Uniqueness of hyperspaces for Peano continua

Rodrigo Hernández-Gutiérrez, Alejandro Illanes and Verónica Martínez-de-la-Vega

rod@matem.unam.mx

Instituto de Matemáticas, Universidad Nacional Autónoma de México
What’s a unique hyperspace?

Given a metric continuum X and $n \in \mathbb{N}$, consider the hyperspace $C_n(X)$ of all closed nonempty subsets of X with at most n components, metrized by the Hausdorff metric. Denote $C_1(X) = C(X)$.
What’s a unique hyperspace?

Given a metric continuum X and $n \in \mathbb{N}$, consider the hyperspace $C_n(X)$ of all closed nonempty subsets of X with at most n components, metrized by the Hausdorff metric. Denote $C_1(X) = C(X)$.

Question: Given $C_n(X)$, is it possible to know X?
What’s a unique hyperspace?

Given a metric continuum X and $n \in \mathbb{N}$, consider the hyperspace $C_n(X)$ of all closed nonempty subsets of X with at most n components, metrized by the Hausdorff metric. Denote $C_1(X) = C(X)$.

Question: Given $C_n(X)$, is it possible to know X?

Formally: Let X and Y be metric continua, $n \in \mathbb{N}$. Under what conditions does the implication

$$C_n(X) \approx C_n(Y) \Rightarrow X \approx Y$$

hold?
What is known
What is known

• In 1968, Duda showed that if X is a finite graph, $X \notin \{[0, 1], S^1\}$ and Y is such that $C(X) \approx C(Y)$, then $X \approx Y$.
What is known

• In 1968, Duda showed that if X is a finite graph, $X \notin \{[0, 1], S^1\}$ and Y is such that $C(X) \approx C(Y)$, then $X \approx Y$.

• Recall the Curtis-Schori-West Hyperspace Theorem (1978): $C(X)$ is the Hilbert cube if and only if X is a locally connected metric continuum with no free arcs.
What is known

- In 1968, Duda showed that if X is a finite graph, $X \notin \{[0, 1], \mathbb{S}^1\}$ and Y is such that $\mathcal{C}(X) \approx \mathcal{C}(Y)$, then $X \approx Y$.

- Recall the Curtis-Schori-West Hyperspace Theorem (1978): $\mathcal{C}(X)$ is the Hilbert cube if and only if X is a locally connected metric continuum with no free arcs.

- Other results are known for hereditarily indecomposable continua, metric indecomposable continua whose proper subcontinua are arcs, metric compactifications of the ray $[0, 1)$, chainable metric continua, fans...
Our problem

Peano continuum = metric locally connected continuum
Our problem

Peano continuum = metric locally connected continuum

Let X be a Peano continuum, $n \in \mathbb{N}$ and Y (a Peano continuum) such that $C_n(X) \approx C_n(Y)$. Is $X \approx Y$?
Our problem

Peano continuum = metric locally connected continuum

Let X be a Peano continuum, $n \in \mathbb{N}$ and Y (a Peano continuum) such that $C_n(X) \approx C_n(Y)$. Is $X \approx Y$?

In case the answer to this question is yes, we say that X has unique hyperspace $C_n(X)$.
Partial results

Let \mathcal{D} be the class of dendrites that have their set of endpoints closed.
Partial results

Let \mathcal{D} be the class of dendrites that have their set of endpoints closed.

- (G. Acosta and D. Herrera-Carrasco, 2007-2009) A dendrite X has unique hyperspace $\mathcal{C}(X)$ if and only if $X \in \mathcal{D}$ and $X \neq [0, 1]$.
Partial results

Let \mathcal{D} be the class of dendrites that have their set of endpoints closed.

- (G. Acosta and D. Herrera-Carrasco, 2007-2009) A dendrite X has unique hyperspace $\mathcal{C}(X)$ if and only if $X \in \mathcal{D}$ and $X \neq [0, 1]$.

- (A. Illanes, D. Herrera-Carrasco, F. Macías-Romero, 2008) If $X \in \mathcal{D}$, X has unique hyperspace $\mathcal{C}_n(X)$ for $n > 1$.
Partial results

Let \mathcal{D} be the class of dendrites that have their set of endpoints closed.

- (G. Acosta and D. Herrera-Carrasco, 2007-2009) A dendrite X has unique hyperspace $\mathcal{C}(X)$ if and only if $X \in \mathcal{D}$ and $X \neq [0, 1]$.

- (A. Illanes, D. Herrera-Carrasco, F. Macías-Romero, 2008) If $X \in \mathcal{D}$, X has unique hyperspace $\mathcal{C}_n(X)$ for $n > 1$.

- (G. Acosta, D. Herrera-Carrasco, F. Macías-Romero, 2010) If X is a continuum with a basis of \mathcal{D}-continua neighborhoods, then X has unique hyperspace $\mathcal{C}_n(X)$ (for $n = 1$, iff $X \neq [0, 1], \mathbb{S}^1$).
Long nullcomb and F_ω

Theorem. (Arévalo, W. Charatonik, Simon, Pellicer-Covarrubias) A dendrite is in D if and only if it does not contain a long nullcomb or a copy of F_ω.
Almost Meshed continua

Recall a free arc in a continuum X is an arc $A \subset X$ such that by removing the endpoints of A, one obtains an open subset of X.
Almost Meshed continua

For a continuum X, let

$$\mathcal{FA}(X) = \bigcup \{ J^\circ : J \text{ is a free arc in } X \}$$
Almost Meshed continua

For a continuum X, let

$$\mathcal{F}A(X) = \bigcup \{ J^\circ : J \text{ is a free arc in } X \}$$

We say a continuum X is *almost meshed* if $\mathcal{F}A(X)$ is dense in X.

