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Prologo

Los politopos abstractos son una generalizacién abstracta (sin geometria
intrinseca) de los politopos convexos, que son, a su vez, una generalizacién
multidimensional de los sdlidos platénicos. En el capitulo 2 se muestra la
definicion formal de los politopos abstratos.

El presente trabajo aborda algunos problemas acerca de los politopos
abstractos. La técnica utilizada se basa en acciones de grupos en conjun-
tos, v en particular en el conjunto de vértices de ciertas graficas llamadas
“graficas CPR”. En el capitulo 3 se describen dichas gréficas y sus princi-
pales propiedades.

En los capitulos 4, 5 y 6 se exponen los resultados obtenidos mediante
esta técnica.

En el capitulo 4 se habla de los poliedros (politopos de rango tres) y de su
relacion con las graficas CPR. También se aborda un problema de existencia
y se muestran familias infinitas de ciertos poliedros que no se habian podido
describir explicitamente con anterioridad a pesar de conocerse su existencia.

En los capitulos 5 y 6 se da una solucién al problema de existencia de
extensiones de politopos abstractos. Como consecuencia se da una solucién
parcial a una conjetura publicada en [23].

Finalmente, en el capitulo 7 se exponen preguntas abiertas que surgen
del trabajo expuesto en los capitulos anteriores.

Si bien las acciones de grupos en vértices de graficas se han utilizado
con anterioridad, por primera vez se estan utilizando como herramienta para
trabajar con politopos abstractos. Las graficas CPR se muestran como una
herramienta til para atacar algunos problemas.






Chapter 1

Introduction

The convex polytopes have been studied since antiquity starting with the
convex regular polygons and continuing with the platonic solids. The penta-
gram shown in Figure 1.1 was also studied before Christ even if it was not
considered a regular polygon.

Later, in the fourteenth century Bredwardin studied all the star poly-
gons, but it was Kepler in the fifteenth century who investigated the star
polyhedra, although he only found two of them, the small and great stellated
dodecahedra. The other two star polyhedra, the great dodecahedron and the
great icosahedron were found by Poinsot in the nineteenth century.

In the twentieth century Coxeter investigated the regular convex poly-
topes on higher dimensions including the star polytopes. His technique to
determine the convex ones was to investigate whether or not it is possible
to construct a regular polytope in R* with tetrahedra, octahedra, cubes, do-
decahedra or icosahedra facets (polyhedra). He found an affirmative answer
for all except the icosahedron. For higher dimensions n > 5 he found out

A

Figure 1.1: Pentagram
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that there are only three convex polytopes, the n-simplex, the n-cube and
the n-cross polytope, and only the first two of them appear as facets of a
higher dimensional one (see H. S. M. Coxeter [3] for further details).

Also in the twentieth century, Griinbaum worked with polyhedra with
skew polygons (non-planar finite polygons) as faces. He also considered the
polyhedra as maps on surfaces conjecturing that for any p and ¢ there are
regular maps on compact closed surfaces such that their faces are regular p-
gons, ¢ of them at each vertex. In [26] A. Vince solves the existence problem,
moreover he proves that for almost any given p and ¢ there are infinitely
many such maps.

In [5] L. Danzer and E. Schulte introduce a definition of abstract re-
gular polytopes (see Chapter 2). Since then several people have worked in
this concept. The encyclopedic book of P. McMullen and E. Schulte [14]
includes most of the known results about abstract regular polytopes. One of
this results gives a one-to-one correspondence between the abstract regular
polytopes and the so-called string C-groups that allows us to work with
groups rather than with the polytope.

The actions of groups on the vertex sets of graphs is not new, for instance,
the Cayley graphs are a representation on a graph of a group with a particular
generating set (see White [27]). In Chapter 3 we introduce the CPR graphs,
that are Cayley-type representations of string C-groups on several graphs. In
this work they prove to be a useful tool for solving problems about abstract
polytopes.

Using these graphs we are able to construct string C-groups with particu-
lar properties like being isomorphic to alternating or symmetric groups, or to
correspond to polytopes with a certain local structure. In Chapter 4 we solve
a question of existence of polyhedra with alternating automorphism group
published in Schulte and Weiss [25]. We also construct some infinite families
of polyhedra (maps on compact closed surfaces) with p-gons as faces, ¢ of
them at each vertex, that were known to exist but had not been explicitly
described before.

It is a natural question to determine if for a given rank d polytope K
there exist rank d + 1 polytopes such that contain IC as a face (as Coxeter
did for the convex ones). Such rank d + 1 polytopes are called extensions of
K. In Chapters 5 and 6 we construct extensions of polytopes that generalize
previous examples given by L. Danzer (see [4]) and E. Schulte (see [5]) and
solve partially a conjecture by Schulte stated in [23].



Chapter 2

Regular Polytopes

The purpose of this chapter is to introduce the preliminary concepts that
will be used in the remaining chapters. The main source for all this topics is
the enciclopedic book of McMullen and Schulte [14].

2.1 Definitions and Examples

In this section we introduce the notion of abstract regular polytopes as well
as their connection with the so called string C-groups. We also give some
results about regular polyhedra and show some examples.

The idea of the abstract polytopes is to generalize the concept of convex
polytopes preserving their basic combinatorial properties.

A partially ordered set (poset) X with a rank function

rank : X — {—1,...,d}

such that it has a greatest element F, of rank d and a least element F; of
rank —1 will be called a flagged poset. The flags of the poset are the maximal
totally ordered subsets of X and they have exactly d + 2 elements including
Fyand F_;. Two elements z,y € X are called incident if x < y or y < x.

We will say that a flagged poset satisfies the diamond condition if for
any two incident elements x,y such that rank(z) — rank(y) = 2 there exist
exactly two elements w; and ws such that y < w; < z.

If a flagged poset has the diamond condition then it implies that for any
flag f and any 0 <4 < d — 1 there exists a unique flag f? such that f and f°

3



4 CHAPTER 2. REGULAR POLYTOPES

differ only in the element of rank 7. We will say that f and f* are adjacent
flags and f* will be called the i-adjacent flag of f.

We will say that a flagged poset satisfying the diamond condition is
strongly flag connected if for any two flags f and g there exists a sequence of
flags f = fi, fo,..., fm = g such that f; is adjacent to f;1; and fNg C f;
for all 7. If we do not require that f N g C f; for all i we will simply say that
it is flag connected.

Now we are ready to define an abstract polytope.

Definition 2.1.1 An abstract polytope of rank d (or d-polytope) is a flagged
poset with rank function valued in {—1, ..., d} satisfying the diamond condi-
tion and being strongly flag connected.

Since there is little possibility of confusion we will refer to the abstract
polytopes simply by “polytopes”.

Aiming to preserve some names of the theory of convex polytopes we will
say that a polyhedron is a rank 3 polytope, the elements of any polytope IC
are called faces, the elements of rank ¢ are called i-faces; the O-faces are called
vertices, the 1-faces edges, and the (d — 1)-faces facets. The set of i-faces of
KC is denoted by K;. When working with polyhedra the 2-faces are simply
called faces.

Observe that any section {H |G < H < F'} for a given G < F is again a
polytope. Any face F' may be identified with the polytope section {G |G <
F}. The section {G |G > F'} is called the co-face of F, or, if F' is a vertex,
the vertex figure of F.

Given a polytope K we define its dual K* as the same poset with the
partial order reversed. It is easy to see that the dual of any polytope is
again a polytope. We say that a polyope is self-dual if it is isomorphic (as a
partially ordered set) to its dual.

An automorphism of a polytope is an order preserving permutation of its
faces. The set of automorphisms of a polytope forms a group with the com-
position, denoted by I'(K). The automorphism group of abstract polytopes
plays an important role in their study.

A polytope K is said to be regular if T'(K) is transitive on the flags of
KC. Some classes of non-regular polytopes have been studied, however we will
only work with regular polytopes.

The following proposition, which follows from flag connectivity, shows an
equivalence of regularity for polytopes (see [14] Chapter 2B).
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Proposition 2.1.2 The following statements are equivalent for an abstract
d-polytope K.

o [C is regular.

e For some flag [ and for each i € {0,...,d — 1} there is an involutory
automorphism ¢ such that ¢(f) = f*.

Fort=0...,d — 1 we denote the element ¢ defined in Proposition 2.1.2
by pi. Every regular polytope K satisfies that I'(K) = (po, . . ., pa_1) with the
additional relations (p;p;)? = ¢ for |i — j| > 2, and the so-called intersection
property. This motivates the following definition (see [14] Chapter 2B).

Definition 2.1.3 A string C-group s a group generated by involutions py,
..y Pd—1, Such that the generators satisfy

o (pips)* =c ifli—jl=2
o (prlkel)n{p|keJ) = (px|ke€InNJ) (intersection property).

It is also true that every string C-group is the automorphism group of
a regular polytope. The proof of this statement can be found in [14] Chap-
ter 2E. This establishes a one-to-one correspondence between the regular
polytopes and the string C-groups. It implies that any definition, result or
example for I'(K) has an equivalent definition, result or example respectively
for K. In the present work we will mostly work with the automorphism
groups of polytopes rather than with the polytope itself.

The next proposition gives us a useful way to determine that a group
generated by involutions with the suitable commutativity relations satisfies
the intersection property (see [14] Chapter 2E).

Proposition 2.1.4 Let T' = {(pg,...,po_1) be a group such that pi = ¢ for
all k, and (p;pj)* =€ for i — j| > 2. If {po,...,pn—2) is a string C-group,
and

<p07 SR pn—2> N <pk7 s 7pn—1> = <pk7 s 7pn—2>

fork=1,...,n—1, then T is also a string C-group.

The sections between two incident faces of ranks ¢ —1 and 42 of a regular
polytope K are isomorphic to p;-gons, that are determined by the relations
(pi—1pi)?* = €. The number p; then indicates how many i-faces (or i+ 1-faces)
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are glued together around an ¢ — 1-face inside a single ¢ + 2-face. We say that
the Schldfli type or Schldfli symbol of the polytope is {p1, ..., ps—1}
If p; = 2 then the automorphism group is the direct product

<p07 B 7pj—1> X <pj s 7pd—1>7

and for many purposes it suffices to analyze the polytopes with automorphism
groups (po, ..., pj—1) and (p;..., ps—1). In general we will assume that no
entry of the Schlafli symbol is 2.

It is easy to see that the dual of a regular polytope I with Schlafli type
{p1,-..,pa-1} is a regular polytope with Schlafli type {pg_1,...,p1}.

Whenever Aut(KC) = (po, ..., pa_1) is the group determined only by the
relations (p;ip;)? = ¢ for |i — j| > 2, and (p;—1p:)P" = €, we denote K simply
by {p1,...,pa—1}. The automorphism group of any other polytope with the
same Schlafli symbol will have extra generating relations. An exponent n in
an entry of the Schlafli symbol indicates n equal entries in it, for example,
the polytopes

{3"} and {4,3"" '} (2.1)

have n entries in their Schlafli symbols, all of them equal to 3 except the 4 in
the first entry of the second polytope. The polytopes in (2.1) are respectively
the n + 1-simplex and the n 4+ 1-cube.

The even subgroup of a group I' = (g1,...,gs) is the subgroup of the
words of even length in terms of the generators g;’s

F+:<gigj|i,j€{1,...,s}).

It is clear that this is a subgroup of index at most two, but in some cases it
is the whole group I'.

