(X)$ such that $A \subset J^o$. By Lemma 3.6 of [17], $A \in C_n(J) - \mathfrak{B}_n(J)$ and A has a basis of open neighborhoods \mathfrak{B}_J in $C_n(J)$ such that for each $U \in \mathfrak{B}_J$, $\dim U \leq 2n$ (then $\dim U = 2n$, by Lemma 11) and $U \cap \mathfrak{B}_n(J)$ is arcwise connected. Since $A \in \text{int}_{C_n(X)}(C_n(J))$, we can take $U \subset \text{int}_{C_n(X)}(C_n(J))$ so that U is open in $C_n(X)$ for each $U \in \mathfrak{B}_J$. Proceeding as in the previous paragraph, $U \cap \mathfrak{B}_n(X) = U \cap \mathfrak{B}_n(J)$ for each $U \in \mathfrak{B}_J$. This implies that $A \in \Gamma_n(X)$.

In the case that $J \in \mathfrak{S}(X)$ such that $A \subset J^o$ follows from Examples 5.1 and 5.2 of [19] and Lemma 11.

Theorem 29 If X and Y are almost meshed Peano continua, $n \geq 3$ and $C_n(X)$ is homeomorphic to $C_n(Y)$, then X is homeomorphic to Y.

Proof. By Theorem 3.8 of [17], we may assume that X and Y are not arcs. Let $h : C_n(X) \to C_n(Y)$ be a homeomorphism. Notice that the definition of $\Gamma_n(X)$ is given in terms of topological concepts that are preserved under homeomorphisms. Thus, $h(\Gamma_n(X)) = \Gamma_n(Y)$ and $h(\mathfrak{B}(X)) = \mathfrak{B}(Y)$. Note that $\mathfrak{B}(X)$ is an open subset of $C(X)$ and $\mathfrak{B}^g(X) \subset \mathfrak{B}(X)$. Thus, $\mathfrak{B}^g(X) = \{ A \in \mathfrak{B}(X) : A$ has a neighborhood M in $\mathfrak{B}(X)$ that is a 2-cell and A belongs to the manifold boundary of $M \}$.

It follows that $h(\mathfrak{B}^g(X)) = \mathfrak{B}^g(Y)$. Hence, $h|_{\mathfrak{B}(X)}(\mathfrak{B}^g(X)) : cl_{\mathfrak{B}(X)}(\mathfrak{B}^g(X)) \to cl_{\mathfrak{B}(Y)}(\mathfrak{B}^g(Y))$ is a homeomorphism. Theorem 27 implies that $cl_X(\mathcal{F}(A)(X))$ is homeomorphic to $cl_Y(\mathcal{F}(A)(Y))$. By Lemma 1, $cl_X(\mathcal{G}(X))$ is homeomorphic to $cl_Y(\mathcal{G}(Y))$. Since X and Y are almost meshed, we conclude that X is homeomorphic to Y.

Theorem 30 If X and Y are almost meshed Peano continua which are not arcs and $C(X)$ is homeomorphic to $C(Y)$, then X is homeomorphic to Y.

Proof. Let $h : C(X) \to C(Y)$ be a homeomorphism. Notice that $h(\mathfrak{B}(X)) = \mathfrak{B}(Y)$. Proceeding as in the proof of Theorem 29 we conclude that X is homeomorphic to Y.

In Theorem 35 we will extend the conclusions of Theorems 29 and 30 to the case $n = 2$. As in the previous results on finite graphs and class \mathfrak{D}, this case is more difficult and requires a different technique. We will use the following conventions.

Given a continuum X that is not a simple closed curve and $J, K \in \mathfrak{A}(X)$, let

$$\mathcal{D}(J, K) = cl_{\mathfrak{C}(X)}(\mathfrak{B}^g_2(X) \cap (J^o, K^o)) \cap cl_{\mathfrak{C}(X)}(\mathfrak{B}^g_2(X) - (J^o, K^o)).$$

In the case that J is an arc, let p_J and q_J be its end points, where $q_J \in Fr_X(J)$. If J is a simple closed curve, let q_J be the unique point in J such that $J - \{q_J\}$ is open. Since X is not a simple closed curve, $q_J \notin J^o$. Given $J \in \mathfrak{A}(X)$, define $\mathcal{E}(J)$ in the following way: If J is an arc, let $\mathcal{E}(J) = C(J)$.

In the case that J is a simple closed curve, let $\mathcal{E}(J) = \{ A \in C(J) : A = J \text{ or } A = \{p\} \text{ for some } p \in J \text{ or } A \text{ is a subarc of } J \text{ such that } q_J \notin A \text{ or } A \text{ is a subarc of } J \text{ such that } q_J \text{ is one of its end points} \}$. Note that, in both cases, $\mathcal{E}(J) = cl_{\mathfrak{C}(X)}((J^o) \cap C(X))$. Let W_0 be the continuum obtained as $W_0 = D - \text{int}_\mathbb{R}^2(E)$, where D and E are discs in the plane \mathbb{R}^2, $E \subset D$, and E and D are tangents. The following lemma can be easily proved from Examples 5.1 and 5.2 of [19].
Lemma 31. Let X be a continuum that is not a simple closed curve and $J \in \mathcal{A}_S(X)$. Then:

(a) If J is an arc, then $\mathcal{E}(J)$ is a 2-cell,

(b) If J is a simple closed curve, then $\mathcal{E}(J)$ is homeomorphic to W_0 (where the point of tangency corresponds to \((q,t)\)).

Lemma 32. Let X be a Peano continuum. Then $\mathcal{B}^2_2(X) = \{A \in \mathcal{B}_2(X) : A$ is connected or A has a degenerate component or A contains an extreme of $X\}$.

Proof. By Lemma 11, $\mathcal{B}_2(X) \subseteq \bigcup \{(J^\circ, K^\circ) : J, K \in \mathcal{A}_S(X)\}$, and by Lemma 2.1 of [18], for every $J, K \in \mathcal{A}_S(Y)$, \((J^\circ, K^\circ)\) is a component of $\mathcal{B}_2(X)$. Using Lemma 7, it can be shown that if $J, K, L, M \in \mathcal{A}_S(X)$ and \(\{J, K\} \neq \{L, M\}\), then \((J^\circ, K^\circ) \cap (L^\circ, M^\circ) = \emptyset\). Thus, the components of $\mathcal{B}_2(X)$ are the sets of the form \((J^\circ, K^\circ)\), where $J, K \in \mathcal{A}_S(X)$.

Given $J \in \mathcal{A}_S(X)$, let $C(J^\circ) = C(X) \cap \langle J^\circ \rangle$ and $\mathcal{B}^0(J^\circ) = \{A \in C(J^\circ) : A$ has a neighborhood \mathcal{M} in $C(J^\circ)$ such that \mathcal{M} is a 2-cell and A is in the manifold boundary of $\mathcal{M}\}$. Notice that J° is homeomorphic to $(0, 1)$ when $J \notin \mathcal{A}_E(X)$ and J° is homeomorphic to $[0, 1]$ when $J \in \mathcal{A}_E(X)$.

By Example 5.1 of [19], $C(J^\circ)$ is homeomorphic to $[0, 1] \times [0, 1]$. In the case that $J \notin \mathcal{A}_E(X)$, $\mathcal{B}^0(J^\circ) = \{\{p\} : p \in J^\circ\}$ and, in the case that $J \in \mathcal{A}_E(X)$, $\mathcal{B}^0(J^\circ) = \{\{p\} : p \in J^\circ\} \cup \{A \in C(J^\circ) : p_J \in A\}$.

If $J \neq K$, then $J^\circ \cap K^\circ = \emptyset$. Let $\varphi : C(J^\circ) \times C(K^\circ) \to \langle J^\circ, K^\circ \rangle$ be given by $\varphi(B, C) = B \cup C$. It is easy to show that φ is a homeomorphism and $\mathcal{B}^0_2(X) \cap \langle J^\circ, K^\circ \rangle = \varphi((\mathcal{B}^0(J^\circ) \times C(K^\circ)) \cup (C(J^\circ) \times \mathcal{B}^0(K^\circ))) = \{A \in \langle J^\circ, K^\circ \rangle : A \cap \varphi \subseteq \mathcal{B}^0(J^\circ) \text{ or } A \cap K^\circ \subseteq \mathcal{B}^0(K^\circ)\} = \{A \in \langle J^\circ, K^\circ \rangle : A$ has a degenerate component or A contains an extreme of $X\}$.