Uniqueness of hyperspaces for Peano continua – p. 7
Almost Meshed continua

For a continuum X, let

$$\mathcal{FA}(X) = \bigcup \{J^\circ : J \text{ is a free arc in } X\}$$

We say a continuum X is *almost meshed* if $\mathcal{FA}(X)$ is dense in X.

Let

$$\mathcal{G}(X) = \{p \in X : p \text{ has a basis of finite-graph neighborhoods}\}.$$
Almost Meshed continua

For a continuum X, let

$$\mathcal{FA}(X) = \bigcup \{ J^\circ : J \text{ is a free arc in } X \}$$

We say a continuum X is almost meshed if $\mathcal{FA}(X)$ is dense in X.

Let

$$\mathcal{G}(X) = \{ p \in X : p \text{ has a basis of finite-graph neighborhoods} \}.$$

$$\text{cl}_X(\mathcal{FA}(X)) = \text{cl}_X(\mathcal{G}(X))$$
Almost Meshed continua

For a continuum X, let

$$\mathcal{FA}(X) = \bigcup \{J^\circ : J \text{ is a free arc in } X\}$$

We say a continuum X is *almost meshed* if $\mathcal{FA}(X)$ is dense in X.

Let

$$\mathcal{G}(X) = \{p \in X : p \text{ has a basis of finite-graph neighborhoods}\}.$$

Let $\mathcal{P}(X) = X - \mathcal{G}(X)$.
Examples of almost meshed Peano continua

The long nullcomb, F_ω and M:
Examples of almost meshed Peano continua

The long nullcomb, F_ω and M:
Examples of almost meshed Peano continua

The long nullcomb, F_ω and M:

Note that $\mathcal{P}(M)$ is in red and $\mathcal{G}(M)$ in green.
A result on $[0, 1]^{\omega}$

Recall Toruńczyk’s theorem on Hilbert cubes:
A result on $[0, 1]^{\omega}$

Recall Toruńczyk’s theorem on Hilbert cubes:

Theorem. (Toruńczyk) Let Y be an AR. If the identity map on Y is a uniform limit of Z-maps, then Y is a Hilbert cube.
A result on $[0, 1]^\omega$

Recall Toruńczyk’s theorem on Hilbert cubes:

Theorem. (Toruńczyk) Let Y be an AR. If the identity map on Y is a uniform limit of Z-maps, then Y is a Hilbert cube.

Using Toruńczyk’s theorem we proved the following result:
A result on $[0, 1]^\omega$

Recall Toruńczyk’s theorem on Hilbert cubes:

Theorem. (Toruńczyk) Let Y be an AR. If the identity map on Y is a uniform limit of Z-maps, then Y is a Hilbert cube.

Using Toruńczyk’s theorem we proved the following result:

Theorem. Let X be a Peano continuum and R a closed nonempty subset of $\mathcal{P}(X)$. Then

$$C_n(X, R) = \{ A \in C_n(X) : A \cap R \neq \emptyset \}$$

is a Hilbert cube.
Using Hilbert cubes, I
Using Hilbert cubes, I

Theorem. Let X be a Peano continuum that is not almost meshed. Then, for every $n \in \mathbb{N}$, X does not have unique hyperspace $C_n(X)$.
Using Hilbert cubes, I

Theorem. Let X be a Peano continuum that is not almost meshed. Then, for every $n \in \mathbb{N}$, X does not have unique hyperspace $C_n(X)$.

Proof:
Using Hilbert cubes, I

Theorem. Let X be a Peano continuum that is not almost meshed. Then, for every $n \in \mathbb{N}$, X does not have unique hyperspace $C_n(X)$.

Proof: Let E be a continuum such that $E = \text{cl}_X(\text{int}_X(E))$ and $E \subset \mathcal{P}(X)$. Then, $C_n(X, E)$ is a Hilbert cube.
Using Hilbert cubes, I

Theorem. Let \(X \) be a Peano continuum that is not almost meshed. Then, for every \(n \in \mathbb{N} \), \(X \) does not have unique hyperspace \(C_n(X) \).

Proof: Let \(E \) be a continuum such that \(E = \text{cl}_X(\text{int}_X(E)) \) and \(E \subset \mathcal{P}(X) \). Then, \(C_n(X, E) \) is a Hilbert cube. Let \(Y \) be the result of adjoining some Peano continuum \(D \) without free arcs to \(X \) by some point \(p \in \text{int}_X(E) \), in such a way \(Y \) and \(X \) are not homeomorphic.
Using Hilbert cubes, I

Theorem. Let X be a Peano continuum that is not almost meshed. Then, for every $n \in \mathbb{N}$, X does not have unique hyperspace $C_n(X)$.