For each n € N there exists one and only one abstract regular polygon
with Schlafli symbol {n}. This is the regular n-gon {n} and has all the
combinatorial properties of the regular convex n-gon in the plane.

The platonic solids are examples of regular polyhedra. Modifying the
shape of the edges and faces they can be embedded on the sphere in such a
way that the i-faces are mapped onto i-cells and the group of isometries of the
sphere preserving the embedding is isomorphic to the automorphism group
of the corresponding polyhedron. This idea is generalized for any compact
surface without boundary in the following way.

An embedding of a connected (multi)graph G into a compact surface
without boundary S'is called a map on S when the components of S\ G are
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topological open disks. The vertex and edge sets of the map are the vertex
and edge set of G, while the faces of the map are the closure of the 2-cells
in S\ G. A flag of a map is a triple including a vertex, an edge including
it, and a face including the edge. We say that a map is regular if the group
of homeomorphisms of the surface preserving the embedding is transitive on
the flags (these are sometimes called reflexive maps as in M. Conder [2]).

There is an injection from the set of abstract regular polyhedra to the set
of regular maps on a compact surface without boundary in such a way that
the partial order of the polyhedron is represented by the contention relation
in the set of vertices, edges and faces of the corresponding map (see [14]
Chapter 6B). We say that a polyhedron is orientable if its corresponding map
is embedded on an orientable surface. The even subgroup of an orientable
polyhedron K has index 2 in I'(K), and if K is non-orientable then the even
subgroup of I'(K) is again I'(K). The genus of a polyhedron is defined as the
genus of the surface where its corresponding map is embedded. Note that
the genus of a polyhedron K can be derived from the Euler characteristic in
the following way.

(K) = (2 —x(K))/2 if K is orientable,
I = 1= X(K) if K is non-orientable,

where g(K) denotes the genus of K and x(K) denotes the Euler characteristic
of the surface where we embed the map corresponding to K. We recall that
the Euler characteristic can be computed by x(K) = v+ f — e where v is the
number of vertices, f the number of faces and e the number of edges of
See [2] for further details about these concepts.

A map is said to be a polyhedral map if the partial order associated to it
induces a polyhedron.

Example 2.1.5 The cube, octahedron, dodecahedron and icosahedron in R3
are simmetric with respect to the origin. If we identify antipodal points in the
embedding of them in the sphere we get new maps on the projective plane. The
corresponding non-orientable polyhedra are called hemicube, hemioctahedron,
hemidodecahedron and hemiicosahedron. Figure 2.1 shows the corresponding
maps of the hemicube and the hemioctahedron.

Example 2.1.6 The n-cube and the n-cross polytope are convex reqular poly-
topes in R™ for every n > 3. They have symmetry with respect to the origin.
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Figure 2.1: Maps of the hemicube and the hemioctahedron on the projective
plane

Figure 2.2: The toroids {4,4}2,0) and {4, 4} (2,9

Hence we can construct the n-hemicube and the n-hemicross polytope in a
way analogous to that described in Example 2.1.5.

Example 2.1.7 Starting with the tesselation by squares of the plane and
taking quotient by two orthogonal vectors of the same length in such a way
that they are paralel to the edges of the squares or to their diagonals we
obtain the regular toroidal maps of types {4,4}u0) and {4,4} . They are
reqular polyhedral maps for t > 2. Figure 2.2 shows the maps corresponding
to {4,4}2,0) and {4,4}2,2). The subscript indicates one of the ortogonal
vectors.

Example 2.1.8 The great dodecahedron has the vertex and edge sets of the
tcosahedron as vertex and edge sets, while its faces are the reqular convex
pentagons determined by the five vertices surrounded any vertexr of it (see
figure 2.83). The great dodecahedron has 12 vertices, 30 edges and 12 faces. It
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Figure 2.3: The great dodecahedron

can be proved that it lays on an orientable surface. By the Euler characteristic
we know that its corresponding map lays on an orientable surface of genus 4

(see [2]).

2.2 Flat Amalgamation Property

Some polytopes can be “folded” into one of its i-faces in such a way that each
j-face is sent into a j-face for all j < i. For example, the square (actually
any 2p-gon) for i = 1,

OSSO

the toroid {4,4} 0 for i =1,

TN

N

and the octahedron for 7 = 2
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can be “folded” into its i-face in the way the figures show.

However there is no way of “folding” a cube into one square in the way
described above.

This motivates the definition of the flat amalgamation property (FAP).
We say that the square and the toroid {4, 4} ) satisfy the FAP with respect
to their 1-faces (a line segment), and the octahedron satisfies the FAP with
respect to its 2-faces.

Before giving the formal definition of FAP we introduce some concepts
and results.

Notation 2.2.1 Given a regular polytope K we denote the normal closure
of {pks-- -, pa—1} as

Ny (K) =N = (¢ pid|i > k, ¢ € T(K)).
and dually, the normal closure of {po,...,pr} as
N (K) = Ny = (¢ pigp | i < b, ¢ € T(K)).
In [14] Chapter 4E they prove the following result.

Lemma 2.2.2 Let N, and N, be as previously described. Then, for 0 <
kE<d—1,

a) Ny = (¢ 'pid|i <k, ¢ € {pry1,-- -, pa-1)),

b) N = (o7 pid|i >k, 0 € {po, ..., p-1)),

¢) D(K) = Ny (prt1y -5 Pa1) = (Prr1y - -5 pa-1) Ny,
d) T(K) = N (po, -, pr—1) = (pos - - s pr—1) N},

Definition 2.2.3 We say that a reqular polytope K satisfies the flat amalga-
mation property (FAP) with respect to its k-faces if the products in Lemma
2.2.2 d) are semi-direct. It satisfies the FAP with respect to the co-k-faces
if the products in Lemma 2.2.2 c¢) are semi-direct. This is the DAP in [23].
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The next proposition gives an equivalence of the FAP (see [14] Chapter
4E).

Proposition 2.2.4 Let K be the reqular polytope with automorphism group
presentation I'(K) = (po, . . ., pa—1| R), where R is a set of defining relations
i terms of po, ..., Pd—1-

The polytope IC has the FAP with respect to its k-faces if and only if
(Poy- -y pa—1|Rand p; =€ fori > k) is a group presentation of the auto-
morphism group of the k-faces. Dually, the polytope IC has the FAP with
respect to its co-k-faces if and only if (po,...,pi—1|R and p; = ¢ fori < k)
1S a group presentation of the automorphism group of the co-k-faces.

For example, a group presentation for the automorphism groups of the
square, toroid {4,4} 2,0 and the octahedron are

L{4}) = po,p1 | pg=0i=(pop)* =),
F({474}(2,0)) = <P0;P1;P2 ‘ P(Q) = P% = P% =
(pop1)* = (p1p2)* = (pop2)® = (poprp2pn)? = ),
=c

F({3>4}) = <p0,P1,P2 \ P(Q) = P% = P% = (ﬂoP1)3 = (Plp2)4 = (POP2)2 >

respectively. It is easy to see that if we add the additional relation p; = ¢
to the automorphism groups of the square, and the relations p; = py = € to
the automorphism group of the toroid {4,4} ) we get the automorphism
group of the 1-faces (an edge with group (pg | p3 = ¢)), while if we add the
additional relation p; = ¢ to the automorphism group of the octahedron we
get the automorphism group of the 2-faces (triangles with group (po, p1 | p3 =
Pt = (pop1)® = €)).

On the other hand, if we add to the automorphism group of the cube
given by

(po, p1, 02| P2 = p2 = P2 = (pop1)* = (p1p2)® = (pop2)? =€)

the additional relation ps = ¢ the group collapses into the automorphism
group of its 1-face (a line segment). However, the cube has the FAP with
respect to its vertex figures (this is the dual statement to the octahedron
satisfying the FAP with respect to its faces), and it can be checked adding
the relation py = ¢ and obtaining the automorphism group of the triangle
with generators p; and ps rather than py and p;.

For further details about the FAP see [14] Chapter 4.
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2.3 Mixing Operations

Some regular polytopes are related to others. For example, the dual of a
polytope can always be obtained by reversing the partial order of the original
polytope. Another example is the great dodecahedron, that can be obtained
from the icosahedron in the way described in Section 2.1 (see Example 2.1.8).
This motivates the definition of mixing operations of regular polytopes.

Definition 2.3.1 Let K be a reqular polytope with automorphism group T'(K) =
(poy ..., pa—1). A mixing operation p is a choice of new generators og, ..., 0m—1
of a subgroup A of T'(KC) in terms of po, ..., pa—1 and it is denoted by

K (p07 s 7;0d—1) = (007 s '7O-m—1)'

We are interested in the cases where A is a string C-group in terms of
the generators oy, ...,0,_1 so we will assume that the o¢;’s are involutions
such that (0;0;)? = ¢ if |i — j| > 2.

The mixing operations below will be used in this work. Unfortunately,
among these mixing operations, only the dual operation guarantees that we
obtain a polytope. For an example of two polytopes such that their mix is
not a polytope see [14] Chapter 7A, and for an example of a polytope such
that its petrial is not a polytope see [14] Chapter 7B.

2.3.1 Dual operation
The dual K£* of a polytope K can be obtained by the dual operation
6:(po,--spa-1) = (Pa-1,---pP0)-

It can be proved easily using the correspondence between string C-groups
and regular polytopes that the dual of a regular polytope as a poset is the
same that the one obtained by the mixing operation 9.

2.3.2 Petrie operation

This involutory operation can be applied only to polyhedra and is defined by

T (P07P1702) = (p0p27p17p2)‘
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Figure 2.4: Petrie polygons

If we obtain a polyhedron by applying this operation to the polytope K,
the new polyhedron is known as the petrial of K and I'(K) = I'(7(K)). The
faces are the so-called petrie polygons of K. This are zigzags such that any
two consecutive edges are in the same face (of ), but any three consecutive
edges are not in the same face. For example, in the toroid {4,4} s ) of Figure
2.4 two petrie polygons appear, one of them in red and the other in blue.

The following lemma shows how the dual and petrie operations interact
(see [14] Chapter 7B).

Lemma 2.3.2 The mizing operation dm has order 3, that is, (67)3(K) = K
for any regular polytope K.

A consequence of Lemma 2.3.2 is that the families of polyhedra generated
by the dual and petrie operations starting with a polyhedron K contain in
general six polyhedra. They contain three polyhedra if K is self-dual or self-
petrial, and one polyhedron if K is self-dual and self-petrial. See Section 4.2
for examples.

Example 2.3.3 The tetrahedron is a self-dual polyhedron. Its petrial is iso-
morphic to the hemicube, and the dual of the hemicube is the hemioctahedron.
It can be seen from Figure 2.1 that the hemioctahedron is a self-petrie poly-
hedron. Hence the family of the tetrahedron obtained by duality and petrials
includes only the three polyhedra mentioned here.

2.3.3 Facetting operation

Similarly to the petrie operation, the k-th facetting operation can be applied
only to polyhedra, and it consists in replacing the faces of a polyhedron with
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its so-called k-holes. A k-hole of a polyhedron K is a sequence of vertices
and edges such that between two consecutive edges there are kK — 1 edges in
the polyhedral map associated to KC. The k-th facetting operation is formally
defined by

en (o, p1, p2) — (po, pr(p2p1) ™, pa).

Example 2.3.4 The great dodecahedron is obtained by applying the 2-facetting
operation to the icosahedron.