If $J = K$, $\langle J^\circ, K^\circ \rangle = \langle J^\circ \rangle = \{A \in C_2(J) : A \subseteq J^\circ\}$. In Lemma 2.2 of [16] the following model (due to R. M. Schori) for $C_2([0, 1])$ was constructed. Let $C_0 = \{A \in C_2([0, 1]) : 0 \in A\}$ and $C_0^1 = \{A \in C_2([0, 1]) : [0, 1] \subset A\} = \{[0, a] \cup [b, 1] : 0 \leq a \leq b \leq 1\}$.

Then C_0^1 is homeomorphic to the space obtained by identifying the diagonal of the triangle \([\{a, b\} : 0 \leq a \leq b \leq 1\]) to a point. Thus, C_0^1 is a 2-cell and the manifold boundary of C_0^1 is the set $\partial(C_0^1) = \{[0] \cup [b, 1] : 0 \leq b \leq 1\} \cup \{[0, a] \cup [1] : 0 \leq a \leq 1\} \cup \{[0, 1]\}$. The function $\eta : \text{cone}(C_0^1) \to C_0$ given by $\eta((A, t)) = (1 - t)A$ is a homeomorphism. Thus, C_0 is a 3-cell and its manifold boundary is the set $\partial(C_0^1) = C_0^1 \cup \{(1 - t)A : A \in \partial(C_0^1)\}$ and $t \in [0, 1]$. Finally, the function $\lambda : \text{cone}(C_0) \to C_2([0, 1])$ given by $\lambda((A, t)) = \{t\} + (1 - t)A$ is a homeomorphism. Thus, $C_2([0, 1])$ is a 4-cell and its manifold boundary is the set $\partial(C_2([0, 1])) = C_0 \cup \{(t) + (1 - t)A : A \in \partial(C_0)\}$ and $t \in [0, 1]$. Therefore, $\partial(C_2([0, 1])) = \{A \in C_2([0, 1]) : A$ is connected or A has a degenerate component or $A \cap \{0, 1\} \neq \emptyset\}$.

In the case that $J \notin \mathcal{A}_E(X)$, J° is homeomorphic to $(0, 1)$, so $\mathcal{B}^0_2(X) \cap \langle J^\circ \rangle = \{A \in C_2(J^\circ) : A$ is connected or A has a degenerate component\}, and in the case that $J \in \mathcal{A}_S(X)$, J° is homeomorphic to $[0, 1)$, so $\mathcal{B}^0_2(X) \cap \langle J^\circ \rangle = \{A \in C_2(J^\circ) : A$ is connected or A has a degenerate component or the extreme of X contained in J belongs to $A\}$. Therefore, for all $J \in \mathcal{A}_S(Y)$, $\mathcal{B}^0_2(X) \cap \langle J^\circ \rangle = \{A \in \langle J^\circ \rangle : A$
Hence, \(B \) and nonempty subset of \(B \cap J \). Since \(\exists J \in \mathcal{A}(X) \) that \(\lim E_m = B \), we may assume that each \(E_m \) has two components \(E_m^1 \) and \(E_m^2 \), \(\lim E_m^1 = B_1 \) and \(\lim E_m^2 = B_2 \). Since \(B \in \text{cl}_{C_2}(\mathcal{A}(X)) \), there exists a sequence \(E_m = E_m^1 \cup E_m^2 \) of elements of \(\mathcal{A}(X) \) such that \(\lim E_m^1 = B_1 \) and \(\lim E_m^2 = B_2 \). In the case that \(J = K \), we have that \(E_m \subset J \) for each \(m \in \mathbb{N} \) and \(B \subset J = K \). In the case that \(J \neq K \), \(J \cap K = \emptyset \), so we can assume that \(E_m^1 \subset J^o \) and \(E_m^2 \subset K^o \) for each \(m \in \mathbb{N} \). This implies that \(B_1 \subset J \) and \(B_2 \subset K \). So, in both cases \((J = K \text{ or } J \neq K) \), we may assume that \(B_1 \subset J \) and \(B_2 \subset K \). Since \(B \in \text{cl}_{C_2}(\mathcal{A}(X)) \), there is also a sequence \(F_m = F_m^1 \cup F_m^2 \) of elements of \(\mathcal{A}(X) \) such that \(\lim F_m^1 = B_1 \) and \(\lim F_m^2 = B_2 \). If \(J \) is an arc, then \(B = \{p\} \cup B_1 \), where \(B_1 \in \mathcal{E}(J) \) and \(p \in \text{Fr}_X(K) \). If \(J \) is a simple closed curve, then \(E_m^1 \subset J^o = \{q_j\} \) for each \(m \in \mathbb{N} \), \(B_1 = \lim E_m^1 \) is either equal to \(J \) or \(B_1 = \{p\} \) for some \(p \in J \). Suppose, for example, that \(\{J, M, m\} \in \mathcal{A}(X) \) such that \(\{J, M, m\} \neq \{J, K\} \) and \(E_m \in \text{cl}_{C_2}(\mathcal{A}(X)) \). Since \(J^o \) and \(K^o \) are open in \(X \), there exists \(m_0 \in \mathbb{N} \) such that for each \(m \geq m_0 \), \(E_m \) intersects \(J^o \) and \(K^o \). If \(L_m \) intersects \(J^o \), then \(L_m = J \). Thus, for each \(m \geq m_0 \) we may suppose that \(L_m = J \) and \(M_m = K \). Hence, \(\{L_m, M_m\} = \{J, K\} \), a contradiction. We have show that \(B \cap J = \emptyset \) or \(B \cap K = \emptyset \). Suppose, for example, that \(B \cap J = \emptyset \). Since \(B \in \{J, K\}, B = (B \cap J) \cup (B \cap K) \) and \(\emptyset \neq B \cap J \). This implies that \(B \cap J \) is a nonempty subset of \(J - J^o \) which consists of at most two elements. Since \(B \cap J \) and \(B \cap K \) are closed in \(B \) and \(B \) is connected, we have that \(B \cap J \subset B \cap K \). Hence, \(B \subset K \). Fix a point \(p \in B \). If \(K \) is an arc, then \(B \) is of the form \(B = \{p\} \cup B \), where \(B \in \mathcal{E}(J) \), \(p \in Fr_X(J) \). Now suppose that \(K \) is a simple closed curve. Since \(B \in \text{cl}_{C_2}(\mathcal{A}(X)) \), there exists a sequence
\[\{B_m\}_{m=1}^{\infty} \text{ in } (J^o, K^o) \] such that \(\lim B_m = B \). Thus, the components of \(B_m \) are \(B_m \cap J^o \) and \(B_m \cap K^o \), and \(B_m = \lim((B_m \cap J^o) \cup (B_m \cap K^o)) \). We may suppose that the sequences \(\{B_m \cap J^o\}_{m=1}^{\infty} \) and \(\{B_m \cap K^o\}_{m=1}^{\infty} \) are convergent in \(C(X) \).

Recall that \(B \cap J \) has at most two elements. If \(q \in B \) and \(q = \lim q_m \), where \(q_m \in B \cap J^o \), for each \(m \in \mathbb{N} \), then \(q \in \text{Fr}_X(J) \). Thus, there at most two points \(q \) of \(B \) of this form. So \(\lim(B_m \cap J^o) \) is a one-point set. This implies that \(B = \lim(B_m \cap K^o) \). Given \(m \in \mathbb{N} \), since \(B_m \cap K^o \) is a connected subset of \(K^o = K \setminus \{q_K\} \), we have that \(B_m \cap K^o \) is an arc such that \(q_K \notin B_m \cap K^o \).

Hence, \(B = \lim(B_m \cap K^o) \in \mathcal{E}(K) \). Therefore, \(B = \{p\} \cup B \), where \(p \in \text{Fr}_X(J) \) and \(B \in \mathcal{E}(K) \).