Proof: Let E be a continuum such that $E = \text{cl}_X(\text{int}_X(E))$ and $E \subset \mathcal{P}(X)$. Then, $C_n(X, E)$ is a Hilbert cube. Let Y be the result of adjoining some Peano continuum D without free arcs to X by some point $p \in \text{int}_X(E)$, in such a way Y and X are not homeomorphic.

\[
C_n(X) = C_n(X, E) \cup (C_n(X) - C_n(X, E))
\]
\[
C_n(Y) = C_n(Y, E \cup D) \cup (C_n(X) - C_n(X, E))
\]
Using Hilbert cubes, I

It can be shown that

$$\delta = \mathcal{C}_n(X, E) \cap cl\mathcal{C}_n(X)(\mathcal{C}_n(X) - \mathcal{C}_n(X, E))$$

$$= \mathcal{C}_n(Y, E \cup D) \cap cl\mathcal{C}_n(X)(\mathcal{C}_n(X) - \mathcal{C}_n(X, E))$$

is a Z-set in the Hilbert cubes $\mathcal{C}_n(X, E)$ and $\mathcal{C}_n(Y, E \cup D)$.
Using Hilbert cubes, I

It can be shown that

\[
\delta = C_n(X, E) \cap cl_{C_n(X)}(C_n(X) - C_n(X, E)) \\
= C_n(Y, E \cup D) \cap cl_{C_n(X)}(C_n(X) - C_n(X, E))
\]

is a Z-set in the Hilbert cubes $C_n(X, E)$ and $C_n(Y, E \cup D)$. Thus, by “Anderson’s Homogeneity Theorem”, there is a homeomorphism $h : C_n(X, E) \rightarrow C_n(Y, E \cup D)$ such that $h \mid_\delta = id_\delta$.
Using Hilbert cubes, I

It can be shown that

$$\delta = \mathcal{C}_n(X, E) \cap \text{cl}_{\mathcal{C}_n(X)}(\mathcal{C}_n(X) - \mathcal{C}_n(X, E))$$

$$= \mathcal{C}_n(Y, E \cup D) \cap \text{cl}_{\mathcal{C}_n(X)}(\mathcal{C}_n(X) - \mathcal{C}_n(X, E))$$

is a Z-set in the Hilbert cubes $\mathcal{C}_n(X, E)$ and $\mathcal{C}_n(Y, E \cup D)$. Thus, by “Anderson’s Homogeneity Theorem”, there is a homeomorphism $h : \mathcal{C}_n(X, E) \to \mathcal{C}_n(Y, E \cup D)$ such that $h \upharpoonright \delta = \text{id}_\delta$. Thus, defining H to be the common extension of h and the identity on $\mathcal{C}_n(X) - \mathcal{C}_n(X, E)$, we get a homeomorphism $H : \mathcal{C}_n(X) \to \mathcal{C}_n(Y)$.
Using Hilbert cubes, I
Using Hilbert cubes, II

Theorem. Let X be an almost meshed Peano continuum and $n \in \mathbb{N}$. Suppose that there exist a closed subset R of $\mathcal{P}(X)$ and pairwise disjoint nonempty open sets U_1, \ldots, U_{n+1} such that

- $X - R = U_1 \cup \cdots \cup U_{n+1}$ and
- for each $i \in \{1, \ldots, n+1\}$, $R \subset \text{cl}_X(U_i)$.

Then X does not have unique hyperspace $C_m(X)$ for every $m \leq n$.
Using Hilbert cubes, II

Theorem. Let X be an almost meshed Peano continuum and $n \in \mathbb{N}$. Suppose that there exist a closed subset R of $\mathcal{P}(X)$ and pairwise disjoint nonempty open sets U_1, \ldots, U_{n+1} such that

- $X - R = U_1 \cup \cdots \cup U_{n+1}$ and
- for each $i \in \{1, \ldots, n+1\}$, $R \subset \text{cl}_X(U_i)$.

Then X does not have unique hyperspace $C_m(X)$ for every $m \leq n$.

Proof. Let $Y = X \cup_p D$ for some $p \in R$ and D a Peano continuum with no free arcs. Use the same argument as above.
Using Hilbert cubes, II

Theorem. Let X be an almost meshed Peano continuum and $n \in \mathbb{N}$. Suppose that there exist a closed subset R of $\mathcal{P}(X)$ and pairwise disjoint nonempty open sets U_1, \ldots, U_{n+1} such that

- $X - R = U_1 \cup \cdots \cup U_{n+1}$ and
- for each $i \in \{1, \ldots, n + 1\}$, $R \subset \text{cl}_X(U_i)$.

Then X does not have unique hyperspace $C_m(X)$ for every $m \leq n$.

This looks technical but gives us two interesting results.
Using Hilbert cubes, II

Theorem. Let X be an almost meshed Peano continuum and $n \in \mathbb{N}$. Suppose that there exist a closed subset R of $\mathcal{P}(X)$ and pairwise disjoint nonempty open sets U_1, \ldots, U_{n+1} such that

- $X - R = U_1 \cup \cdots \cup U_{n+1}$ and
- for each $i \in \{1, \ldots, n+1\}$, $R \subset \text{cl}_X(U_i)$.

Then X does not have unique hyperspace $C_m(X)$ for every $m \leq n$.

This looks technical but gives us two interesting results.