It is clear that ¢1(K) = K. Moreover, if K is a polyhedron with Schlafli
type {p, ¢}, then ¢ (K) = ¢, (K), and if k = ¢/2 then ¢, (K) is a polyhedron
of type {r,2}. In the following we consider ¢, only for 2 < k < [(¢ —1)/2].

Given k and a polyhedron I with Schléfli type {p, ¢} such that the highest
common divisor (¢,k) = 1, we have that I'(KC) = [(pr(K)). If (¢, k) >
1 then the polyhedron ¢ (K) might have, as vertex and edge sets, proper
subsets of the vertex and edge sets of K. In this case the k-holes of K
form a disconnected partially ordered set and ¢ (K) is only one connected
component of it. This reduces the automorphism group. In Section 4.2 we
show an example where I'(KC) = T'(¢x(K)) with (¢, k) = 2.

Of particular interest is the composition of the petrie and facetting oper-
ations (see [14] Chapter 7B).

Lemma 2.3.5 The petrie and the k-facetting operation commute for all k.

The faces of the polyhedron ¢, 7(K) are the so-called k-zigzags. They can
be seen as k-holes such that, in each vertex, the local orientation used to skip
k — 1 edges changes.

2.3.4 Mix of two polytopes

The miz operation is related to the concept of blending, used in realizations of
polytopes (see [14] Chapters 5A and 7A). The idea is to construct a polytope
such that two different projections (quotients) of it are isomorphic to two
given polytopes K and P. However it is a purely combinatorial operation.
We define it in terms of its automorphism group. For a definition as a mixing
operation see [14] Chapter TA.

Let m > n, and let I'(K) = (po,...,pn—1) and I'(P) = (0¢,...,0m-1)
be the automorphism groups of the polytopes K and P. We consider the
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subgroup A of I'(KC) x I'(P) generated by o, ..., Tm_1 where 7, = (p;, 0;) (we
define p; = ¢ if i > n —1). If A is a string C-group with respect to the
generators 7, ..., Tm_1, then the regular polytope Q associated to it is said
to be the miz of I and P, denoted by KOP.

The following results talk about certain cases when we know that the mix
of two polytopes is a polytope (see [14] Chapter 7A).

Remark 2.3.6 For every reqular polytope IC, the mix KCOKC is isomorphic to
K.

Theorem 2.3.7 Let IC be a regular polytope and P be the polytope of rank
1 (that is, an edge). Then T'(KCOP) = T'(K) if the 1-skeleton of K (graph
with vertez and edge sets equal to those or K) is a bipartite graph; otherwise

L(KOP) 2 T(K) x Zs.

For further details about these mixing operations see [14] Chapter 7.






Chapter 3

CPR Graphs

In this chapter we introduce the concept of CPR graphs as well as many
results about them that are necessary for the main results in the remaining
chapters of this work.

3.1 Definitions

The term “CPR” graph comes from “C-group Permutation Representation”
graph and is explained next.

Given a d-polytope K we can embed its automorphism group I'(K) on
a symmetric group S,. Since the generators of I'(K) are involutions, their
images under the embedding are also involutions, or equivalently, products
of disjoint transpositions in S,,.

Now we can construct a (multi)graph G' (we allow multiple edges but not
loops) with a labeling on its edges representing the (generators of the) group
['(K) by defining the vertex set

V(G) =A{v1,...,u.}

and allowing an edge of label k between the vertices v; and v; if and only if
the image under the embedding of p; interchanges ¢ and j.

Since we are going to use graphs labeled only on the edges we will refer
to them simply as “labeled graphs”, and if the label set has d elements we
will refer to them as “d-labeled graphs”.

Definition 3.1.1 Let K be a d-polytope, and w be an embedding of T'(KC) in
Sy, for some n. The CPR graph G of K given by 7 is a d-labeled (multi)graph

17
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Figure 3.1: Tetrahedron

with vertex set V(G) = {1,...,n} and suth that there is an edge of label k
between the vertices i and j if and only if (wpy)i = j.

The loops make no contribution in the representation, so they will be
ignored.

A CPR graph G is a way of encoding the information of the automorphism
group I'(K) in G. Moreover we can recover I'(K) from G as a group of
permutations on V(G) by taking the group generated by the permutations
pr’s, where py is obtained by the product of the transpositions of each pair
of vertices with an edge of label k£ between them.

Remark 3.1.2 The edges of each color in any CPR graph of a polytope form
a matching (set of edges such that no two of them are incident to the same
vertex).

Proof

Since pj, is an involution, it follows that (mp;)* = Id and each connected
component of the subgraph induced by the edges of label k£ has at most two
vertices.

O

Example 3.1.3 The tetrahedron’s group is Sy, and can be seen as the group
of the permutations of its vertices (or faces). If we label the vertices 1,2,3,4,
and we consider the base flag to be the one containing the vertex 1, the edge
12 and the face 123, the canonical generators of Sy will be

(po, 1, p2) = ((12),(23), (34));

and the CPR graph given by the natural embedding described above will be
the one of Figure (3.1).

When working with CPR graphs of polyhedra, the color black will corre-
spond to level 0, the color red to level 1, and the color blue to label 2.
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In some cases, the embedding 7 is not relevant, so we will say only “a
CPR graph of the polytope K.

In general, there is not a unique representation of the group of a polytope
as a permutation group, so each polytope has a family of graphs associated
to it. We mention some examples.

Example 3.1.4 The tetrahedron’s group can be embedded in Sg, Ss, S12 and
Say in the ways shown in Figure (3.2).

Example 3.1.5 If I'(K) acts faithfully on K;, then it can be embedded in
S, where m is the number of j-faces of IC. In this case, the graph will be
called the j-face CPR graph of K. Figure 3.1 shows the vertex (and facet)
CPR graph of the tetrahedron, while Figure 3.2 A shows the edge CPR graph
of the same polyhedron.

Example 3.1.6 If we consider T'(KC) as a group of permutations on the flags
of K, then the CPR graph obtained will be the Cayley graph of T'(KC) (see
Appendiz B) with generators {po,...,pi-1}. In [26] Vince calls this graph
“the combinatorial map of the reqular polytopes”.

A similar notion of a permutation group given by the action on the flags
of a polytope determined by the i-adjacency of flags, has been used for non-
regular polytopes by M. Hartley in [7] and [8], and by Hubard, Orbanic and
Weiss in [11]. This group is called the monodromy group and for regular
polytopes it is isomorphic to the automorphism group.

From now on, we will use the following notation.

d—1 will be a d-labeled graph with colors O,...,d — 1.

.....

_____ a—1 and a subset I = {iy,..., iy} of {0,...,d— 1},
i Will be the spanning subgraph (with all the vertices of G)
including only the edges of labels i € I.

e Given a graph Gy

3.2 Action of Groups on the CPR Graphs

An embedding of a group into a symmetric group .S,, may be seen as an action
of the group on the set {1,...,n}. The action will be faithful (in the sense
that two different elements of the group act in a different way on {1,...,n})
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Figure 3.2: Tetrahedron CPR-graphs
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Figure 3.3: Connected components of G; ;

if and only if the embedding is injective. In this setting, a CPR graph G of
the polytope K also represents a faithful action of I'(KC) on the vertex set of
G. Now we proceed to the formal definition.

The following results give information about the CPR graphs of a given
polytope, as well as information of any polytope given one of its CPR graphs,
in terms of the action of the automorphism group of the polytope on the
vertex set of the graph.

Proposition 3.2.1 Let G = Gy, 4-1 be a CPR graph of a polytope K. Then,
every connected component of G; j with |i — j| > 2 is either a single vertex,
a single edge, a double edge, or an alternating square (see Figure 3.3).

Proof

The set of edges of G, ; is the union of two matchings so its connected compo-
nents are either alternating paths (including single vertices), or alternating
cycles (including double edges).

The single vertices correspond to fixed points of both, p; and p;; the paths
of length 1 correspond to vertices interchanged by one generator and fixed
by the other; the double edges correspond to vertices interchanged by both
generators; and the alternating squares correspond to 4 vertices such that p;
and p; act in them like Zy x Zs.

It is easy to see that an alternating path of length at least 2, or an
alternating cycle of length greater than 4 correspond to the action of non-
commutative involutions. Slnce p; and p; commute for |i — j| > 2, the proof

is complete.
O
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Figure 3.4: Central Involution

Corollary 3.2.2 If Gy, 4-1 s a CPR graph of a polytope K of Schldfii type
{p1,--..pa-1}, then Gi_1,; has at least one alternating path of length at least
2, or one alternating cycle of length greater than 4 as a connected component
for every i such that p; > 2.

The central involutions (proper involutions in the automorphism group
that fix no vertex of the polytope and commute with every element in the
group) play an important role in the polytope theory. The following result
relates them to the CPR graphs.

Proposition 3.2.3 A central involution in the automorphism group of a
polytope can be seen in any of its CPR graphs G = Gy, q—1 as a perfect
matching (matching such that each vertex of the graph has an edge of the
matching inciding to it) E in some of its connected components such that the
connected components of the spanning subgraph of G containing E and the
edges of each color satisfies the conditions of Proposition 3.2.1.

Proof

If a central involution ¢ has a fixed vertex on a connected component of a
CPR graph, then, by conjugacy, every vertex of that connected component
is fixed by ¢, and that involution acts like € in that component. Hence any
central involution can be seen as a perfect matching in some connected com-
ponents of the CPR graphs. The commutativity with every element of the
group can be seen in the generators, so it is enough to check the conditions
described in Proposition 3.2.1 in the spanning subgraphs determined by E

and each of the generators p;’s.
O

However, such a matching in a CPR graph does not guarantee a central
involution in the automorphism group of the polytope. It is also necessary to
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prove that the corresponding permutation of the vertices of the CPR graph
can be generated by po, ..., ps—1. For example, in the edges CPR graph of
the hemicube we can draw a matching E with the commutativity properties
(see Figure 3.4), but the hemicube does not have central involutions. Thus,
E cannot be generated by pg, p1 and ps.

The automorphism group of a CPR graph G as an edge-labeled graph
may be trivial. As an example, the one in Figure 3.1 is, even though the
automorphism group of the tetrahedron is not. The following results relate
the automorphism group of a polytope with the automorphism group of its
CPR graphs as labeled graphs.

Lemma 3.2.4 Let G be a CPR graph of a polytope IC, let A be any group of
automorphisms of G as a labeled graph, and let O, be the orbit under A for
each vertex v. Then, the group

N={pcI'(K)|p(v) € O, for allv e V(G)}
is a normal subgroup of T'(KC).

Proof

First note that, if A € A(G) then for all v € V and for all 4, A maps the edge
{v, pi(v)} with label i onto the edge {A(v), Ap;(v)} with label . This implies
that Ap;(v) = piA(v).

Let ¢ € N. Given a vertex v, ¢p;(v) = Api(v) = piAy(v) for some
X € A(G). Then p;pp;(v) = A\y(v) € O,. Since p;Np; = N for all i, N is a
normal subgroup of T'(KC).

0

Proposition 3.2.5 Let G, K, A and N be as in lemma 3.2.4, let G’ be the
graph satisfying

V(G ={0,:veV(G)},
and 0,0, is an edge labeled i of G if v'w' is an edge labeled i of G for some
v €O, and w' € O. If G' is a CPR graph of a polytope K', then K’ is the
quotient of IC determined by the subgroup N of T'(K).