Finally, we consider the case when \(B \) is connected and \(J = K \). Since \(B \in \text{cl}_{C(X)}(\mathbb{R}^2(X) - \langle J^o \rangle) \), \(B \) is limit of elements in \(\mathbb{R}^2(X) - \langle J^o \rangle \) and \(B \subset J \). Thus, \(B \notin J^o \). Hence, we can fix a point \(p \in B \cap \text{Fr}_X(J) \). If \(J \) is an arc, \(B = \{p\} \cup B \) and \(B \in \mathcal{E}(J) \). If \(J \) is a simple closed curve, let \(B = \lim E_m \), where \(E_m \in \langle J^o \rangle \cap \mathbb{R}^2(X) \) for each \(m \in \mathbb{N} \). For each \(m \in \mathbb{N} \), by Lemma 32, \(E_m \) is connected or \(E_m \) has a degenerate component. In both cases, we can write \(E_m = \{p_m\} \cup F_m \), where \(F_m \in C(J^o) \). Note that \(\lim F_m = B \). Since \(F_m \) is a connected subset of \(J^o = J \setminus \{q_J\} \), we have that \(F_m \) is an arc such that \(q_J \notin F_m \). Hence, \(B = \lim F_m \in \mathcal{E}(J) \). Therefore, \(B = \{p\} \cup B \), where \(p \in \text{Fr}_X(J) \) and \(B \in \mathcal{E}(J) \).

(>) Let \(B = \{p\} \cup A \), where \(p \in \text{Fr}_X(J) \subset \text{cl}_X(\mathcal{F}(X) - J) \) and \(A \in \mathcal{E}(K) \).

Notice that in both cases: \(K \) being an arc and \(K \) being a simple closed curve, \(A = \lim A_m \), where \(A_m \in K^o \) for each \(m \in \mathbb{N} \). Given \(m \in \mathbb{N} \), there exists a point \(p_m \in B(\frac{1}{m}, p) \cap \mathcal{F}(X) - J \). Note that \(\{p_m\} \cup A_m \notin \langle J^o, K^o \rangle \). By Lemma 32, \(\{p_m\} \cup A_m \in \mathbb{R}^2(X) - \langle J^o, K^o \rangle \). Then \(B = \lim \{p_m\} \cup A_m \in \text{cl}_{C(X)}(\mathbb{R}^2(X) - \langle J^o, K^o \rangle) \). On the other hand, since \(p \in \text{Fr}_X(J) \), there exists a sequence \(\{x_m\}_{m=1}^{\infty} \) in \(J^o \) such that \(\lim x_m = p \). Then for each \(m \in \mathbb{N} \), \(\{x_m\} \cup A_m \in \langle J^o, K^o \rangle \) and by Lemma 32, \(\{x_m\} \cup A_m \in \mathbb{R}^2(X) \cap \langle J^o, K^o \rangle \). Hence, \(B \in \text{cl}_{C(X)}(\mathbb{R}^2(X) \cap \langle J^o, K^o \rangle) \). Therefore, \(B \in \mathcal{D}(J, K) \). This completes the proof of the Lemma.

Theorem 34 Let \(X \) and \(Y \) be Peano continua. Let \(J, K \in \mathfrak{X}(X) \) and \(L, M \in \mathfrak{X}(Y) \) be such that \(\text{Fr}_X(J) \subset \text{cl}_X(\mathcal{F}(X) - J) \), \(\text{Fr}_X(K) \subset \text{cl}_X(\mathcal{F}(X) - K) \), \(\text{Fr}_Y(L) \subset \text{cl}_Y(\mathcal{F}(Y) - L) \) and \(\text{Fr}_Y(M) \subset \text{cl}_Y(\mathcal{F}(Y) - M) \). Suppose that \(h : C_2(X) \to C_2(Y) \) is a homeomorphism and \(h(J^o, K^o) = (L^o, M^o) \). Then:

1. if \(J = K \) and \(J \) is a simple closed curve, then \(L = M \) and \(L \) is a simple closed curve,
2. if \(J = K \), \(J \) is an arc and \(J \notin \mathfrak{A}_E(X) \), then \(L = M \), \(L \) is an arc and \(L \notin \mathfrak{A}_E(Y) \),
3. if \(J = K \) and \(J \in \mathfrak{A}_E(X) \), then \(L = M \) and \(L \in \mathfrak{A}_E(Y) \),
4. if \(J \neq L \), then \(M \neq N \),
5. if \(J = K \) and \(p \in J - J^o \), then \(h(\{p\}) \) is a one-point set and \(h(\{p\}) \subset L - L^o \).
Proof. We describe models for the set $D(J,K)$ considering all possibilities for the sets J and K in $\mathcal{A}_S(X)$. These models are illustrated in Figure 2.

(a) $J = K$, J is an arc and $J \notin \mathcal{A}_E(X)$.

According to Lemma 33, $D(J,J) = \{(p_J) \cup A : A \in C(J)\} \cup \{(q_J) \cup A : A \in C(J)\}$. By Example 5.1 of [19], $C(J)$ is a 2-cell. Thus, $D(J,J)$ is the union of two 2-cells intersecting in the elements $\{p_J,q_J\}$ and J.

(b) $J = K$, $J \in \mathcal{A}_E(X)$.

Here, $D(J,J) = \{(q_J) \cup A : A \in C(J)\}$ is a 2-cell.

(c) $J = K$ and J is a simple closed curve.

Here, $D(J,J) = \{(q_J) \cup A : A \in E(J)\}$ is homeomorphic to the continuum W_0 described in the paragraph previous to Lemma 31.

From now on we assume that $J \neq K$.

(d) Both J and K are arcs and $J, K \notin \mathcal{A}_E(X)$.

Let $D_1 = \{(p_J) \cup A : A \in C(K)\}$, $D_2 = \{(q_J) \cup A : A \in C(K)\}$, $D_3 = \{(p_J) \cup A : A \in C(J)\}$ and $D_4 = \{(q_J) \cup A : A \in C(J)\}$. Note that D_1, D_2, D_3 and D_4 are 2-cells and $D(J,K) = D_1 \cup D_2 \cup D_3 \cup D_4$. Here, we consider three subcases.

(d.1) $J \cap K = \emptyset$. In this subcase, $D_1 \cap D_2 = \emptyset = D_3 \cap D_4$, $D_1 \cap D_3 = \{(p_J,q_K)\}$, $D_1 \cap D_4 = \{(p_J,q_J)\}$, $D_2 \cap D_3 = \{(q_J,q_K)\}$ and $D_2 \cap D_4 = \{(q_J,q_J)\}$.

(d.2) $J \cap K$ is a one-point set. In this subcase we may assume that $J \cap K = \{q_J\} = \{q_K\}$. Then we have the same equalities as in case (d.1), that is:

$D_1 \cap D_2 = \emptyset = D_3 \cap D_4$, $D_1 \cap D_3 = \{(p_J,p_K)\}$, $D_1 \cap D_4 = \{(p_J,q_K)\}$, $D_2 \cap D_3 = \{(q_J,p_K)\}$ and $D_2 \cap D_4 = \{(q_J,q_K)\}$.

(d.3) $J \cap K$ is a set with exactly two points. We may assume that $p_J = p_K$ and $q_J = q_K$. Then $D_1 \cap D_2 = \{(p_J,q_J)\}$, $D_1 \cap D_3 = \{(p_J,p_K)\}$, $D_1 \cap D_4 = \{(p_J,q_K)\}$, $D_2 \cap D_3 = \{(q_J,q_K)\}$ and $D_2 \cap D_4 = \{(q_J,p_K)\}$.

(e) Both J and K are arcs and $J \notin \mathcal{A}_E(X)$ and $K \in \mathcal{A}_E(X)$.

Let $D_1 = \{(p_J) \cup A : A \in C(K)\}$, $D_2 = \{(q_J) \cup A : A \in C(K)\}$ and $D_3 = \{(q_K) \cup A : A \in C(J)\}$. Note that D_1, D_2 and D_3 are 2-cells and $D(J,K) = D_1 \cup D_2 \cup D_3$. Here, we consider two subcases.