Notice: In this case, a subset of $\mathcal{P}(X)$ **separates** the space.
Using Hilbert cubes, II

Corollary. Let X be an almost meshed Peano continuum such that $X - P(X)$ is disconnected. Then X does not have unique hyperspace $C(X)$.
Corollary. Let X be an almost meshed Peano continuum such that $X - \mathcal{P}(X)$ is disconnected. Then X does not have unique hyperspace $C(X)$.

In this case, the continuum looks like this:
Corollary. Let X be an almost meshed Peano continuum such that $X - \mathcal{P}(X)$ is disconnected. Then X does not have unique hyperspace $C(X)$.

In this case, the continuum looks like this:
Using Hilbert cubes, II

Corollary. Let X be a dendrite that is not a tree and $k = \sup\{ord_X(p : p \in \mathcal{P}(X))\}$ (notice $k \in \mathbb{N} \cup \{\omega\}$). Then for every $m < k$, X does not have unique hyperspace $C_m(X)$.
Using Hilbert cubes, II

Corollary. Let X be a dendrite that is not a tree and $k = \sup\{\text{ord}_X(p : p \in \mathcal{P}(X))\}$ (notice $k \in \mathbb{N} \cup \{\omega\}$). Then for every $m < k$, X does not have unique hyperspace $C_m(X)$.

So for example, notice F_ω does not have unique hyperspace $C_n(F_\omega)$ for any $n \in \mathbb{N}$.
Meshed continua

We will call a continuum X meshed if it is almost meshed and has a basis of neighborhoods \mathcal{B} such that for each $U \in \mathcal{B}$, $U - \mathcal{P}(X)$ is connected.
Meshed continua

We will call a continuum X meshed if it is almost meshed and has a basis of neighborhoods \mathcal{B} such that for each $U \in \mathcal{B}$, $U - \mathcal{P}(X)$ is connected.

Lemma. A metric continuum X is almost meshed if and only if X is an almost meshed Peano continuum and for some (all) $n \in \mathbb{N}$, the set

$$\mathcal{F}_n(X) = \{A \in C_n(X) : \dim_A(C_n(X)) < \infty\}$$

is dense in $C_n(X)$.
Meshed continua

We will call a continuum X meshed if it is almost meshed and has a basis of neighborhoods \mathcal{B} such that for each $U \in \mathcal{B}$, $U - \mathcal{P}(X)$ is connected.

Lemma. A metric continuum X is almost meshed if and only if X is an almost meshed Peano continuum and for some (all) $n \in \mathbb{N}$, the set

$$\mathcal{F}_n(X) = \{ A \in \mathcal{C}_n(X) : dim_A(\mathcal{C}_n(X)) < \infty \}$$

is dense in $\mathcal{C}_n(X)$.

Notice that the definition depends only on the base space and the equivalence in the lemma is **geometric** and **topological** in nature...
Geometric?

In our last example M, we can approximate any given continuum by a finite graph inside $\mathcal{G}(M)$:
Geometric?

In our last example M, we can approximate any given continuum by a finite graph inside $\mathcal{G}(M)$:
Geometric?

In our last example M, we can approximate any given continuum by a finite graph inside $G(M)$:
Theorem. If X is a meshed Peano continuum and Y is such that $C_n(X) \approx C_n(Y)$, then Y is also a meshed Peano continuum.
Theorem. If X is a meshed Peano continuum and Y is such that $C_n(X) \approx C_n(Y)$, then Y is also a meshed Peano continuum.

Proof. If $h : C_n(X) \approx C_n(Y)$ is a homeomorphism, then $h[\mathcal{F}_n(X)] = \mathcal{F}_n(Y)$ so $\mathcal{F}_n(Y)$ is dense in $C_n(Y)$.

Uniqueness of hyperspaces for Peano continua – p. 18
Topological?

Theorem. If X is a meshed Peano continuum and Y is such that $C_n(X) \approx C_n(Y)$, then Y is also a meshed Peano continuum.

Proof. If $h : C_n(X) \approx C_n(Y)$ is a homeomorphism, then $h[\mathcal{F}_n(X)] = \mathcal{F}_n(Y)$ so $\mathcal{F}_n(Y)$ is dense in $C_n(Y)$.

We will prove that if X and Y are both almost meshed Peano continua and $C_n(X) \approx C_n(Y)$, then $X \approx Y$. This will prove meshed continua have unique hyperspaces $C_n(X)$.
Remarks on meshed Continua
Remarks on meshed Continua

- Dendrites that contain a long nullcomb or a F_ω are not meshed.
Remarks on meshed Continua

- Dendrites that contain a long nullcomb or a F_ω are not meshed.
- Finite graphs, \mathcal{D} dendrites and continua which have basis of \mathcal{D}-continua neighborhoods are all meshed continua.
Remarks on meshed Continua

- Dendrites that contain a long nullcomb or a F_ω are not meshed.
- Finite graphs, D dendrites and continua which have basis of D-continua neighborhoods are all meshed continua.