Proof
First note that the group I'(KC) = (po, ..., ps—1) acts on G’ in the following
way,

¢(Ov) = O¢(U)'
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Figure 3.5: facet CPR graphs of cube and triangle

In particular, the involution p} represented by the edges of label j on K’
acts as p;, so we have the epimorphism from I'(XC) into I'(K’) defined in the
generators by p; — p. Now, by definition,

N = Nyev(cr) Sty
where St, is the stabilizer of v, but this is the kernel of the morphism. Hence,
I'K')=T(K)/N.

Since this isomorphism maps p; to pf, I'(K)/N = {(pp, ..., pa—1) is the string
C-group describing K'.
O

Note that the generators in N (if any) vanish so the quotient may be a
polytope of rank less than the one of K. For example, the 2-face CPR graph
of the cube shows that the triangle is a quotient of the cube (see Figure 3.5).
In Chapter 5 another example of this occurs.

Proposition 3.2.5 does not guarantee proper quotients of a polytope given
a CPR graph with nontrivial automorphism group as a labeled graph. The
subgroup N plays an important role, and it may be trivial even for CPR
graphs with nontrivial automorphism groups as labeled graphs. For example,
the edge CPR graph of the hemidodecahedron (see Figure 3.6) has automor-
phism group isomorphic to Zs, but in this case, N = {¢} and G’ is another
CPR graph of the same polyhedron.

Now we will describe the way in which the group (p;, p;+1) acts in each
connected component of G, ;1. We recall that (p;, p;11) is isomorphic to the
dihedral group D where p;.; is the (i+1)-th entry of the Schlafly symbol
of T'(K).

Dit+1)
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Figure 3.6: hemidodecaedron CPR graphs

Let C' be a connected component of G;,;;. If C'is a path, then it is
easy to see that (p;, pi11) acts as isometries (rotations and reflexions) of the
polygon formed as Figure 3.7 shows. The element (p;p;41)* acts as the k-th
power of the rotation by an angle of 2w /m where m is the number of vertices
of the polygon (or the number of vertices of C); and the element (p;p;+1)*p;
acts as the composition of the reflection determined by p; and the rotation
determined by (pip;+1)*. Note that n divides p;;.

If C is a cycle of length 2s > 4, then, the element (p;p;11)* acts like
rotations by 2kw/s and —2kw /s respectively on the two polygons formed by
alternating the cycle’s vertices, as Figure 3.8 shows. The element (p;p;11)"p;
acts like the composition of p; and the rotations given by (p;pi1)¥, that is,
like a rotation of the s-gons along the 2s-gon such that it interchanges both
polygons. Now s divides p; 1.

Since this action is used several times in this work we introduce the fol-
lowing definition.

Definition 3.2.6 Let G be a CPR graph. The action of ¢ € {pi, pi+1) in
any connected component of G; ;1 described in Figures 3.7 and 3.8 will be
called the polygonal action of ¢.

From the polygonal action of the elements in (p;, piy1), it follows that
each connected component of GG; ;41 represented by a path with m vertices,
or by a cycle with 2m vertices, induces a group isomorphic to D,,. Since the
automorphisms represented in G;;;1 generate a group isomorphic to D,,,,
it follows that p;; is the least common multiple of the number of vertices
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Figure 3.7: D,, acts in the polygon

6 7 6

Figure 3.8: D, acts in both squares
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Figure 3.9: {20, 12}

of its path components and the halves of the number of vertices of its cycle
components. This fact allows us to know the Schlafli type of a polytope
given any of its CPR graphs, for example, the Schlafli type of the graph in
the picture 3.9 (we will prove in Chapter 4 that it is indeed a CPR graph) is
{20,12}.

As we have seen, the elements of (p;, piy1) of the form (pipsis1)* act
differently on the connected components of G;;;; than those of the form
(pipi+1)*ps;. We introduce the next definition.

Definition 3.2.7 An element ¢ of {p;, piy1) of the form (pipiy1)* will be
called p;p;11-even, and the remaining will be called p;p;11-odd.

Remark 3.2.8 The set of p;pir1-even elements {p;, pi+1) form the even sub-
group of (pi, pi+1)-

Remark 3.2.9 The polygonal action of a p;pir1-even (pipir1-odd) element
¢ € (pi, piy1) n any connected component of G, ;11 is totally determined by
its action on one of its vertex.
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Note that the p;p;1-even elements are those of the rotation group in the
polygonal action of the elements of (p;, p;+1) in the path connected compo-
nents of G;;11, while the p;p;1-odd elements are those of the reflexions.

Remark 3.2.10 Let G be a CPR graph, ¢ € (pi, piv1) \ {€} be p;piy1-even
and let C' be a connected component of G, ;11 where ¢ does not act like ¢,
then ¢(v) # v for every vertez v of C' (in other words, ¢ does not have fized
points in the components where it does not act like identity).

Proof
It is easy to see from Figures 3.7 and 3.8 that the even permutations are non-
trivial powers of rotations in the polygonal action of (p;, piy11), hence they

have no fixed points if they are distinct from e.
O

Lemma 3.2.11 Let C be a connected component of G; ;1 with at least three
vertices, and let ¢ € (pi, piy1) such that ¢ = (pi)jc. Then ¢ is pipiy1-odd.

Proof
The polygonal action of a p;p;1-even element of (p;, p;41) is the same than

the polygonal action of p; in at most two vertices.
O

Given a graph G = Gy, 41, it is hard to say if the intersection property
holds for the generators represented by the edges of each color. We will show
some results for d = 3 and connected CPR graphs in chapter 4. In general
we prove it in a case by case way.

3.3 Connected CPR Graphs

We can construct disconnected CPR graphs for any polytope, for example,
two copies of one of its connected CPR graphs. Actually, if G is a discon-
nected CPR graph for P with components C4,...,C,,, and C; is a CPR
graph of a polytope D;, then P is the mix P = D;0D50 ... OD,, (see Chap-
ter 2). In this section we will show that they also have several connected
CPR graphs (and which ones).
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Figure 3.10:

A CPR graph of a given polytope, with the smallest number of vertices,
can be either connected or disconnected. For example, the square’s smallest
CPR graph is connected (a path of length 3, see Figure 3.10 A) while the
hexagon’s smallest CPR graph is the disjoint union of two paths of lengths 1
and 2 respectively (see Figure 3.10 B). From the automorphism groups and
the polygonal action we can see that no disconnected graph with four or less
vertices will be the CPR graph of the square, and no connected graph with
five or less vertices will be the CPR graph of the hexagon.

Examples 3.1.5 and 3.1.6 show some connected CPR graphs of any poly-
tope.

The following results link the connected CPR graphs of a polytope K
with the structure as a group of I'(K).

Proposition 3.3.1 Any connected CPR graph G = Gy q—1 with s vertices
of a polytope KC can be constructed by the embedding of T'(K) into the sym-
metric group Sg, where B ={By,..., Bs} and B; is a suitable set of flags of
IC such that

a) UBi 15 the set of flags of the polyhedron,

c) Foranyi € {0,...,d—1} andj € {1,...,s} there exists k € {1,...,s}
such that p;(C;) = C.

Proof
Let f be the base flag of K, uy be a vertex of the graph, and H be the
stabilizer of ug. Then H < I'(K).
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Now we associate H(f) to ug, and, for a vertex v of G such that ¥ (ug) = v,
we associate ¢ H (f) to v (actually, we are making I'(KC) act on the left cosets
of H). Lemma A.1.1 implies that ['(K) acts faithfully on these sets of flags,
and that the graph constructed by them is the original graph G.

Items a) and b) are consequence of the construction with the cosets ¢ H,
and c¢) is consequence of the action of I'(KC) on these cosets.

0

Proposition 3.3.2 Let H be a subgroup of the automorphism group T'(K)
of a polytope K such that H does not contain as a subgroup any normal
subgroup of T'(K) distinct from {e}. Then, H determines a connected CPR
graph for K. Conversely, we can associate such a subgroup to any connected
CPR graph G of K.

Proof

To prove the first part of this proposition let I'(K) act on the cosets of H
as in the proof of proposition 3.3.1. Then we construct a graph Gy whose
vertices are the cosets of H and the edges are determined by the action of
the generators of I'(K). This graph will be a CPR graph for K if and only
if I'(K) can be recovered from its action on the left cosets of H in I'(K); in
other words, if and only if I'(P) acts faithfully on the set of these left cosets.
This part of the proof is implied by the purely algebraic and general Lemmas
A.1.1 and A.1.2.

The converse of the proposition is a consequence of proposition 3.3.1. It
remains to prove that the subgroup H does not have as a subgroup any nor-
mal subgroup of I'(K) different from {Id}, but this follows from the fact that
the stabilizer of any vertex v of G is ¢H ¢!, where H is the stabilizer of a
fixed vertex wg, and ¢(ug) = v. If W < H is a normal subgroup of I'(K),
then W stabilizes all the vertices of G, but this implies that W = {e}.

O

Propositions 3.2.5 and 3.3.2 imply the following result.

Corollary 3.3.3 Any connected CPR graph of a polytope K is a quotient in
the sense of Proposition 3.2.5 of the Cayley CPR graph of K.

As a consequence of proposition 3.3.2 and the net of subgroups of Sy, we
have that all the connected graphs for the tetrahedron are those in Figures
3.1 and 3.2
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3.4 Mixing Operations

In this section we explain how to work with the mixing operations using CPR
graphs.

Let GG be a CPR graph of the polytope P, and £ a mixing operation given
by

(Poy - -y Pa—1) > (00s -+ Om—1).

Assume that P¢ is a polytope Q. Then we can construct a CPR graph G’
for @ in the following way. Let G’ have the same vertex set than G and
add an edge of color j between the vertices v and v whenever o;(u) = v,
j=0,...,m—1 (recall the action of I'(P) on the vertices of G).

Example 3.4.1 Given a CPR graph Gy 41 of the polytope P, a CPR graph
for its dual P* is G4_1.. p.

-----

Example 3.4.2 To construct a graph of the petrial of a polyhedron P with
CPR graph Gg 12, we only have to interchange some components of Gy in
the following way:

e Those edges with color 2 will have now double edges of colors 0 and 2.
e The double edges will change into a single edge of color 2.

o The squares will remain being squares, but their edges of color O will be
replaced by the diagonals of the old squares.

In Figure 3.11 we show an example of how the dual and petrie operation
work in the CPR graphs.
We recall that the k-facetting operation is defined by

(p07p17p2) = (Poa (P1P2)k,01,,02)7

therefore to construct a CPR graph for the k-facetting operation ¢x(P) from
a CPR graph G of the polyhedron P we only have to change the edges of
color 1 of GG to suitable ones. The following example illustrates the case
k= 2.

Example 3.4.3 The 2-facetting operation applied to the icosahedron gives
the great dodecahedron. The first graph in Figure 3.12 is the vertex CPR
graph of the icosahedron, while the remaining graphs are isomorphic to the
vertex (face) CPR graph of the great dodecahedron. They were obtained from
the first one by deleting the red edges and adding a red edge between two
vertices u and v if p1pap1(u) = v.



32 CHAPTER 3. CPR GRAPHS
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Figure 3.11: Dual and petrie operation
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Figure 3.12: Facetting operation
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3.5 Finding the automorphism group

In general it is hard to determine I'(KC) (or even |['(K)|) given a CPR graph
IC of a polytope K. However there are cases where something can be said
about it. In this section we discuss some ways to determine subgroups of the
automorphism group, or the automorphism group itself, of some polytopes
given CPR graphs of them.