(e.1) $J \cap K = \emptyset$. In this subcase, $D_1 \cap D_2 = \emptyset$, $D_1 \cap D_3 = \{(p_J,q_K)\}$ and $D_2 \cap D_3 = \{(q_J,q_K)\}$.

(e.2) $J \cap K$ is a one-point set. In this subcase we may assume that $J \cap K = \{q_J\} = \{q_K\}$. Then we have the same equalities as in case (e.1), that is:

$D_1 \cap D_2 = \emptyset$, $D_1 \cap D_3 = \{(p_J,q_K)\}$ and $D_2 \cap D_3 = \{(q_J,q_K)\}$.

(f) J is an arc, $J \notin \mathcal{A}_E(X)$ and K is a simple closed curve.

Let $D_1 = \{(p_J) \cup A : A \in E(K)\}$, $D_2 = \{(q_J) \cup A : A \in E(K)\}$ and $D_3 = \{(q_K) \cup A : A \in C(J)\}$. Note that $D(J,K) = D_1 \cup D_2 \cup D_3$. D_3 is a 2-cell while D_1 and D_2 are homeomorphic to the continuum W_0. In both cases, when $J \cap K = \emptyset$ or when $J \cap K$ is a one-point set, we have that $D_1 \cap D_2 = \emptyset$, $D_1 \cap D_3 = \{(p_J,q_K)\}$ and $D_2 \cap D_3 = \{(q_J,q_K)\}$.

(g) J and K are arcs and $J, K \notin \mathcal{A}_E(X)$.

Let $D_1 = \{(q_J) \cup A : A \in C(K)\}$ and $D_2 = \{(q_K) \cup A : A \in C(J)\}$. Then $D(J,K) = D_1 \cup D_2$ and D_1 and D_2 are 2-cells. Note that $D_1 \cap D_2 = \{(q_J,q_K)\}$.

22
(h) $J \in \mathfrak{A}_E(X)$ and K is a simple closed curve.

Let $D_1 = \{\{q_J\} \cup A : A \in \mathcal{E}(K)\}$ and $D_2 = \{\{q_K\} \cup A : A \in \mathcal{C}(J)\}$. Then $D(J, K) = D_1 \cup D_2$. D_1 is a 2-cell and D_2 is homeomorphic to W_0. Note that $D_1 \cap D_2 = \{\{q_J, q_K\}\}$.

(i) J and K are simple closed curves.

Let $D_1 = \{\{q_J\} \cup A : A \in \mathcal{E}(K)\}$ and $D_2 = \{\{q_K\} \cup A : A \in \mathcal{E}(J)\}$. Then $D(J, K) = D_1 \cup D_2$. D_1 and D_2 are homeomorphic to W_0. Note that $D_1 \cap D_2 = \{\{q_J, q_K\}\}$.

We can observe, in Figure 2, that for different cases we obtain different models.

![Figure 2](image)

If $J = L$ and J is a simple closed curve, then $D(J, J)$ is as in case (c). Hence, $D(L, M)$ is as in case (c). This implies that $L = M$ and L is a simple closed curve. This proves (1). The proofs for (2), (3) and (4) are similar.

In order to prove (5), let $B = h(\{p\})$. Since $p \in \text{Fr}_X(J)$, there exists a sequence $\{p_m\}_{m=1}^\infty$ of points in J^o such that $\lim p_m = p$. Then $\lim h(\{p_m\}) = B$ and $h(\{p_m\}) \subset L^o$ for each $m \in \mathbb{N}$. Thus, $B \subset L$. Take an open subset U of X such that $p \in U$. Since $\text{Fr}_X(J) \subset \text{cl}_X(\mathcal{F}A(X) - J)$, $U \cap \mathcal{F}A(X) - J \neq \emptyset$. This implies that there exists a sequence $\{x_m\}_{m=1}^\infty$ of points of $\mathcal{F}A(X) - J$ such that $\lim x_m = p$. For each $m \in \mathbb{N}$, let $J_m \in \mathfrak{A}_S(X)$ such that $x_m \in J_m^o$. Let
Let $m \in \mathfrak{A}_S(Y)$ be such that $h([J^m]) = [L^m]$. Then $J_m \neq J$, so $L_m \neq L$. Since $h([x_m]) \subset [L^m]$, $h([x_m]) \cap L^o = \emptyset$. Thus, $B = \lim h([x_m]) \subset Y - L^o$. We have shown that $B \subset \text{Fry}(L)$.

By (1) and (3), if J is a simple closed curve or $J \in \mathfrak{A}_E(X)$, then L is a simple closed curve or $L \in \mathfrak{A}_E(Y)$. In these cases, $\text{Fry}(J)$ and $\text{Fry}(L)$ are one-point sets. Then B is a one-point set contained in $\text{Fry}(L)$.

Suppose now that J is an arc and $J \notin \mathfrak{A}_E(X)$. Then L is an arc and $L \notin \mathfrak{A}_E(Y)$. Let u, v be the end points of L. Then $u \neq v$ and $\text{Fry}(L) = \{u, v\}$. If $B = \{u\}$ or $B = \{v\}$, we are done. Suppose then that $B = \{u, v\}$. Since $h(D(J, J)) = (L, L)$, by the model described in (a), we obtain that $\{p\}$ is not a local cut point of $D(J, J)$. However $B = h(p) = \{u, v\}$ is a local cut point of $D(L, L)$, a contradiction. This completes the proof of (5) and ends the proof of the theorem.

Theorem 35 Let X and Y be almost meshed Peano continua. If $C_2(X)$ and $C_2(Y)$ are homeomorphic, then X and Y are homeomorphic.

Proof. By Theorem 4.1 of [16], we may assume that X and Y are not connected by a simple closed curve. Let $h : C_2(X) \rightarrow C_2(Y)$ be a homeomorphism. Proceeding as in the beginning of Lemma 32, we have that the components of $\mathfrak{B}_2(X)$ are the sets of the form $\langle J^o, K^o \rangle$ where $J, K \in \mathfrak{A}_S(X)$. Thus, for every $J, K \in \mathfrak{A}_S(X)$, there exist $L, M \in \mathfrak{A}_S(Y)$ such that $h(\langle J^o, K^o \rangle) = \langle L^o, M^o \rangle$. Since X is almost meshed, for each $J \in \mathfrak{A}_S(X)$, $\text{Fr}_X(J) \subset \text{cl}_X(\mathcal{F}A(X) - J)$ and something similar happens for the elements in $\mathfrak{A}_S(Y)$. Hence, we can apply Theorem 34.

Now, take $p \in X - \bigcup \{L^o : L \in \mathfrak{A}_S(X)\}$. We claim that $h(\{p\}) = \{y\}$ for some $y \in Y - \bigcup \{K^o : K \in \mathfrak{A}_S(Y)\}$. Since $X = \text{cl}_X(\mathcal{F}A(X))$, there exists a sequence $\{p_m\}_{m=1}^{\infty}$ in $\mathcal{F}A(X)$ such that $\lim p_m = p$. For each $m \in \mathbb{N}$, let $J_m \in \mathfrak{A}_S(X)$ be such that $p_m \in J_m^o$ and choose a point $q_m \in \text{Fr}_X(J_m)$. By Lemma 8, $\lim J_m = \{p\}$. This implies that $\lim q_m = p$. By Theorem 34, for each $m \in \mathbb{N}$, $h(\{q_m\}) = \{w_m\}$, for some w_m in the closed set $Y - \bigcup \{K^o : K \in \mathfrak{A}_S(Y)\}$. Hence $h(\{p\}) = \{y\}$, for some $y \in Y - \bigcup \{K^o : K \in \mathfrak{A}_S(Y)\}$.

We define a map $g : X \rightarrow Y$. Let $F = X - \bigcup \{L^o : L \in \mathfrak{A}_S(X)\}$. Given $p \in F$, let $g(p)$ be such that $h(\{p\}) = \{g(p)\}$. Given $J \in \mathfrak{A}_S(X)$, let $K_J \in \mathfrak{A}_S(Y)$ be such that $h(\langle J^o \rangle) = \langle K_J^o \rangle$.