So in fact our results will generalize all known
Duda’s method: 2-cells

Recall the classic model of $C([0, 1])$: we identify it with the triangle $\{ (a, b) \in [0, 1] : 0 \leq a \leq b \leq 1 \}$.
Duda’s method: 2-cells

Recall the classic model of $C([0, 1])$: we identify it with the triangle $\{(a, b) \in [0, 1] : 0 \leq a \leq b \leq 1\}$.
Duda’s method: 2-cells

Recall the classic model of $C([0, 1])$: we identify it with the triangle $\{(a, b) \in [0, 1] : 0 \leq a \leq b \leq 1\}$.

Notice the manifold boundary is $A \cup B$, where
Duda’s method: 2-cells

Recall the classic model of \(C([0, 1]) \): we identify it with the triangle \(\{(a, b) \in [0, 1] : 0 \leq a \leq b \leq 1\} \).

Notice the manifold boundary is \(A \cup B \), where

- \(A \) is \(\{[0, a] : a \in [0, 1]\} \cup \{[b, 1] : b \in [0, 1]\} \).
Duda’s method: 2-cells

Recall the classic model of $C([0, 1])$: we identify it with the triangle $\{(a, b) \in [0, 1] : 0 \leq a \leq b \leq 1\}$.

Notice the manifold boundary is $A \cup B$, where

- A is $\{[0, a] : a \in [0, 1]\} \cup \{[b, 1] : b \in [0, 1]\}$.
- B is $\{\{x\} : x \in [0, 1]\} \approx [0, 1]$.
Duda’s method: 2-cells

Recall the classic model of $C([0, 1])$: we identify it with the triangle $\{(a, b) \in [0, 1]: 0 \leq a \leq b \leq 1\}$.

Notice the manifold boundary is $A \cup B$, where

- A is $\{[0, a]: a \in [0, 1]\} \cup \{[b, 1]: b \in [0, 1]\}$.
- B is $\{\{x\}: x \in [0, 1]\} \approx [0, 1]$.

So there is a copy of $[0, 1]$ in the manifold boundary of $C([0, 1])$.
Free arcs

In Peano continua, we basically have three types of maximal free arcs.
Free arcs

In Peano continua, we basically have three types of maximal free arcs.

- A maximal free arc A that touches the rest in both endpoints $p \neq q$.
- A maximal free arc J that touches the rest in one of its endpoints p.
- A free circle S that touches the rest in just one point p.
Free arcs

In Peano continua, we basically have three types of maximal free arcs.

Let $\mathcal{A}_E(X)$ the set of maximal free arcs that have ends:

Call e the end of J.
2-cells in general

Let $\mathcal{B}_\delta(X)$ be the set of elements of $C(X)$ that are in the manifold boundary of a 2-cell contained in $C(X)$.
2-cells in general

Let $\mathcal{B}_\delta(X)$ be the set of elements of $C(X)$ that are in the manifold boundary of a 2-cell contained in $C(X)$.

Lemma. Let X be a Peano continuum and $A \in C(X)$. Then $A \in \mathcal{B}_\delta(X)$ if and only if there is a maximal free arc J and $A = \{p\}$ for some $p \in J$ or $J \in \mathcal{A}_E(X)$ and A is a subarc of J that contains its end.
2-cells in general

Let $\mathcal{B}_\delta(X)$ be the set of elements of $C(X)$ that are in the manifold boundary of a 2-cell contained in $C(X)$.

Lemma. Let X be a Peano continuum and $A \in C(X)$. Then $A \in \mathcal{B}_\delta(X)$ if and only if there is a maximal free arc J and $A = \{p\}$ for some $p \in J$ or $J \in \mathcal{A}_E(X)$ and A is a subarc of J that contains its end.

That is, we have the same situation that in $[0, 1]$.
2-cells in general

Let $\mathcal{B}_\delta(X)$ be the set of elements of $\mathcal{C}(X)$ that are in the manifold boundary of a 2-cell contained in $\mathcal{C}(X)$.

Lemma. Let X be a Peano continuum and $A \in \mathcal{C}(X)$. Then $A \in \mathcal{B}_\delta(X)$ if and only if there is a maximal free arc J and $A = \{p\}$ for some $p \in J$ or $J \in \mathcal{A}_E(X)$ and A is a subarc of J that contains its end.

Recall $\mathcal{F}A(X)$ denotes the set of free arcs of X.
2-cells in general

Let $\mathfrak{B}_\delta(X)$ be the set of elements of $\mathcal{C}(X)$ that are in the manifold boundary of a 2-cell contained in $\mathcal{C}(X)$.

Lemma. Let X be a Peano continuum and $A \in \mathcal{C}(X)$. Then $A \in \mathfrak{B}_\delta(X)$ if and only if there is a maximal free arc J and $A = \{p\}$ for some $p \in J$ or $J \in \mathcal{A}_E(X)$ and A is a subarc of J that contains its end.