Lemmas A.2.3 and A.2.1 determine that an alternating or symmetric
group is a subgroup of the automorphism group. They are used in CPR
graphs where we are able to get a transposition or a 3-cycle from the gener-
ators of the automorphism group.

Lemma 3.2.4 gives a (normal) subgroup N of the automorphism group
of a polytope K given a CPR graph with nontrivial automorphism group as
labeled graph. This is a usefull chriteria to determine that the automorphism
group of a polytope with such a graph G is isomorphic to neither the alter-
nating group nor to the simmetric group on the vertex set of G. Sometimes
we are able to find a subgroup M < K such that I'(K) = M N (or NM). In
this cases I'(K) =2 M x N, with the action of M on N determined by the
permutation of the orbits O, induced by M. In chapter 5 an example of this
appears.

The next proposition is also used several times in the rest of this work.

Proposition 3.5.1 Let G be a CPR graph of a polytope KC such that V(G)
can be divided in two sets U and V satisfying that

o The edges of one color i form a perfect matching between U and V', and

e the edges of any color j # 1 join either two vertices on U or two vertices
onV.

Then T'(KC) = (p;) x A where A is a subgroup of Sy x Sy, and p; acts on A
by interchanging the first and second entries of the elements.

Proof

Note that if ¢ € I'(K) maps a vertex in U into a vertex in U, then ¢ preserves
the sets U and V; while if ¢ maps a vertex in U into a vertex in V, then it
interchanges both sets. Let A < I'(K) be the subgroup preserving the sets
U and V' (or abusing notation, let A = T'(K) N (Sy x Sy)). Clearly A has
index 2 in I'(K), therefore A <T'(K). Finally, since p; ¢ A it follows that
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Figure 3.13: CPR graph of the square

['(K) = (p;) x A. Since p; interchanges the sets U and V, p; acts on A in the
expected way.

l

Example 3.5.2 Figure 3.13 shows the vertex CPR graph of the square. This
graph satisfies the conditions of Proposition 3.5.1 with i = 0; and p; induces
the symmetric group on V', while pop1po induces the symmetric group on U.
Hence, the automorphism group of the square is isomorphic to

Sy X (S2 % Sa) = (po) X ({p1) X {pop1p0))-



Chapter 4

CPR Graphs of Polyhedra

Given a natural number n, the only connected CPR graphs of the polygon
{n} are its Cayley graph (an alternating 2n-gon) and an alternating path of
length n — 1 (see proposition 3.3.2). The latter is the vertex CPR graph if
one of the vertices of degree 1 of the graph has an edge of label 1 incident to
it, and is the edge CPR graph if one of the vertices of degree 1 of the graph
has an edge of label 0 incident to it. Note that if n is odd the vertex CPR
graph and the edge CPR graph are the same graph.

On the other hand, any group obtained from a nontrivial 2-labeled graph
such that the edges of the two labels form different matchings, satisfies the
intersection property; hence such a graph is a CPR graph of a polygon.

It is more difficult to determine all the CPR graphs of any polyhedron
because they have more complicated automorphism groups. It is also harder
to determine whether a 3-labeled graph is a CPR graph of a polyhedron.
However, those graphs where we are able to decide that the groups associated
satisfy the intersection property will prove useful.

In Section 4.1 we give some criteria to determine that a 3-labeled graph
is a CPR graph. In Section 4.2 we give a complete list of polyhedra with
automorphism group S;. In Section 4.3 we show a method to construct
polyhedra with automorphism group A, for n > 21. Finally, in Section 4.4
we give some infinite families of polyhedra with preassigned Schlafli type
{p, q} for some p and q.

We recall that while working with CPR graphs of polyhedra the color
black will be identified with label 0, color red with label 1, and color blue
with label 2.

35
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4.1 Intersection Property

In Chapter 3 we explained that a CPR graph of a polyhedron is a labeled
(multi)graph G with label set {0, 1,2} such that the edges of labels i = 0, 1,2
induce three different matchings of the vertices of G. In this section we
give some sufficient conditions for such a graph to be a CPR graph of a
polyhedron. First we introduce the following definition.

Definition 4.1.1 A d-labeled multigraph G satisfying the conditions of Propo-
sition 3.2.1 with the properties that the set of edges of each label i € {0,1,

..., d—1} forms a matching M; on G, and that M; represents a different

pairing of the vertices of G' from M; for i # j, will be called a proper d-labeled
graph.

Remark 4.1.2 Every CPR graph is a proper d-labeled graph.

A proper 3-labeled graph G is a CPR graph of a polyhedron if the group
generated by the involutions pg, p; and py determined by the edges of labels
0,1 and 2 is a string C-group with respect to pg, p1 and py. The only remain-
ing condition for GG to be a CPR graph of a polyhedron is the intersection
property.

By Proposition 2.1.4, the only necessary equality for a polyhedron I with
automorphism group I'(IC) = (po, p1, p2) to satisfy the intersection property
is

(pos p1) N {p1, p2) = (p1)-

Let I'(K) = (po, p1, p2) be a polyhedron, let ¢ € (po, p1) N (p1, p2) be a
popi-even element of I'(KC), and let C' be a connected component of Gy,
where G = G2 is a CPR graph of K. If ¢ does not act like € in C, then ¢
acts as a power of the rotation on the vertices of C' described by the polygonal
action of pgp; on C| so it is a product of disjoint cycles of the same length
d. Moreover, if d > 3, then ¢ is also p;ps-even (p;p;-odd permutations are
involutions). This leads us to the first criteria to determine that a 3-labeled
graph is a CPR graph.

Theorem 4.1.3 Let Gy 12 be a connected, proper 3-labeled graph. If Cy,Cs
are two connected components of Go 1 (or G12) with n and m vertices, n,m >
2, such that (n,m) =1, then G129 is a CPR graph.
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Figure 4.1:

Proof
It only remains to prove the intersection property.

Suppose to the contrary that ¢ € (po, p1) N (p1,p2) and ¢ & (p1). If ¢ is
pop1-odd then ¢p; will be popi-even, ¢p1 € {po, p1) N (p1, p2), and dp1 & (p1).
Thus we can suppose that ¢ is pgpi-even.

Suppose that n is odd (otherwise m is odd). Then n > 3 and ¢ forms
cycles of length d in a connected component C' with n vertices of G 1, leaving
no vertex fixed in this component. Therefore d is a divisor of n, and d > 3,
so ¢ is also pips-even. This implies that ¢ forms cycles of length d in the
components of Gy 5 intersecting C' moving all the vertices of such components
(see Figure 4.1). It follows from the connectedness of G that ¢ is a product
of disjoint cycles of length d without fixed points, so d is a divisor of both,
m and n, but that is a contradiction to the hypothesis.

O

The proposition above is a powerful criterion to determine that many
connected, 3-labeled graphs are CPR graphs, for example, that of Figure
3.9. We will give another two useful criteria in Theorems 4.1.6 and 4.1.7,
but first we prove some lemmas concerning the action of automorphisms in
(po, p1) N {p1, p2) on the vertices of a given CPR graph.

Lemma 4.1.4 Let ¢ € (po, p1) N {p1,p2) such that, dc = (p1)jc and ¢p #
(p1)p for C and D connected components of Go1 and G5 respectively, with
at least one edge of label 1 in their intersection. Then, every vertex of C is
incident to an edge of label 2.

Proof
If C' N D has no vertex incident to edges of both labels, 1 and 2, then D is
only the edge of label 1 with its two vertices, and ¢;p = (p1)p, s0 We can
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Figure 4.2:

assume that C'N D has at least one vertex incident to edges of both labels,
1 and 2.

Let vy be a vertex of C' N D incident to edges of labels 1 and 2. We
claim that ¢ is not p;po-odd because the only reflexion interchanging v, and
®(vo) = p1(vo) in the polygonal action of (p1, p2) on D, is p; (see Figures 3.7
and 3.8). Therefore ¢ must be p; po-even, but the only p; ps-even permutation
that interchanges two vertices that are also interchanged by p; is (p1p2)™/?,
with n the number of vertices of D, n even. In this case, ¢|p = (plpg)(”/Q),
D is a path of odd length, and the edge of label 1 incident to vy, say ugvg, is
the central edge of it. This implies that ug is also incident to an edge of label
2. Because ¢ is pypo-even, it cannot act as p; in any connected component of
(12 with at least three vertices (see Lemma 3.2.11), and any edge of label 1
in C'is either adjacent to 2 edges of label 2, or it is adjacent to none of them.

If zw is an edge of label 0 and x is incident to an edge of label 2, then,
by Proposition 3.2.1, w is also incident to an edge of label 2.

The last two paragraphs and the existence of vy imply that every vertex
of the component C' is incident to an edge of label 2 (see Figure 4.2).

O

Note that if C' and D are connected components of G and G 2 respec-
tively and their intersection does not contain an edge of label 1, then C'N D
has at most two vertices; and if it has two vertices v and v, then C' and D
are paths of odd length having v and v as the first and last vertices, and no
edge of label 1 is incident to them. The following lemma generalizes Lemma
4.1.4.

Lemma 4.1.5 Let ¢ € {(po, p1) N {p1, p2) such that, for C" and D connected
components of Goy and G respectively with C N D # 0, ¢ = (p1)ic
and ¢\p # (p1)p- Then, every vertex of C' is incident to an edge of label
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2. Moreover, if C' and D have at least 3 vertices, then ¢ is pop1-odd and
p1P2-€VEN.

Proof

It was proved in Lemma 4.1.4 that if C' N D contains an edge of label 1 the
statement is satisfied. The remainder case is when C' N D is either a single
vertex or a couple of isolated vertices.

The lemma holds trivially if C' is a single vertex, and Proposition 3.2.1
shows that the lemma also holds when C'is a single edge of label 0 with its
two vertices. Note that D has at least two vertices, because ¢|p # (p1)|p,
but if D has two vertices v and v then there is an edge of label 2 incident to
both, and ¢(u) = v, but since ¢c = (p1)|c, then there is an edge of label 1
between v and v and ¢p = (p1)|p, but that is impossible.

We now assume that both, C' and D have at least one edge of label 1 and
at least 3 vertices.

Let wq be a vertex in C'N D. Since there is no edge of color 1 in C'N D, it
follows that wy is a vertex of an alternating square of colors 0 and 2 in G with
no edge of label 1 between two of its vertices. Let w; and wy be the vertices
adjacent to wy of C and D respectively, and let w3 be the other vertex of the
square (see Figure 4.3). Let D’ be the connected component containing ws
of G12. We know that ¢ is ppp1-odd because it fixes wy and moves w; (see
remark 3.2.10). This also says that ¢p is either Idp or (p1)p because they
are the only two elements of (p1, po) whose polygonal action on D fix wy (see
Remark 3.2.9). So we can assume that ¢;p = Idjp and ¢ is p;po-even (this is
a consequence of the fact that D has at least 3 vertices). This implies that
¢ does not act as p; on D’ (note that wy, ws and p;(w,) are three different
vertices of D’). Since the labeled-1 edge between w; and p;(w;) is in CN D',
we apply Lemma 4.1.4 to C and D’ to get the desired result.

OJ
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Theorem 4.1.6 Let G = G 12 be a connected, proper 3-labeled graph. If G
has a vertex vy such that no edge of labels 1,2 (or dually 0,1) are incident to
it (in other words, {(pi1, p2) has a fived point vy in G), then Go19 is a CPR
graph.