If J is a simple closed curve, by (5) in Theorem 34, $g(q_J) \in K_J - K_J^o$. Hence, $g(q_J)$ is the only point in K_J such that $K_J - \{g(q_J)\}$ is open in Y. Fix a homeomorphism $g_J : J \rightarrow K_J$ such that $g_J(q_J) = g(q_J)$. If $J \in \mathfrak{A}_E(X)$, by Theorem 34, $K_J \in \mathfrak{A}_E(Y)$ and $g(q_J)$ is the only point in the arc K_J such that $K_J - \{g(q_J)\}$ is open in Y. Fix a homeomorphism $g_J : J \rightarrow K_J$ such that $g_J(q_J) = g(q_J)$. Finally, if J is an arc and $J \notin \mathfrak{A}_E(X)$, then K_J is an arc in $\mathfrak{A}_S(Y) - \mathfrak{A}_E(Y)$ and $g(p_J)$ and $g(q_J)$ are the end points of J. Fix a homeomorphism $g_J : J \rightarrow K_J$ such that $g_J(p_J) = g(p_J)$ and $g_J(q_J) = g(q_J)$.

Now, define $g : X \rightarrow Y$ as the common extension of g (defined in F) and the maps g_J for $J \in \mathfrak{A}_S(X)$. Note that g is well-defined and g is continuous in the open set $X - F$. In fact, $g|J$ is continuous for each $J \in \mathfrak{A}_S(X)$. In order
to complete the proof that \(g \) is continuous, take a sequence \(\{p_m\}_{m=1}^{\infty} \) in \(X - F \) such that \(\lim p_m = p \) for some \(p \in F \). For each \(m \in \mathbb{N} \), let \(J_m \in \mathfrak{A}_2(X) \) be such that \(p_m \in J_m^o \). Then \(q_{J_m} \in Fr_X(J_m) \). We may assume that \(J_m \neq J_k \) for \(m \neq k \).

By Lemma 8, \(\lim q_{J_m} = p \). Since \(q_{J_m} \in F \) for each \(m \in \mathbb{N} \), \(\{g(p)\} = h(\{p\}) = \lim h(\{q_{J_m}\}) = \lim \{g(q_{J_m})\} \). Hence, \(\lim g(q_{J_m}) = g(p) \). Given \(m \in \mathbb{N} \), \(g(p_m) = g_{J_m}(p_m) \in K_{J_m} \) and \(g(q_{J_m}) \in K_{J_m} \). By Lemma 8, \(\lim K_{J_m} = \{g(p)\} \). Hence, \(\lim g(p_m) = g(p) \). This completes the proof that \(g \) is continuous.

It is easy to check that \(g \) is one-to-one. In order to see that \(g \) is onto, let \(K \in \mathfrak{A}_2(Y) \). Applying Theorem 34 to \(h^{-1} \), there exists \(J \in \mathfrak{A}_2(X) \) such that \((J^o) = h^{-1}(K^o) \). This implies that \(K = K_J \), so \(K \subseteq g(X) \). Since \(\bigcup \{K : K \in \mathfrak{A}_2(Y)\} \) is dense in \(Y \), we conclude that \(g \) is onto. Therefore, \(g \) is a homeomorphism. This ends the proof of the theorem. ■

By Theorems 29, 30 and 35, we obtain the following.

Theorem 36 Suppose that \(X \) and \(Y \) are almost meshed Peano continua and \(C_n(X) \) is homeomorphic to \(C_n(Y) \) for some \(n \in \mathbb{N} \). Then:

(a) if \(n = 1 \) and \(X \) and \(Y \) are neither arcs nor simple closed curves, then \(X \) is homeomorphic to \(Y \);

(b) if \(n \neq 1 \), then \(X \) is homeomorphic to \(Y \).

Theorem 37 Suppose that \(X \) is a meshed continuum. If \(n \neq 1 \), then \(X \) has unique hyperspace \(C_n(X) \). If \(X \) is neither an arc nor a simple closed curve, then \(X \) has unique hyperspace \(C(X) \).

Proof. Suppose that \(C_n(X) \) and \(C_n(Y) \) are homeomorphic. Let \(h : C_n(X) \rightarrow C_n(Y) \) be a homeomorphism. Since \(X \) is meshed, by Lemma 2, \(X \) is a Peano continuum. Then (see Theorem 3.2 of [20]), \(Y \) is a Peano continuum. Note that \(h(\mathfrak{G}_n(X)) = \mathfrak{G}_n(Y) \). By Theorem 5, \(\mathfrak{G}_n(X) \) is dense in \(C_n(X) \). Thus, \(\mathfrak{G}_n(Y) \) is dense in \(C_n(Y) \). By Theorem 5, \(Y \) is meshed. Applying Theorem 36, we conclude the proof of the Theorem. ■

7 An almost meshed continuum with unique hyperspace

Consider the example \(Z_0 = ([-1,1] \times \{0\}) \cup (\bigcup \{\{\frac{1}{m}\} \times [0,\frac{1}{m}] : m \geq 2\}) \) mentioned at the end of the introduction and illustrated in Figure 1. If a dendrite \(Z \) contains a topological copy of \(Z_0 \), then the hyperspace \(C(Z) \) is not unique [2]. Roughly speaking, this happens because there is a Hilbert cube \(C \) near the element \(\{0,0\} \) of \(C(Z) \): Consider the continuum \(W \) that is obtained by attaching a Peano continuum \(D \) without free arcs at \((0,0) \) to \(Z \), that is, \(W = Z \cup D \). Then \(C(D) \) and the set \(\{A \in C(W) : (0,0) \in A\} \) are Hilbert cubes whose union with \(C \) is again a Hilbert cube and moreover, the homeomorphism obtained can
be extended to the homeomorphism between $C(Z)$ and $C(W)$. One may think local dendrites behave in the same way.

The next example shows that this does not happen. The "simplest" local dendrite X which is not a dendrite and contains a topological copy of Z_0 does have unique hyperspace $C(X)$.

Example 38 There exists a local dendrite X such that X contains a topological copy of Z_0, $\mathcal{P}(X)$ is a one-point set, $X - \mathcal{P}(X)$ is connected and X has unique hyperspace $C(X)$.

Let $S = \{(-1, 1) \times [0, 1] \cup ([-1, 1] \times \{0\})\}$. Then S is a simple closed curve.

Let $X = Z_0 \cup S$ and $\theta = (0, 0)$ (X is the continuum Z_2 illustrated in Figure 1).

Then X is an almost meshed Peano continuum that contains a simple closed curve S, $\mathcal{P}(X) = \{\theta\}$. $X - \mathcal{P}(X)$ is connected and X is not meshed. Observe that X is a local dendrite.

For each $m \geq 2$, let $B_m = \{\frac{1}{m}\} \times [0, 1 \}$, $S_m = S \cup B_2 \cup \ldots \cup B_m$, $A_m = \{\frac{1}{m}\} \times [0, 1]$, and $p_m = (\frac{1}{m}, 0) \in A_m$. We will need the following claim.

Claim 5. Let $\alpha : [0, 1] \rightarrow C(X)$ be a map and let $m \in N$ be such that $p_m p_{m+1} \not\subseteq \alpha(0)$ ($p_m p_{m+1}$ denotes the shortest arc in X joining p_m and p_{m+1}) and for each $t \in [0, 1]$, $\{p_m, p_{m+1}\} \subseteq \alpha(t)$ and $S \not\subseteq \alpha(t)$. Then $p_m p_{m+1} \not\subseteq \alpha(1)$.

We prove Claim 5. Let $M = \{[-1, 1] \times [0, 1] \cup ([-1, 1] \times \{0\})\} \cup (\{[-1, 1] \times (\frac{1}{m}, 1)\} \cup [\frac{1}{m}, 1] \times \{0\})$. Let $J = \{t \in [0, 1] : p_m p_{m+1} \subseteq \alpha(t)\}$ and $K = \{t \in [0, 1] : t \in M \subseteq \alpha(t)\}$. Then J and K are closed subsets of $[0, 1]$ and $0 \not\in J$. Since $p_m p_{m+1} \cup M = S$ and $S \not\subseteq \alpha(t)$ for any $t \in [0, 1]$, $J \cap K = \emptyset$. Notice that each connected subset of X containing p_m and p_{m+1}, contains either $p_m p_{m+1}$ or M. Hence, $[0, 1] = J \cup K$. The connectedness of $[0, 1]$ implies that $J = \emptyset$, $1 \not\in J$ and $p_m p_{m+1} \not\subseteq \alpha(1)$. This ends the proof of Claim 5.