Theorem. Let X be a Peano continuum that is not an arc. Then there is a homeomorphism

$$h : \mathcal{FA}(X) \to \mathfrak{B}_\delta(X).$$
Free arcs inside the hyperspace

Theorem. Let X be a Peano continuum that is not an arc. Then there is a homeomorphism

$$h_X : \mathcal{FA}(X) \rightarrow \mathcal{B}_\delta(X).$$
Free arcs inside the hyperspace

Theorem. Let X be a Peano continuum that is not an arc. Then there is a homeomorphism

$$h_X : \overline{\mathcal{FA}(X)} \to \overline{\mathcal{B}_\delta(X)}.$$

This results gives a powerful tool: there is a copy of the closure of the free arcs of X in $C(X)$, in the **topological** form of $\mathcal{B}_\delta(X)$.
Theorem. Let X be a Peano continuum that is not an arc. Then there is a homeomorphism

$$h_X : \overline{\mathcal{FA}(X)} \rightarrow \overline{\mathfrak{B}_\delta(X)}.$$

If X is almost meshed, there is a copy of X topologically placed inside $C(X)$.
Free arcs inside the hyperspace

Theorem. Let X be a Peano continuum that is not an arc. Then there is a homeomorphism

$$h_X : \mathcal{FA}(X) \to \mathcal{B}_\delta(X).$$

If X is almost meshed, there is a copy of X topologically placed inside $C(X)$.

Theorem. If X and Y are almost meshed and $h : C(X) \to C(Y)$ is a homeomorphism, then $X \approx Y$.
Free arcs inside the hyperspace

Theorem. Let X be a Peano continuum that is not an arc. Then there is a homeomorphism

$$h_X : \overline{FA(X)} \to \overline{\mathcal{B}_\delta(X)}.$$

If X is almost meshed, there is a copy of X topologically placed inside $C(X)$.

Theorem. If X and Y are almost meshed and $h : C(X) \to C(Y)$ is a homeomorphism, then $X \approx Y$.

To prove this, just compose $h_Y^{-1} \circ h \circ h_X$.

Uniqueness of hyperspaces for Peano continua – p. 23
Free arcs inside the hyperspace

Theorem. Let X be a Peano continuum that is not an arc. Then there is a homeomorphism

$$h_X : \mathcal{FA}(X) \rightarrow \mathcal{B}_\delta(X).$$

If X is almost meshed, there is a copy of X topologically placed inside $\mathcal{C}(X)$.

Theorem. If X and Y are almost meshed and $h : \mathcal{C}(X) \rightarrow \mathcal{C}(Y)$ is a homeomorphism, then $X \approx Y$.

To prove this, just compose $h_Y^{-1} \circ h \circ h_X$.

$$X = \mathcal{FA}(X) \xrightarrow{h_X} \mathcal{B}_\delta(X) \xrightarrow{h} \mathcal{B}_\delta(Y) \xrightarrow{h_Y^{-1}} \mathcal{FA}(Y) = Y$$
Meshed for \(n \geq 3 \)
Meshed for $n \geq 3$

Let $\mathcal{B}_n(X)$ be the elements of $C_n(X)$ that have a $2n$-cell neighborhood ($\mathcal{B}_1(X) = \mathcal{B}(X)$).
Meshed for $n \geq 3$

Let $\mathfrak{B}_n(X)$ be the elements of $C_n(X)$ that have a $2n$-cell neighborhood ($\mathfrak{B}_1(X) = \mathfrak{B}(X)$).

Let $\Gamma_n(X)$ be the elements $A \in C_n(X) - \mathfrak{B}_n(X)$ that have a local basis \mathcal{D} such that if $U \in \mathcal{D}$, then $\dim(U) = 2n$ and $U \cap \mathfrak{B}_n(X)$ is arcwise connected.
Meshed for \(n \geq 3 \)

Let \(\mathfrak{B}_n(X) \) be the elements of \(C_n(X) \) that have a 2n-cell neighborhood (\(\mathfrak{B}_1(X) = \mathfrak{B}(X) \)).

Let \(\Gamma_n(X) \) be the elements \(A \in C_n(X) - \mathfrak{B}_n(X) \) that have a local basis \(\mathcal{D} \) such that if \(U \in \mathcal{D} \), then \(dim(U) = 2n \) and \(U \cap \mathfrak{B}_n(X) \) is arcwise connected.

Theorem. *Let \(X \) be a Peano continuum and \(n \geq 3 \). Then*

\[
\mathfrak{B}(X) = \Gamma_n(X)
\]
Meshed for $n \geq 3$

Let $\mathcal{B}_n(X)$ be the elements of $C_n(X)$ that have a $2n$-cell neighborhood ($\mathcal{B}_1(X) = \mathcal{B}(X)$).

Let $\Gamma_n(X)$ be the elements $A \in C_n(X) - \mathcal{B}_n(X)$ that have a local basis \mathcal{D} such that if $U \in \mathcal{D}$, then $\dim(U) = 2n$ and $U \cap \mathcal{B}_n(X)$ is arcwise connected.

Theorem. Let X be a Peano continuum and $n \geq 3$. Then

$$\mathcal{B}(X) = \Gamma_n(X)$$

Thus, the set $\mathcal{B}(X)$ can be found inside $C_n(X)$ in a topological way for $n \geq 3$.
Meshed for $n \geq 3$

Let $\mathfrak{B}_n(X)$ be the elements of $C_n(X)$ that have a 2n-cell neighborhood ($\mathfrak{B}_1(X) = \mathfrak{B}(X)$).

Let $\Gamma_n(X)$ be the elements $A \in C_n(X) - \mathfrak{B}_n(X)$ that have a local basis \mathcal{D} such that if $U \in \mathcal{D}$, then $\dim(U) = 2n$ and $U \cap \mathfrak{B}_n(X)$ is arcwise connected.