Proof
Let Cy be the connected component on G ; of the vertex vy, and let ¢ €
{(po, p1)N{p1, p2). We can assume that ¢ is pyp;-odd, otherwise we would take
p1¢. Note that ¢(vg) = vg because {vp} is the only vertex of the connected
component of vy in G 2. Then Remark 3.2.9 implies that ¢jc, = (p1)|co-

Suppose to the contrary, that ¢ # p;. Then, there exist adjacent vertices
uw and w such that ¢(u) = p1(u) but ¢(w) # p1(w). The vertices u and w
are in the same connected component Dy of either Gy, or G;9, but since
¢ is popr-odd and ¢(u) = pi(u), it follows from Remark 3.2.9 that Dy is a
connected component of GG 2 and that ¢ is p;pr-even.

Lemma 4.1.5 shows that ¢ acts as p; on every connected component D
of G 2 such that CoN D # (). While ¢ is p;ps-even and ép = (p1)p, then D
has at most two vertices (see Lemma 3.2.11). Then G has no edge of color
2, but that is not possible. So we have that ¢ acts like p; in every connected
component of G, and G 5.

Hence, the only pgpi-odd element of {pg, p1) N (p1, pa) is p1.

O

Theorem 4.1.7 Let G = G2 be a connected, proper 3-labeled graph. If
G has an edge voug of label 1, such that no edge of label 2 (or dually, 0) is
incident to either vy or ug, and voug is not the central edge of an odd-path
connected component in Gy (resp. Gi2) then Gy 19 is a CPR graph.

Proof
Let Cp the connected component of vyug in Go 1, and let ¢ € (po, p1)N{p1, p2).
We can assume that ¢ is ppp;-odd, otherwise we would take p;¢. Note that
the vertices of the connected component of uy in G o are only uy and vg. We
know then that ¢\, = (p1)|c, because the polygonal action of p; on C' is the
only one fixing {vg, ug} as a set once we ruled out the possibility of Cy being
an odd-path connected component in G ; having ugvy as its central edge.
Again, lemma 4.1.5 shows that ¢ acts as p; on every connected compo-
nent of Gy o intersecting C'. We suppose that ¢ # p; and continue the proof
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Figure 4.4: Intersection property fails

in the same way as in Theorem 4.1.6.

Remark 4.1.8 The graph of Figure 4.4 shows that theorem 4.1.7 fails if we
allow voug to be the central edge of an odd-path connected component in Gy
or, as in this case, of Gy 2. Note that py € (p1, pa)-

4.2 Polyhedra with automorphism group S~

Michael Hartley built the atlas [9] of regular polyopes with small automor-
phism groups. This atlas was constructed by means of an exhaustive com-
puter search and considers the groups of order n that are automorphism
groups of polytopes for almost every n < 2000. We describe next the poly-
topes with symmetric automorphism group that appear in this atlas.

The triangle is the only polytope with automorphism group isomorphic to
S3. The tetrahedron, hemicube and hemioctahedron are the only polytopes
with automorphism group isomorphic to S;. The 4-simplex has automor-
phism group isomorphic to S;, and the remaining seven polytopes with this
automorphism group are polyhedra. Finally, there are eleven polytopes with
that automorphism group isomorphic to Sg; one of them is the 5-simplex,
there are seven 4-polytopes and the remaining three are polyhedra.

In this section we will find all the polyhedra with automorphism group
isomorphic to S;. In order to do that, we construct proper 3-labeled CPR
graphs such that

a) Are connected (otherwise they wouldn’t generate the whole symmetric
group).
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Figure 4.5: {10,4}

b) The group generated by the involutions satisfy the intersection prop-
erty.

¢) The group generated by the involutions is S7.

In most of the cases, the intersection property can be verified easily with
the criteria of the last section; the ones where they do not apply can be
verified separately looking at the subgroups explicitly.

We will list the graphs by families of 6, 3 or 1. Each family is closed
under dual and petrie operations.

All the 3-labeled graphs that satisfy conditions a) and b) will also satisfy
¢). To see this it is enough to verify it in just one of the graphs of each of the
families, given the fact that the dual and petrie operations are invertible.

In order to determine that the automorphism group generated is isomor-
phic to S;, we can find a transposition of two vertices of the graph and
a 6-cycle not including one of the vertices of the transposition and apply
Lemma A.2.1, or find a 3-cycle and a 5-cycle not including two of the ver-
tices of the 3-cycle and apply Lemma A.2.3; this is because at least one of the
involutions pg, p1 and py will be an odd permutation. Other polyhedra need
a little more work. For example, let us check that the polytope of Schlafli
type {10,4} in Figure 4.7 C' has automorphism group isomorphic to S7 (see
Figure 4.5).

First we see that (pgp1)? induces a cycle of length 5 in the vertices of the
graph, leaving the other two fixed, while (pop1)° leaves those 5 vertices fixed
and interchanges the other two (see Figure 4.6).

With (pop1)? and p, we generate a group isomorphic to Sg by Lemma
A.2.1, and this group with (pgp;)® generates the desired group isomorphic to
S7.

Now we give the list of the graphs of the polyhedra with automorphism
group S7. In Figure 4.7 we list the polyhedra with acyclic CPR graphs
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Figure 4.6: (pop1)?, (pop1)® and po

(the only cycles allowed are the double edges). It’s easy to see that those
24 graphs include all the possibilities of polyhedra without squares or other
cycles. It’s important to remark that the polyhedron of Schlafli type {6, 6} of
Figure 4.7 A (left, upper corner) is not self dual because in this polyhedron
(pop1pop1p2)® is not the identity, but in its dual it is.

In Figures 4.8 and 4.9, we list the rest of the graphs of the polyhedra with
automorphism group S7;. We can see that they are all the possible graphs
noting that a graph with at least a cycle that generates S; needs a square
of labels 0 and 2; then we have to look at all the possibilities of graphs
with 1,2 and 3 edges of label 1 incident to this square and to an outside
vertex. Note that some of the graphs of Figure 4.9 belong to self petrie or
self dual polyhedra, while the last graph belongs to a self dual and self petrie
polyhedron of Schléfli type {12,12}.

Some of these families are related by facetting operations. We can see
here some examples of the 2-facetting operation acting on a polyhedron of
Schlafli type {p,2q} giving as a result another polyhedron with the same
automorphism group. For instance, the 2-hole of the polyhedron of Schlafli
type {6, 12} at the upper right corner of Figure 4.8 H is the polyhedron with
Schléfli type {10,6} at the right of Figure 4.9 K (recall that in order to see
the 2-hole of a polyhedron given it’s graph G we have to change p; to p1pap1).

In Table 4.1 we give the Schlafli symbols of the polyhedra with automor-
phism group isomorphic to S;. In each family the first polyhedron will be
the upper left one in the correspondent figure. In [13] D. Leemans displays
the same table up to duality.
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Group | First ) T omd o 7T

A {6,6} | {6,6} | {7, 6} {6, 7}y | {6,7} | {7, 6}
B | {12,4} | {4,12} | {7,12} | {12, 7} | {4, 7} | {7, 4}
C {10, 4} | {4, 10} | {7, 10} | {10, 7} | {4, 7} | {7, 4}
D | {12,6} | {6, 12} | {10, 12} | {12, 10} | {6, 10} | {10, 6}
E | {10,3} | {3, 10} | {12, 10} | {10, 12} | {3, 12} | {12, 3}
F {5,6} | {6,5} | {7, 5} {5,7} | {6,7} | {7, 6}
G {10, 7} | {7, 10} | {5, 10} | {10,5} | {7,5} | {5, 7}
H | {12,6} | {6,12} | {7,12} | {12,7} | {6, 7} | {7, 6}
I (12, 4} | {4, 12} | {12, 12}

J {7,4}y | {4, 7} | {7, 7}

K {10, 6} | {6, 10} | {10, 10}

L {7,6} | {6,7} | {7, 7}

M {7,12} | {12, 7} | {7,7}

N | {12, 12}

Table 4.1: Polyhedra with automorphism group A;

4.3 Polyhedra with automorphism group A,

In May 2005, in the Conference “Convex and Abstract Polytopes” in Banff,
Canada, M. Hartley proposed in the open problems session the following
question. For which alternating groups A,, does there exist an abstract regu-
lar polytope with automorphism group isomorphic to A,,7 This question can
be found in [25]. Hartley already knew an affirmative answer for n = 5,9
and a negative answer for n = 3,4,6,7 and 8 obtained with the aid of the
computer (see [9]). The question can be rephrased in the following way.
What alternating groups are generated by three involutions (po, p1 and ps)
two of which commute ((pgp2)? = €), and such that the intersection property
is satisfied ({po, p1) N {p1, p2) = (p1))? This question appears in [12], problem
7.30 for all the finite simple groups, without taking on account the intersec-
tion property. In this section we will construct (CPR graphs of) polyhedra
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. 111

Figure 4.10:

with automorphism groups isomorphic to A,, for n > 9, giving an affirmative
answer for the remaining alternating groups.

It is easy to see that A3 and A, cannot be the automorphism group of
any polyhedra because they do not have enough involutions, while Ay is the
automorphism group of the hemi-dodecahedron, the hemi-icosahedron and
the hemi-great dodecahedron.

Now we show that Ag, A; and Ag cannot be the automorphism group of
any polyhedra.

Proposition 4.3.1 No polyhedron has automorphism group isomorphic to
Ag.

Proof

Let G = Go,1,2 be a connected CPR graph with 6 vertices of a polyhedron K.
Suppose to the contrary that T'(C) = Ag, then G has exactly two edges of each
label 0, 1 and 2 in order to have only even permutations. By Proposition
3.2.1, Gy is either an alternating square with two isolated vertices, or it
contains one isolated edge of label 0, one of label 2 and an isolated double
edge (see Figure 4.10).

If Gy is an alternating square with two isolated vertices, then the two
edges of label 1 join the square with each of these vertices. We have three
cases (actually it is only one modulo petrie and dual operations). If the ver-
tices of the square having an edge of label one incident to them are adjacent
by an edge of label 0, then we have the edge CPR graph of a hemicube. If
these vertices are joined by an edge of label 2, then we have the edge CPR
graph of a hemioctahedron. Finally, if these two vertices are opposite in the
square, we have the edge CPR graph of the tetrahedron (see 4.11). These
three polyhedra have automorphism group Sy.

If G2 contains one isolated edge of each label 0 and 2 and one double
edge of both labels, then the two edges of label 1 join these three connected
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Figure 4.11: CPR graphs of hemicube, hemioctahedron and tetrahedron
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Figure 4.12: CPR graphs of hemidodecahedron, hemiicosahedron and hemi-
great dodecahedron

components forming a path with a double edge. Now we have three cases
(again, they are only one modulo dual and petrie operation). If the central
edge of the path is the one of label 0, then we have the face CPR graph of the
hemidodecahedron. If the central edge of the path is the one of label 2, then
we have the vertex CPR graph of the hemiicosahedron. Finally, if the central
edge of the path is the double edge, we have the vertex (or face) CPR graph
of the hemigreat dodecahedron (see Figure 4.12. These three polyhedra have
automorphism group isomorphic to As.

Hence, no polyhedron has automorphism group Ag.
O

Proposition 4.3.2 No polyhedron has automorphism group isomorphic to
Ar.