In order to prove that X has unique hyperspace $C(X)$, let Y be a continuum such that $C(X)$ is homeomorphic to $C(Y)$. Then Y is a Peano continuum (see Theorem 3.2 of [20]). Let $h : C(X) \rightarrow C(Y)$ be a homeomorphism.

Let $h_X : c_l(C(X)) \rightarrow c_l(C(Y))$, $h_Y : c_l(C(Y)) \rightarrow c_l(C(Y))$ be homeomorphisms with the properties described in Theorem 27. Since X is almost meshed, $X = c_l(C(X))$. Since h is a homeomorphism, $h(c_l(C(Y))) = c_l(C(Y))$ and $c_l(C(Y)) = c_l(C(Y)) = c_l(C(Y))$. Thus, we can consider the map $g : X \rightarrow Y$ given by $g = h_Y^{-1} \circ h(c_l(C(X))) \circ h_X$. Then g is an embedding and $g(X) = c_l(C(Y))$.

In order to prove that X and Y are homeomorphic, we are going to show that $Y = c_l(C(Y))$. Suppose to the contrary that $Y \neq c_l(C(Y))$. Note that $Y - c_l(C(Y)) \in \mathcal{P}(Y)$. We need to show the following claim.

Claim 6. If $p \in X$ and $g(p) \in \mathcal{P}(Y)$, then $p \in \mathcal{P}(X)$.

To prove Claim 6, let $y = g(p)$. Then $y \in c_l(C(Y)) - \bigcup \{K^0 : K \in \mathcal{X}_E(Y)\}$. Thus, $h_Y(y) = \{y\}$. By Theorem 4, $\dim_{h_Y(y)}[C(Y)]$ is infinite. Then $\dim_{h_Y(y)}[C(X)]$ is infinite. Applying again Theorem 4 we obtain that $h^{-1}(h_Y(y)) \cap \mathcal{P}(X) \neq \emptyset$. That is, $h_X(p) \cap \mathcal{P}(X) \neq \emptyset$. Given $J \in \mathcal{X}_E(X)$, $J \cap \mathcal{P}(X) = \emptyset$. By the way that h_X was chosen as in Theorem 27, we have that $p \in \mathcal{P}(X)$. This completes the proof of Claim 6.
Since $\mathcal{P}(X) = \{\theta\}$, θ is the only point p in X for which $g(p) \in \mathcal{P}(Y)$. Thus, $g(X) \cap \mathcal{P}(Y) = \{g(\theta)\}$. Fix a point $y_0 \in Y - g(X)$ and let $\beta : [0,1] \to Y$ be a one-to-one map such that $\beta(0) = g(\theta)$ and $\beta(1) = y_0$. Let $t_0 = \max\{t \in [0,1] : \beta(t) \in g(X)\}$. Then $\beta(t_0) = g(\theta)$. Thus, $t_0 = 0$, $\beta((0,1]) \cap g(X) = \emptyset$ and $\text{Im} \beta \subseteq \mathcal{P}(Y)$.

By Theorem 4, for each $m \geq 2$, $\dim_{S_m}[C(X)] = \infty$ and $S_m \in \text{cl}(C(X))$. Thus, $\dim_{S_m}[C(Y)] = \infty$ and $h(S_m) \in \text{cl}(C(Y))$. This implies that $h(S_m)$ is a subcontinuum of Y contained in $Y - \mathcal{P}(Y)$ and $h(S_m) \cap \mathcal{P}(Y) \neq \emptyset$. Thus, $h(S_m) \subseteq g(X)$ and $g(\theta) \in h(S_m)$. Fix $m_0 \in \mathbb{N}$ such that $m_0 > 4$ and $h(S_{m_0}) \neq \{g(\theta)\}$. Then $h(S_{m_0}) \cap (Y - \mathcal{P}(Y)) \neq \emptyset$.

Let $\mathcal{L} = \{E \in C(X), g(\theta) \in h(E)\}$. The uniform continuity of the map $\beta_0 : \mathcal{L} \times [0,1] \to C(X)$ given by $\beta_0(E,t) = h^{-1}(h(E) \cup \beta([0,t]))$ implies that there exists $s_0 > 0$ such that, if $E \in \mathcal{L}$ and $B_2 \cup B_3 \cup B_4 \subseteq E$, then for each $s \in [0,s_0]$, $A_2 \cup A_3 \cup A_4 \subseteq \beta_0(E,s)$. In particular, since $B_2 \cup B_3 \cup B_4 \subseteq S_{m_0}$, for each $s \in [0,s_0]$, $A_2 \cup A_3 \cup A_4 \subseteq h^{-1}(h(S_{m_0}) \cup \beta([0,s]))$. Let $Y_0 = h(S_{m_0}) \cup \beta([0,s_0])$ and $X_0 = h^{-1}(Y_0)$. Since $\beta(s_0) \in \mathcal{P}(Y) - g(X) \subset \text{int}_Y(\mathcal{P}(Y))$, by Theorem 4, $Y_0 \in \text{int}_Y(C(X) - \overline{g(\theta)})$. Hence, $X_0 \in \text{int}_Y(C(X) - \overline{g(\theta)})$. This implies that $S \subseteq X_0$. Then we can find a point $z_0 \in S - X_0$. Since $A_2 \cup A_3 \cup A_4 \subseteq X_0$, we conclude that $p_2p_3 \subset X_0$ or $p_2p_3 \subset X_0$. We consider the case that $p_2p_3 \subset X_0$, the other one is similar. Note that $z_0 \notin p_2p_3$.

Let $\varepsilon > 0$ be such that, if $A \in C(X)$ and $H_X(A,X_0) < \varepsilon$, then $z_0 \notin A$. Let $\delta > 0$ be as in the definition of the uniform continuity of h^{-1} for the number ε. Let $x,y \in p_2p_3 - \{p_2,p_3\}$ be such that $x \neq y$ and let K be the subarc of p_2p_3 joining x and y, notice $K^0 = K - \{x,y\}$. We choose x and y close enough to each other in such a way that $H_Y(h(S_{m_0} - K^0),h(S_{m_0})) < \delta$, we also ask that $h(S_{m_0} - K^0) \cap (Y - \mathcal{P}(Y)) \neq \emptyset$. Since $\theta \in S_{m_0} - K^0$, by Theorem 4, $\dim_{S_{m_0} - K^0}[C(X)]$ is infinite, so $\dim_{S_{m_0} - K^0}[C(Y)]$ is infinite and $h(S_{m_0} - K^0) \cap \mathcal{P}(Y) \neq \emptyset$. Hence, $g(\theta) \in h(S_{m_0} - K^0)$.

Define $\alpha, \gamma : [0,1] \to C(X)$ by $\alpha(t) = h^{-1}(h(S_{m_0} - K^0) \cup \beta([0,t_0]))$ and $\gamma(t) = h^{-1}(h(S_{m_0}) \cup \beta([0,t]))$. Then α and γ are continuous, $\alpha(0) = S_{m_0} - K^0$, $\alpha(1) = h^{-1}(h(S_{m_0} - K^0) \cup \beta([0,t_0]))$, $\gamma(0) = S_{m_0}$, and $\gamma(1) = X_0$. Since $H_Y(h(S_{m_0} - K^0),h(S_{m_0})) < \delta$, $H_Y(h(S_{m_0} - K^0) \cup \beta([0,t]),h(S_{m_0} \cup \beta([0,t])) < \delta$ for each $t \in [0,1]$. Thus, $H_X(\alpha(t),\gamma(t)) < \varepsilon$ for each $t \in [0,1]$. Hence, $H_X(\alpha(1),X_0) < \varepsilon$. This implies that $z_0 \notin \alpha(1)$.

By the choice of s_0, since $B_2 \cup B_3 \cup B_4 \subseteq S_{m_0} - K^0$, we obtain that $A_2 \cup A_3 \cup A_4 \subseteq \alpha(t)$ for each $t \in [0,1]$. In particular, $\{p_2,p_3\} \subseteq \alpha(t)$ for each $t \in [0,1]$.