Theorem. Let X be a Peano continuum and $n \geq 3$. Then

$$\mathfrak{B}(X) = \Gamma_n(X)$$

Then, we can also find $\mathfrak{B}_\delta(X)$.
Meshed for $n \geq 3$

Let $\mathcal{B}_n(X)$ be the elements of $\mathcal{C}_n(X)$ that have a $2n$-cell neighborhood ($\mathcal{B}_1(X) = \mathcal{B}(X)$).

Let $\Gamma_n(X)$ be the elements $A \in \mathcal{C}_n(X) - \mathcal{B}_n(X)$ that have a local basis \mathcal{D} such that if $U \in \mathcal{D}$, then $\dim(U) = 2n$ and $U \cap \mathcal{B}_n(X)$ is arcwise connected.

Theorem. Let X be a Peano continuum and $n \geq 3$. Then

$$\mathcal{B}(X) = \Gamma_n(X)$$

Theorem. Let X and Y be an almost meshed Peano continuum and $n \geq 3$. If $\mathcal{C}_n(X) \approx \mathcal{C}_n(Y)$, then $X \approx Y$.
Meshed for $n = 2$

For $n = 2$, we cannot localize a copy of X so easily. For example, in $C_2([0, 1])$, singulars have boundary-4-cells-neighborhoods, as well as the neighborhoods of sets like $[0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$:
Meshed for $n = 2$

For $n = 2$, we cannot localize a copy of X so easily. For example, in $C_2([0, 1])$, singulars have boundary-4-cells-neighborhoods, as well as the neighborhoods of sets like $[0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$:

\begin{center}
\begin{tikzpicture}
\draw[->] (0,0) -- (5,0);
\node at (0,0) [below] {0}; \node at (1,0) [below] {1/3}; \node at (2,0) [below] {2/3}; \node at (3,0) [below] {1};
\draw[red] (1,0) -- (1,0.5);
\draw[blue] (2,0) -- (2,0.5);
\end{tikzpicture}
\end{center}
Meshed for $n = 2$

For $n = 2$, we cannot localize a copy of X so easily. For example, in $C_2([0, 1])$, singulars have boundary-4-cells-neighborhoods, as well as the neighborhoods of sets like $[0, \frac{1}{3}] \cup \left[\frac{2}{3}, 1\right]$:

\[
\begin{array}{cccc}
U & V \\
0 & 1/3 & 2/3 & 1
\end{array}
\]

\[
\langle U, V \rangle \approx C(U) \times C(V) \approx C([0, 1]^2) \approx [0, 1]^4
\]
Meshed for $n = 2$

For a Peano continuum, define $\mathcal{B}_2^\delta(X)$ to be the set of elements of $C_2(X)$ that lie on the manifold boundary of some 4-cell neighborhood.
Meshed for $n = 2$

For a Peano continuum, define $\mathcal{B}_2^\delta(X)$ to be the set of elements of $\mathcal{C}_2(X)$ that lie on the manifold boundary of some 4-cell neighborhood.

Recall the $\mathcal{A}_E(X)$, the maximal free arcs with ends:
Meshed for $n = 2$

For a Peano continuum, define $\mathcal{B}_2^\delta(X)$ to be the set of elements of $\mathcal{C}_2(X)$ that lie on the manifold boundary of some 4-cell neighborhood.

Theorem. Let X be a Peano continuum, $A \in \mathcal{C}_2(X)$ and $A = A_1 \cup A_2$ with A_1 and A_2 connected. Then $A \in \mathcal{B}_2^\delta(X)$ if and only if there are maximal free arcs J_1, J_2 such that $A_i \subset J_i$ ($i \in \{1, 2\}$) and either one of A_1, A_2 is one point or $J_j \in \mathcal{A}_E(X)$ and A_j contains the end of J_j for some $j \in \{1, 2\}$.
Meshed for $n = 2$

Thus, elements of $\mathcal{B}_2^\delta(X)$ are like this
Meshed for $n = 2$

Thus, elements of $B^\delta_2(X)$ are like this
Meshed for $n = 2$

Thus, elements of $\mathcal{B}_2^\delta(X)$ are like this

or like this
Meshed for $n = 2$

Thus, elements of $\mathcal{B}_2^\delta(X)$ are like this

or like this
Meshed for \(n = 2 \)

Thus, elements of \(\mathcal{B}_2^\delta(X) \) are like this or like this

It turns out that for almost meshed continua, all the possible cases (remember there may be circles) for \(A_1 = A_2 \) can be characterized topologically.
Meshed for $n = 2$

Notice that if $A_1 = A_2$ we either have a singular or an arc with an end...
Meshed for $n = 2$

Notice that if $A_1 = A_2$ we either have a singular or an arc with an end... just like in case $n = 1$!!!
Meshed for $n = 2$

Notice that if $A_1 = A_2$ we either have a singular or an arc with an end... just like in case $n = 1$!!! We can then identify $\mathcal{FA}(X)$ (the free arcs of X) in $C_2(X)$ in a topological way.
Meshed for \(n = 2 \)

Notice that if \(A_1 = A_2 \) we either have a singular or an arc with an end... just like in case \(n = 1 \)!!! We can then identify \(\mathcal{FA}(X) \) (the free arcs of \(X \)) in \(C_2(X) \) in a topological way.