Proof

Let G = Go,1,2 be a connected CPR graph with 7 vertices of a polyhedron
KC. Suppose to the contrary that I'(KC) = A7, then G has exactly two edges
of each label 0, 1 and 2. Again, by Proposition 3.2.1, Gy is either an alter-
nating square with three isolated vertices; or it contains one isolated vertex,
one isolated edge of label 0, one of label 2 and an isolated double edge. In
any of these two cases we have 4 connected components of G » that have to
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K

Figure 4.13: The graph Gy,

be connected by only two edges of label 1, but that is impossible.
O

Proposition 4.3.3 No polyhedron has automorphism group isomorphic to
Ag.

The proof of this last proposition involves the cases when the CPR graph
has 2 or 4 edges of each label. We do not include it due to its length, but it
follows from the same case by case arguments.

For n > 9 we can find polyhedra with automorphism group A,. Let us
take a look first at the graph G} consisting in k squares of labels 0 and 2
joined by edges of label 1 as Figure 4.13 shows.

We know that these graphs are CPR graphs because of Proposition 4.1.3,
and we can search that A, is a subset of the automorphism groups of these
polyhedra in the following way.

Note that (G)o.1 and (Gy)1.2 have only one connected component Cy with
three vertices. The remaining connected components have 4 or 2 vertices.
From the polygonal action of pyp; we know that ¢ = (pop;)? is a cycle C that
includes only the three vertices of (.

By a similar reasoning we can see that each of the automorphisms ¢, =
(pop1)® and 19 = (p1p2)? acts on the vertex set of Gy as a product of disjoint
cycles of length 4 and a transposition. It follows that the group generated
by 11 and v, is transitive all the vertices of the GG, with the exception of two
of C.
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Figure 4.14: Obtaining A,, from S,

By Lemma A.2.3 we have that A, is included in the automorphism group
of the polyhedra of these graphs. Since G has always an even number of
edges of labels 0 and 2, to determine whether the automorphism group is 4,
or S, it suffices to see whether the number of edges of label 1 is even odd.

Therefore we can construct a polyhedron with automorphism group A,
forn =8k+1 and S, for n = 8k + 5 with k an integer. Now we modify these
graphs to obtain polyhedra with automorphism groups A,, for the rest of the
n’s. There are many ways to do this, but it will be enough with a couple of
them.

We can add an edge of label 1 as a diagonal of any square of the graph
with the exception of the first one and the last one (see Figure 4.14). In
this situation, ¢ = (pop1)® will be the cycle C of length 3 while the subgroup
generated by 1 = (pop1)® and 1y = (p1p2)? is transitive on the rest of the
vertices along with one of C. This helps to construct graphs with automor-
phism groups A,, from those with automorphism groups 5,,. Note that two
diagonals of label 1 in consecutive squares would not work in the same way
because, in this case, no power of pyp; will be a cycle of length three.

In order to add more vertices to the graphs of the type of Figure 4.13,
we can paste them to any square except the one at the beginning and the
one at the end, with an edge of label 1 (see Figure 4.15). In this situation,
¢ = (pop1)?° gives us the cycle C of length 3, while v, 1), as before still work
as generators of a group transitive in the rest of the vertices along with one
of C. Actually, we can add two vertices to the same square, but we cannot
add vertices to consecutive squares in opposite sides of the graph, or add
a vertex to a square next to another square with diagonal of label 1, again
because no power of pyp; will be a cycle of length three.

With these two modifications, we are ready to generate families of poly-
hedra with automorphism groups isomorphic to A,, for n > 21 as Figure 4.16
shows. The Schlafli type of the polytopes corresponding to these graphs is
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Figure 4.15: Obtaining A, from A,

{p, p} where p is 12 if we added no diagonal or vertex to Gy, 24 if we added
one diagonal, 60 if we added vertices but no diagonals, and 120 if we added
vertices and diagonals. Note that these graphs will correspond to self-dual
polytopes if they have 4k + 1 vertices, or if they have 4k + 3 vertices and
the two extra vertices are attached to the same square. In the remaining
cases it is not immediate to determine whether the polytope they represent
is self-dual or not.

The graphs of the polyhedra with automorphism groups isomorphic to
An, 9 < n < 20 have to be constructed separately. In Figure 4.17 we give
a list of graphs of polyhedra with automorphism groups Ag, Aqg, ..., Agg.
These results will be published in [15].

4.4 Infinite families of finite polyhedra

Vince proves in [26] (see also [14] Chapter 4C) that there exist infinitely
many finite polyhedra with Schléfli type {p, ¢} for any given pair (p, ¢) such
that p,q > 3 and

(P, q) €{(3,3),(3,4),(3,5),(4,3),(5,3)}.

However he did not give explicitly a constructive proof.

In [28] and [29] Wilson gives an algorithm to build any regular map of
an infinite family for each Schlafli symbol, but he does not give the infinite
family explicitly including the automorphism groups of the maps; he does
not identify either if there are infinitely many polyhedral maps.

In this section we construct CPR graphs for infinite families of finite
polyhedra for some pairs (p, q).
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Figure 4.16: Graphs with automorphism group A,

4.4.1 The Polyhedron mes

For s > 2 and k > 1, let Glfms be the graph such that

e it is a simple (with no multiple edges) path of length 2ks + 2 with its
edges ordered ey, ..., egpsyio,

e all the edges with odd index are labeled 1,
e all the edges with index congruent to 2 modulo 2s are labeled 0, and
e the remaining edges are labeled 2.

Note that the subgraph induced by edges of labels 1 and 2 has k+2 connected
components; the first one is a single edge, the last one is an isolated vertex,
and the remaining ones are alternating paths of length 2s — 1. The connected
components of the subgraph induced by edges of labels 0 and 1 are single
edges, a path of length 2, and k paths of length 3 (see Figure 4.18 for an
example).

Since G’f2|28 is a connected, proper 3-labeled graph, Theorem 4.1.3 imply

that it is a CPR graph of a polyhedron P¥

foj0s» and from the polygonal action
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Figure 4.17: Graphs with automorphism group A,
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Figure 4.18: The graph P132‘6

of (po,p1) and (py, p2) on the connected components of the corresponding
subgraphs of Glfms we can see that the Schléfli type of the latter is {12, 2s}.

The polygonal action of (pg, p1) on the connected components of the sub-
graph induced by edges of labels 0 and 1 tells us that (pop;)? is a 3-cycle
involving the connected component of (Glfzps)O,l with three vertices. More-
over the subgroup generated by ps and (pgp;)? is transitive on all the vertices
except by two of the 3-cycle. Lemma A.2.3 implies that Ay < F(Plkms) < Sy,
where V' is the vertex set of Plk2|25. Since |V| = 2ks + 3 and there are k + 1
edges of label 0, ks + 1 edges of label 1 and k(s — 1) edges of label 2,

Aopsys if k and s are odd,

[(Pfyq,) =
( 122 ) { Soks+g if k or s is even.
We have constructed an infinite family of finite polyhedra { P}

2\2s}k21 with
Schlafli type {12, 2s}.

4.4.2 The Polyhedron me

For s > 3 let G]Z|2$ be G’f2|28 — v, where v is the vertex with only one edge of
label 0 incident to it. Proposition 3.2.1 and Theorem 4.1.7 imply that Gi\zs
is a CPR graph of a polyhedron P4k|28 with Schléfli type {4, 2s}.

Now, by Proposition 3.5.1, I'(Pji,,) = (p1) x A for some A < Sy x Sy,
where U and W are the sets of vertices described in Figure 4.19, and (p)
acts on A by interchanging the entries.

It can be checked easily from G7,, that (pop1p2p1)* is a 3-cycle in U,
and p;(pop1p2p1)tp1 is a 3-cycle in W. The subgroup generated by py and
(pop1p2p1)? is transitive in U minus two of the vertices of the 3-cycle. The
same group works analogously in W. Hence Ay x Ay < A < Sy x Sw.
By Proposition A.3.2 we have that A can only be isomorphic to A, x A,,
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Figure 4.19: The bipartition of the graph wa

(Sp X Sp)](An X Ay,), or S, x S, where n = sk + 1 is the number of vertices
of U (and W).

Since there are k edges of label 0, [k/2] of them in U; ks + 1 edges of
label 1; and k(s — 1) edges of label 2, |k(s—1)/2]| of them in U, we conclude
that

A, x A, if k and k/2 are even
F(prs) =0 (S, xS))(A, x A,) if k is even and k/2 is odd,
S, X Sy, if k is odd.

We have constructed an infinite family of finite polyhedra {prs}kzl with

Schlafli type {4,2s}. Note that every polyhedra in this family has 2-holes of
length 12.

4.4.3 The Polyhedron Pé€|2s

For s > 3 let G’g|25 be the graph such that

e it is a simple path of length (2s + 2)k + 1 with its edges ordered
€1, €(254+2)k+15

e all the edges with odd index are labeled 1,

e all the edges with index congruent to 2 or 4 modulo 2s + 2 are labeled
0, and

e the remaining edes are labeled 2.

The subgraph induced by edges of labels 1 and 2 has single edges and
alternating paths of length 2s — 1 as connected components. The connected
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o —0 60 60 o6 ¢ o0\

Figure 4.20: The bipartition of the graph Pg‘8

components of the subgraph induced by edges of labels 0 and 1 are single
edges, and k paths of length 5.

Proposition 3.2.1 and Theorem 4.1.7 imply that G’g|2$ is a CPR graph of
a polyhedron Pé“le with Schlafli type {6,2s}.

Again by Proposition 3.5.1, F<Pé€|23) = (p1) x A for some A < Sy x Sy,
where U and W are the sets of vertices described in Figure 4.20, and (p)
acts on A by interchanging the entries.

Now (pop1popip2)?t is a 3-cycle in W, and py(pop1p2p1)*pr is a 3-cycle in
V. The subgroup generated by pipsp1 and (popipap1)?® is transitive in W
minus two of the vertices of the 3-cycle. The same group works analogously
in V. Hence Ay x Ay < A < Sy x Sy. Again Proposition A.3.2 implies
that A can only be isomorphic to A, x A,, (S, X S,)](A4, X A,), or S, X S,
where n = (s + 1)k + 1 is the number of vertices of U (and W).

Since there are 2k edges of label 0, k of them in U; k(s + 1) 4+ 1 edges of
label 1; and k(s —1) edges of label 2, | k(s —1)/2] of them in U, we conclude
that

A, x A, if £ and k(s — 1)/2 are even,
(Sp x Sp)](A, x A,) if k is even and k(s — 1)/2 is odd,
or if k and s are odd,

S, X S, if k is odd and s is even.

We have constructed an infinite family of finite polyhedra { P}

|25}k21 with
Schléfli type {6,2s} for s > 3.

4.4.4 The Polyhedron prAq

For p>2,q>2andk > 1, let G}, ,, be the graph such that
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aeebe rzjv poeted

Figure 4.21: The graph Pggq

e it is a simple path of length m = 4k(p + g + 1) + 4¢ + 1 with its edges
ordered eq,...,€en,

e all the edges with odd index are labeled 1,

e all the edges with index congruent to 2+4q and 2+ 4q+ 4+ 2s modulo
Ad(p+q) +4 for s=1,...,2p are labeled 0, and

e the remaining edes are labeled 2.

Now the subgraph induced by the edges of labels 1 and 2 has single edges,
2k paths of length 4 and k + 1 paths of length 4¢ as connected components.
The connected components of the subgraph induced by the edges of labels 0
and 1 are single edges, 2k 4 1 paths of length 4 and k paths of length 4p (see
Figure 4.21 for an example).

The structure of the graph is shown in table 4.2. The first two rows

appear only once in the first part of Gj’pAq, while the last six repeat k times.