Given $t > 0$, $\beta(t_0)

\in (h(S_{m_0} - K^0) \cup \beta([0,t_0])) \cap \text{int}_Y(\mathcal{P}(Y))$, Theorem 4 implies that $(h(S_{m_0} - K^0) \cup \beta([0,t])) \in \text{int}_Y(C(Y) - \overline{g(\theta)})$. Hence, $\alpha(t) \in \text{int}_Y(C(X) - \overline{g(\theta)})$. If $S \subseteq \alpha(t)$, then there exists a sequence of elements in $C(X)$ which do not contain θ and converge to $\alpha(t)$, so $\alpha(t) \notin \text{int}_Y(C(X) - \overline{g(\theta)})$, a contradiction. Therefore, $S \notin \alpha(t)$.

We have shown that α satisfies the hypothesis in Claim 5, so $p_2p_3 \notin \alpha(1)$. But z_0 is a point in S such that $z_0 \notin p_2p_3$, $z_0 \notin \alpha(1)$ and, since $p_2,p_3 \in \alpha(1)$ we contradict the connectedness of $\alpha(1)$. This contradiction completes the proof that X has unique hyperspace $C(X)$.
8 Dendrites not in class \mathfrak{D} and hyperspace $C_2(X)$

For a dendrite W, it is known ([2] and [13]) that $C(W)$ is unique if and only if W is in class \mathfrak{D}. This is not true for $C_2(W)$ as we see in this section. We prove that the continuum $Z_3 = (\{-1, 1\} \times \{0\}) \cup (\bigcup \{[\frac{1}{m}, 1] : m \geq 2\}) \cup (\bigcup \{[\frac{1}{m}, 1] : m \geq 2\})$ has unique hyperspace $C_2(Z_3)$. We emphasize that Z_3 does not have unique hyperspace $C(Z_3)$ (see [2] or Corollary 14). Let $\theta = (0, 0)$.

Example 39 The continuum Z_3 has unique hyperspace $C_2(Z_3)$.

Note that $Z_3 \notin \mathfrak{D}$. We see that Z_3 has unique hyperspace $C_2(Z_3)$. Suppose that Y is a continuum such that $C_2(Z_3)$ and $C_2(Y)$ are homeomorphic. Let $h : C_2(Z_3) \to C_2(Y)$ be a homeomorphism. By Theorem 4.1 of [16], Y is not a finite graph.

Let $J, K \in A_S(Z_3)$. Notice that $\theta \notin J, K$ and J and K are arcs. By Theorem 4, $\dim_{\mathbb{R}}[C_2(Z_3)]$ and $\dim_{\mathbb{R}}[C_2(Z_3)]$ are finite. By the first paragraph in the proof of Lemma 32, there exist $L, M \in A_S(Y)$ such that $h((J^o, K^o)) = (L^o, M^o)$. Thus, $h(cl_{C_2(Z_3)}((J^o, K^o))) = cl_{C_2(Y)}((L^o, M^o))$. Since $L \cup M \in cl_{C_2(Y)}((L^o, M^o))$, there exists $A \in cl_{C_2(Z_3)}((J^o, K^o))$ such that $h(A) = L \cup M$. Since $A \subset J \cup K$, by Theorem 4, $\dim_{\mathbb{R}}[C_2(Z_3)]$ is finite. Thus, $\dim_{\mathbb{R}}[C_2(Y)]$ is finite and $(L \cup M) \cap P(Y) = \emptyset$. By Theorem 4 there exists a finite graph D in Y such that $L \cup M \subset int_D(D)$. This implies that $Fr_Y(L) \subset cl_Y(F_A(Y) - L)$ and $Fr_Y(M) \subset cl_Y(F_A(Y) - M)$. Since Fr$_Z_3(J) \subset cl_{Z_3}(F_A(Z_3) - J)$ and Fr$_Z_3(K) \subset cl_{Z_3}(F_A(Z_3) - K)$, we can apply Theorem 34. In particular, if $J = K$, then $L = M$ and L is an arc, moreover, for each $p \in J \neq J^o$, $h(\{p\})$ is a one-point set and $h(\{\theta\})$ is also a one-point set in $Y - \bigcup \{L^o : L \in A_S(Y)\}$.

We define a map $g : Z_3 \to Y$. Let $F = Z_3 - \bigcup \{L^o : L \in A_S(Z_3)\}$. Given $p \in F$, let $g(p) \in Y$ be such that $h(\{p\}) = \{g(p)\}$, which exists by Theorem 34. Given $J \in A_S(Z_3)$, let $K_J \in A_S(Y)$ be such that $h((J^o)) = (K_J^o)$. Note that J is not a simple closed curve.

If $J \in A_E(Z_3)$, let q_J and p_J be the end points of J, where $p_J \in J^o$. Then q_J is the only point in J such that $J - \{q_J\}$ is open in Z_3. By Theorem 34, $K_J \in A_E(Y)$. Note that $q_J \in F$ and $g(q_J) \in Y - \bigcup \{K^o : K \in A_S(Y)\}$. Thus, $\{q_J\} \in cl_{C_2(Z_3)} ((J^o))$ and $\{g(q_J)\} \in cl_{C_2(Y)} ((K_J^o))$. Hence, $g(q_J) \in K_J - K_J^o$. Therefore, $g(q_J)$ is the only point in K_J such that $K_J - \{g(q_J)\}$ is open in Y.

Fix a homeomorphism $g_J : J \to K_J$ such that $g_J(q_J) = g(q_J)$. If J is an arc and $J \notin A_E(X)$, let q_J and p_J be the end points of J. Then q_J and p_J are the only points in J such that $J - \{p_J, q_J\}$ is open in X. By Theorem 34, K_J is an arc in $A_S(Y) - A_E(Y)$. Proceeding as before, $g(p_J)$ and $g(q_J)$ are the only points in the arc K_J such that $K_J - \{g(p_J), g(q_J)\}$ is open in Y. Hence, $g(p_J)$ and $g(q_J)$ are the end points of K_J. Fix a homeomorphism $g_J : J \to K_J$ such that $g_J(p_J) = g(p_J)$ and $g_J(q_J) = g(q_J)$.

Now define $g : Z_3 \to Y$ as the common extension of g (defined in F) and the maps g_J for $J \in A_S(Z_3)$. Proceeding as in Theorem 35, it can be shown that g is a well-defined embedding from Z_3 into Y. Given $J \in A_S(Z_3)$,
$g(J) \subset \text{cl}(FA(Y))$. Then $g(Z_3) = g(\text{cl}_{Z_3}(FA(Z_3))) \subset \text{cl}(g(FA(Z_3))) \subset \text{cl}(FA(Y))$. Hence, $g(Z_3) \subset \text{cl}(FA(Y))$. Given $K \in \mathcal{A}_S(Y)$, fix a point $q \in K^\circ$. Then $\{q\} \in \mathcal{B}_2(Y)$ and $h^{-1}(\{q\}) \in \mathcal{B}_2(Z_3)$. Hence, there exist $J, L \in \mathcal{A}_S(Z_3)$ such that $h^{-1}(\{q\}) \in \langle J^\circ, L^\circ \rangle$. If $J \neq L$, proceeding as in the first paragraph of the proof of Theorem 32 and using Theorem 34, we obtain that there exist $M, N \in \mathcal{A}_S(Y)$ such that $M \neq N$ and $h((J^\circ, L^\circ)) = (M^\circ, N^\circ)$. Thus, $\{q\} \in (M^\circ, N^\circ)$, a contradiction. Hence, $J = L = K = K_j$. This proves that $K \subset g(Z_3)$, for every $K \in \mathcal{A}_S(Y)$. Hence, $\text{cl}(FA(Y)) \subset g(Z)$. Therefore, $g(Z) = \text{cl}(FA(Y))$.

In order to prove that Z_3 and Y are homeomorphic, we are going to show that $Y = \text{cl}(FA(Y))$. Suppose to the contrary that $Y \neq \text{cl}(FA(Y))$. Note that $Y - \text{cl}(FA(Y)) \subset P(Y)$.

We need to show the following claim.