Theorem. If \(X \) and \(Y \) are almost meshed continua and \(C_2(X) \approx C_2(Y) \), then \(X \approx Y \).
Meshed have unique hyperspace

Corollary. If X is a meshed Peano continuum, then X has unique hyperspace $C_n(X)$ for all $n \in \mathbb{N}$, except for $n = 1$ and $X \in \{[0,1], S^2\}$.
Meshed have unique hyperspace

Corollary. If X is a meshed Peano continuum, then X has unique hyperspace $C_n(X)$ for all $n \in \mathbb{N}$, except for $n = 1$ and $X \in \{[0, 1], S^2\}$.

Corollary. If X and Y are Peano continua, X is almost meshed, X is not homeomorphic to Y and $C_n(X) \approx C_n(Y)$ for some $n \in \mathbb{N}$, then
Meshed have unique hyperspace

Corollary. If X is a meshed Peano continuum, then X has unique hyperspace $C_n(X)$ for all $n \in \mathbb{N}$, except for $n = 1$ and $X \in \{[0, 1], S^2\}$.

Corollary. If X and Y are Peano continua, X is almost meshed, X is not homeomorphic to Y and $C_n(X) \approx C_n(Y)$ for some $n \in \mathbb{N}$, then
- Y is not almost meshed.
Meshed have unique hyperspace

Corollary. If X is a meshed Peano continuum, then X has unique hyperspace $C_n(X)$ for all $n \in \mathbb{N}$, except for $n = 1$ and $X \in \{[0, 1], S^2\}$.

Corollary. If X and Y are Peano continua, X is almost meshed, X is not homeomorphic to Y and $C_n(X) \approx C_n(Y)$ for some $n \in \mathbb{N}$, then

- Y is not almost meshed.
- the subset $\mathcal{FA}(Y)$ of Y is homeomorphic to X.
Example 1

There exist an Almost meshed, not meshed Peano continuum X with unique hyperspace $C(X)$.
Example 1

There exist an Almost meshed, not meshed Peano continuum X with unique hyperspace $C(X)$.

![Diagram of X and P(X)]
Example 1

There exist an Almost meshed, not meshed Peano continuum X with unique hyperspace $C(X)$.

Notice $X - \mathcal{P}(X)$ is connected but $\mathcal{P}(X)$ disconnects locally.
Example 2

There exists a dendrite D not in \mathcal{D} such that D has unique hyperspace $\mathcal{C}_2(D)$ and moreover, $D - \mathcal{P}(D)$ is disconnected.
Example 2

There exists a dendrite D not in \mathcal{D} such that D has unique hyperspace $C_2(D)$ and moreover, $D - \mathcal{P}(D)$ is disconnected.
Summary of results:

For Peano continua:
Summary of results:

For Peano continua:

- If \(X \) is not almost meshed, \(C_n(X) \) is not unique for any \(n \in \mathbb{N} \).
Summary of results:

For Peano continua:

• If X is not almost meshed, $C_n(X)$ is not unique for any $n \in \mathbb{N}$.

• If $\mathcal{P}(X)$ cuts X, $C(X)$ is not unique.
Summary of results:

For Peano continua:

- If X is not almost meshed, $C_n(X)$ is not unique for any $n \in \mathbb{N}$.
- If $\mathcal{P}(X)$ cuts X, $C(X)$ is not unique.
- If X is a dendrite and there is $p \in \mathcal{P}(X)$ with $ord_X(p) > n$, then $C_n(X)$ is not unique.
Summary of results:

For Peano continua:

• If X is not almost meshed, $C_n(X)$ is not unique for any $n \in \mathbb{N}$.
• If $\mathcal{P}(X)$ cuts X, $C(X)$ is not unique.
• If X is a dendrite and there is $p \in \mathcal{P}(X)$ with $\text{ord}_X(p) > n$, then $C_n(X)$ is not unique.
• If X and Y are not homeomorphic but have the same hyperspace $C_n(X)$ and X is almost meshed, then Y is not almost meshed and contains a copy of X.
Summary of results:

For Peano continua:

- If X is not almost meshed, $C_n(X)$ is not unique for any $n \in \mathbb{N}$.
- If $\mathcal{P}(X)$ cuts X, $C(X)$ is not unique.
- If X is a dendrite and there is $p \in \mathcal{P}(X)$ with $ord_X(p) > n$, then $C_n(X)$ is not unique.
- If X and Y are not homeomorphic but have the same hyperspace $C_n(X)$ and X is almost meshed, then Y is not almost meshed and contains a copy of X.
- If X is meshed, X has unique hyperspace $C_n(X)$ for all $n \in \mathbb{N}$.
Problems

• Characterize dendrites X with unique hyperspace $C_2(X)$.
Problems

• Characterize dendrites X with unique hyperspace $C_2(X)$.
• Does there exist a Peano continuum X with unique hyperspace $C(X)$ but not unique hyperspace $C_2(X)$?
Problems

- Characterize dendrites X with unique hyperspace $C_2(X)$.
- Does there exist a Peano continuum X with unique hyperspace $C(X)$ but not unique hyperspace $C_2(X)$?
- Let X be a Peano continuum such that $X - \mathcal{P}(X)$ is connected. Does X have unique hyperspace $C(X)$?
Thank you