Claim 7. If $p \in Z_3$ and $g(p) \in P(Y)$, then $p \in P(Z_3)$.

To prove Claim 7, let $y = g(p)$. Then $y \in \text{cl}(FA(Y)) = \bigcup\{K^\circ : K \in \mathcal{A}_E(Y)\}$. Thus, $p \in Z_3 - \bigcup\{J^\circ : J \in \mathcal{A}_E(Z_3)\}$. Hence, $h(\{p\}) = \{g(p)\} = \{y\}$. By Theorem 4, $\text{dim}_h(\{p\}) |C_2(Y)|$ is infinite. So $\text{dim}(\{p\} |C_2(Z_3)|)$ is infinite. Thus, $p \in P(Z_3)$. So Claim 7 is proved.

Since $P(Z_3) = \{\theta\}$, θ is the only point p in X for which $g(p) \in P(Y)$. Thus, $g(Z_3) \cap P(Y) = \{g(\theta)\}$. This implies that $P(Y)$ is a subcontinuum of Y.

We are going to obtain a contradiction by proving that the set $\mathcal{I}_{Z_3} = \text{int}_{C_2(Z_3)}(C_2(Z_3) - \mathcal{I}_2(Z_3))$ is disconnected and the set $\mathcal{I}_Y = \text{int}_{C_2(Y)}(C_2(Y) - \mathcal{I}_2(Y))$ is pathwise connected.

Take $A \in \mathcal{I}_{Z_3}$. Then $\theta \in A$. If A is connected, then A is the limit of elements A_m in $C_2(Z_3)$ such that $\theta \notin A_m$. This implies that $A_m \in \mathcal{I}_2(Z_3)$ and $A \notin \text{int}_{C_2(Z_3)}(C_2(Z_3) - \mathcal{I}_2(Z_3))$. This contradiction proves that A has two components A_1 and A_2. We may assume that $\theta \in A_1$. Let $\pi: Z_3 \to [-1,1]$ be the projection on the first coordinate. Then $\mathcal{I}_{Z_3} \subset \{A_1 \cup A_2 \in C_2(X) : A_1 \cup A_2 = \emptyset, \theta \in A_1 \text{ and } \pi(A_2) \subset [-1,0) \cup \{A_1 \cup A_2 \in C_2(X) : A_1 \cup A_2 = \emptyset, \theta \in A_1 \text{ and } \pi(A_2) \subset (0,1]\}$. It follows that \mathcal{I}_{Z_3} is disconnected.

Take $B \in \mathcal{I}_Y - \{\theta\}$. If $B \notin g(Z_3)$, then $B \cap \text{int}_Y(P(Y)) \neq \emptyset$. Let $\alpha: [0,1] \to C_2(Y)$ be an order arc from B to Y. Then for each $t \in [0,1]$, $\alpha(t) \cap \text{int}_Y(P(Y)) \neq \emptyset$. This implies that $\alpha(t) \in \mathcal{I}_Y$. Therefore, B can be connected to Y by a path in \mathcal{I}_Y. Now suppose that $B \subset g(Z_3)$. Since $\text{dim}_{\beta}(C_2(Y))$ is infinite, $B \cap P(Y) \neq \emptyset$. Thus, $g(\theta) \in B$. Let $\beta: [0,1] \to \text{cl}(\{g(\theta)\})$ be an order arc from $\{g(\theta)\}$ to $P(Y)$. Let $\alpha: [0,1] \to C_2(Y)$ be given by $\alpha(t) = B \cup \beta(t)$. Then α is continuous, $\alpha(0) = B$, $\alpha(1) = B \cup P(Y)$, and for each $t > 0, \emptyset \neq \beta(t) \cap \text{int}_Y(P(Y)) \subset (\alpha(t) \cap \text{int}_Y(P(Y)))$. Hence, $\alpha(t) \in \mathcal{I}_Y$. Therefore, B can be connected to $B \cup P(Y)$ by a path in \mathcal{I}_Y. Since $P(Y) \cap \text{int}_Y(P(Y)) \neq \emptyset$, we have reduced the problem to the first case. Hence, \mathcal{I}_Y is pathwise connected.

Therefore, \mathcal{I}_{Z_3} is disconnected and \mathcal{I}_Y is connected. This contradicts the fact that h is a homeomorphism. This contradiction completes the proof that Z_3 and Y are homeomorphic. Therefore, Z_3 has unique hyperspace $C_2(Z_3)$.

Problem 40 Characterize dendrites X with unique hyperspace $C_2(X)$.

29
Problem 41 Does there exist a Peano continuum X such that X has unique hyperspace $C(X)$ but X does not have unique hyperspace $C_2(X)$?

Problem 42 Let X be an almost meshed Peano continuum such that $X - B(X)$ is connected. Does X have unique hyperspace $C(X)$?

9 Other examples

Example 43 Let $Z_1 = Z_3 \cup \{(0) \times [0, 1]\}$, then Z_1 does not have unique hyperspace $C_2(Z_1)$. To see this, notice that the point $(0, 0)$ satisfies the conditions of Corollary 25. Recall that, by Example 39 Z_3 has unique hyperspace $C_2(Z_3)$.

Example 44 Let X be a Peano continuum that contains a homeomorphic copy of dendrite F_o. Suppose that there is a point $q \in F_o$ such that $F_o \setminus \{q\}$ is open in X. Then X does not have unique hyperspace $C_n(X)$ for any $n \in \mathbb{N}$. To see this, notice that the vertex of F_o satisfies the conditions of Corollary 25.

Example 45 Let X be a local dendrite. Suppose that X contains a homeomorphic copy of dendrite F_o. Then X does not have unique hyperspace $C_n(X)$ for any $n \in \mathbb{N}$.

Proof. Let d be a metric for X. Let $F_o = \bigcup \{\theta p_m : m \in \mathbb{N}\}$, where $\theta, p_m \in X$, each θp_m is arc in X, joining θ and p_m, $\lim \theta p_m = \{\theta\}$ (in $C(X)$) and $\theta p_m \cap \theta p_k = \{\theta\}$, if $m \neq k$. In order to apply Theorem 22 we only need to prove that $X - \{\theta\}$ has infinitely many components. Suppose to the contrary that $X - \{\theta\}$ has only finitely many components. Then we may suppose that there exists a component W of $X - \{\theta\}$ such that $\theta p_m - \{\theta\} \subset W$ for each $m \in \mathbb{N}$. Let M be a dendrite in X such that $\theta \in M^o$ and let $\varepsilon > 0$ be such that $B(2\varepsilon, \theta) \subset M$. We may assume that $F_o \subset B(\varepsilon, \theta)$ for each $m \in \mathbb{N}$ and $W - M \neq \emptyset$. Fix a point $w \in W - M$. Given $m \in \mathbb{N}$, since W is arcwise connected, there exists an arc $\alpha_m \subset W$ which joins p_m and w. Then we can choose a point $q_m \in \alpha_m$ such that $d(\theta, q_m) = \varepsilon$ and the subarc β_m of α_m joining p_m and q_m is contained in $\{x \in X : d(x, \theta) \leq \varepsilon\}$. We may assume that $\lim q_m = q$ for some $q \in X$ such that $d(\theta, q) = \varepsilon$. Let U be an open connected subset of X such that $q \in U \subset M$ and $\theta \notin U$. Let $w_0 \in \mathbb{N}$ be such that $q_{m_0}, q_{m_0+1} \in U$. Then there exists an arc γ in U joining q_{m_0} and q_{m_0+1}. Thus, p_{m_0} and p_{m_0+1} can be joined by a path in $\beta_{m_0} \cup \gamma \cup \beta_{m_0+1} \subset M - \{\theta\}$. This is a contradiction since the unique arc in M joining p_{m_0} and p_{m_0+1} is $\theta p_{m_0} \cup \theta p_{m_0+1}$. Therefore, $X - \{\theta\}$ has infinitely many components.

References

Universidad Nacional Autónoma de México.

Instituto de Matemáticas, Circuito Exterior, Cd. Universitaria, México, 04510, MEXICO.

e-mail addresses:
rod@matem.unam.mx,
ilanes@matem.unam.mx,
vmvm@matem.unam.mx