Number of path | length | labels
1 4 0,1
2 4q 1,2
3 0,1
4 1,2
) 4p 0,1
6 1,2
7 0,1
8 4q 1, 2.

Table 4.2: Structure of prAq

Proposition 3.2.1 and Theorem 4.1.7 imply that G§p74q is a CPR graph of

a polyhedron Pf, .. with Schléfli type {4p,4¢}. Now we find I(Pf, ,,) in a

similar way as F(prs).
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By Proposition 3.5.1, ['(Pf, 4,) = (p1) x A for some A < Sy x Sy, where
U and W are the sets of vertices as in Figure 4.19 (see Figure 4.21), and (p;)
acts on A again by interchanging the entries.

Now (pop1pep1)t is a 3-cycle in U, and py(pop1p2p1)'°p1 is a 3-cycle in
W. The subgroup generated by ps and (popip2p1)?® restricted to U is again
transitive in U minus two of the vertices of the 3-cycle. The same group works
analogously in W. Hence Ay x Ay < A < Sy x Sy. By Proposition A.3.2 we
have that A can only be isomorphic to either A, x A,, (S, x S,)](A4, x A,),
or S, X S,, where n = 2k(p+ g+ 1) + 2¢ + 1 is the number of vertices of U
(and W).

Since there are k(2p + 1) + 1 edges of label 0, k(p — 1) of them in W;
2k(p+q+1)+2q+1 edges of label 1; and 2k + (k4 1)(2g — 1) edges of label
2, (k+1)(¢g —1) of them in U, we conclude that

A, x A, if £ and p are odd
F(prAq) =9 (Sp xSp)](A, x A,) if kis odd and p is even,
S, X Sy, if k is even.

We have constructed an infinite family of finite polyhedra { P}, , }x>1 with
Schlafli type {4p,4q} for p,q > 2. Note that every polyhedra of this family

has 2-holes of length 30.

4.4.5 Remarks

We have infinite families of finite polyhedra for the Schlafli types listed in
Table 4.3

The graphs G’ijq can be modified in several ways in order to get different
polyhedra with the same Schléfli type. For example, we can reduce the length
of some paths of length 4p to 2p, or 4¢ to 2q, for p and ¢ odd numbers. Since
there is still a connected component with 4 vertices, the Schlafli Symbol
would not change, but the group would be smaller.

With the help of some similar techniques to those used to construct the

polyhedra Plk2|25, prs, ,P’g‘QS, and Pf ,, it might be possible to construct
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Polyhedron | Schlafli s. n parameters Automorphism group
Pfé|2s {12, 2s} 2ks +3 k, s odd A,
k or s even Sn
prs {4,2s} sk+1 k, k/2 even A, X A,
k even, k/2 odd (Sn x Sp)|(An x Ap)
k odd Sn X Sy,
Pé“le {6,2s} (s+Dk+1 k, k(s —1)/2 even A, x Ay
k even, k(s —1)/2 odd,
or k, s odd (Sn x Sp)|(An x Ap)
k odd, s even Sn X Sy
prAq {4p,4q} 2k(p+q+ 1)+ k, p odd A, x A,
+2q+1 k odd, p even (Sn x Sp)|(An x Ap)
k even Sp X Sy

Table 4.3: Infinite families of polyhedra

infinite families of finite polyhedra with Schléafli type {2p, 2¢} for any p, ¢ > 3.
Moreover, it might be possible as well to preassign a k-hole length, or a k-

zigzag length.

Note that if the automorphism p;p; 1 has order 2p + 1, then

pi = (pis1i)* pisa [(pir1pi)?]

Since p; is conjugate of p;1; they have the same cyclic structure as permu-
tations when embedded into any permutation group. This means that there
are the same number of edges of labels ¢ and ¢ + 1 in any CPR graph of
the polytope. This is highly restrictive and makes working with CPR graphs
of polyhedra (and of polytopes in general) with odd entries in their Schlafli
symbols more complicated than working with CPR graphs of those with even
numbers in all the entries of the Schlafli symbol.




Chapter 5

The Polytope 2sh—1

The amalgamation problem asks if, given two regular d-polytopes I and P,
are there any (d + 1)-polytopes such that their facets are isomorphic to K
and their vertex figures are isomorphic to P (see [14] Chapter 4A). If such
a polytope exists it is said to be an amalgamation of I and P. An obvious
condition for an amalgmation of K and P to exist is to require the vertex
figure of I to be isomorphic to the facet of P, but that condition is not
enough. For instance, there is no 4-polytope with facets isomorphic to a
hemicube and vertex figures isomorphic to a tetrahedron (see M. Hartley
[10]). In general it is hard to give an answer to different instances of this
problem.

We can relax the problem in the following way. Given a regular d-polytope
IC, is there a (d+1)-polytope with facets (or dually vertex figures) isomorphic
to K? Any such a polytope will be called an extension of .

In [14] Chapter 4D it is proved that any polytope has a universal extension
in the sense that any other extension is a quotient of it (in the sense of groups;
for a formal definition see [14] Chapter 2D). This new polytope is infinite,
moreover its last entry of the Schlafli symbol is infinity.

The next step is to ask if any d-polytope K has an extension that has a
finite last entry of the Schlafi symbol. Additionally we can ask the extension
to be finite if K is finite (finiteness property), and to be a lattice if K is a
lattice (lattice property). In [14] Chapters 8B-D the polytope 2% is described.
It solves the dual of this questions by finding a (d + 1)-polytope with vertex
figure isomorphic to K and first entry of the Schléfli symbol equal to 4 (see
also Danzer [4] and Schulte [24]). This extension satisfies the finiteness and
lattice properties.

61
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In [19], [21] and [22] E. Schulte gives another approach to this problem.
It will be described in Chapter 6.

The question if any d-polytope K has an extension with a preassigned
last entry of the Schlafli symbol n for n > 3 was still opeb. In this Chapter
we construct a generalization of the polytope 2° that gives an affirmative
answer to (the dual of) this problem for n even. Moreover, the extension
also satisfies the finiteness and lattice properties.

5.1 First Construction

We start with a d-polytope K of Schlafli type {p1,...,ps_1} with the task
of constructing a (d + 1)-polytope P of Schléfli type {n,p1,...,pa_1}, for a
preassigned number n, with vertex figure isomorphic to K. The procedure is
to construct a CPR graph of P from CPR graphs of K by adding 1 to the
label of each edge and adding edges of a new label 0. From the polygonal
action of (pg, p1) on the connected components of the subgraph induced by
edges of labels 0 and 1 of the new CPR graph we know that its connected
components have to be paths with their number of vertices dividing n, or
cycles with half the number of vertices dividing n. The attempt here is to
build a CPR graph having an alternating cycle of edges 0 and 1 of length 2n
and leaving the remaining connected components of the subgraph induced
by the edges of those labels to be squares or single edges. We are assuming,
then, that n is even.

Proposition 3.2.1 tells how the connected components of the subgraphs
induced by the edges of labels 0 and k£ have to be for k& > 2. Since this is
somehow restrictive we select a particular CPR graph G with a particular
condition that will be discussed in Section 5.7. The first appropach will be
to take a CPR graph of K containing a vertex with only one edge of label 0
incident to it. Then we can build the cycle using this edge and completing
the new CPR graph in such a way that each connected component of the
new graph erasing the edges of label 0 will be isomorphic to GG. Before giving
the formal description we show an example of how it is done. In Figure 5.1
we show the vertex CPR graph of a triangle (black = 0, red = 1) and how
we construct the new graph for s = 2, that turns out to be a CPR graph of
the cube (black = 0, red = 1, blue = 2).

The construction of the extension is done by taking 2s copies of the
vertex CPR graph of the polytope K (if it exists), placing them in a cycle,
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Figure 5.1: Triangle and its extension

Figure 5.2: G

and joining the corresponding vertices of the copies in consecutive pairs (in
the cycle) with the exception of the vertices corresponding to the base vertex
of IC, that have to be joined among themselves in such a way that they belong
to the new cycle of length 4s of labels 0 and 1. In Figure 5.2 we show how it
looks like for s = 4. Each elipse altogether with the vertex joined to it by a
blue edge represents a copy of the facet CPR graph of K, while the red edges
are the new edges of label 0. Now we describe the construction formally.

Let K be a d-polytope such that its automorphism group acts faithfully
on the vertices, and let G be its vertex CPR graph, with x4, ..., z, the vertex
set of the latter, 1 corresponding to the base vertex of L. We assume n > 2,
otherwise K is the 1-polytope and the extension will give as a result the
regular 2s-gon. Now we construct a CPR graph Go4 defining its vertex set
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by
V(GQS) = {.CL"Z‘J . ”L = 1, Ce ,n,j € ZQS}

Two vertices z; ; and x; are adjacent if and only if one of the following
conditions is satisfied.

1) j =1 and z; is adjacent to x) in G. The label of this edge will be one
plus the label of the edge between z; and x.

2) i=k=1,j=1+1, j even, with label 0.
3) i=k#1,j=1+1,j odd, with label 0.

The following results show that the CPR graph we just defined is the one
we were looking for.

Theorem 5.1.1 For any regular polytope K of Schlifli type {p1,...,pa-1}
the graph Ga, described above is a CPR graph of a polytope 2s*=1 with vertex
figure isomorphic to KK and Schlifli type {2s,p1,...,Pa—1}-

Proof

The first entry of the Schlafli symbol can be seen from the polygonal action
of (po, p1) in the graph (Gas)o1 since the connected components of the latter
are one cycle of length 4s, alternating squares and single edges of label 0.

In order to check the intersection property let ¢ € (p1, ..., pa)N{po, -, p;)
and let

¢:pi1pi2 “ Pims (51)
with i, € {0,...,5}.

We can obtain an element ¢ € (py,...,p;) by eliminating those factors
po in equation (5.1). We know that ¢ and v fix the second coordinate of
each vertex of Gos because ¢, 1 € (p1, ..., pq); and they act in the same way
in the first coordinate because they have the same factors in {py,...,pq} in
the same order. Hence, ¢ =1 € (py,..., pa), and by the dual of Proposition
2.1.4 the intersection property holds. Since Gy, is a proper (d + 1)-labeled
graph, it is a CPR graph of a regular polytope.

Since each connected component of Gy, after deleting all the edges of
label 0 is isomorphic to a copy of GG adding 1 to the label of each edge, it

follows from Remark 2.3.6 that the vertex figure of 2%~ is isomorphic to K.
O
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Proposition 5.1.2 The polytope 2s*~1 has the FAP with respect to its vertex
figures.

Proof

From the proof or Theorem 5.1.1 it follows that the generating relations for
['(K) can be obtained from those for I'(2s*~1) by adding the relation py = ¢.
By Proposition 2.2.4 we conclude that 25! satisfies the FAP with respect

to its vertex figures.
OJ

Proposition 5.1.2 can also be proved using Lemma 2.2.2 and Proposition
3.2.5.

5.2 The automorphism group

In this section we describe the automorphism group of the polytope 2s*~1.
Definition 2.2.3 and Proposition 5.1.2 imply that T'(2s*~1) 2 N (2s%1)x
{p1,...,pa). It remains to say which group is N, = N; (2s*~1) and how does
(p1,...,pa) act on it.
First, note that every ¢ in N preserves the first subindex of the vertices
of Go, because the generators ¥t pg1p, 1) € (py, ..., pa), of Ny act in this way
(see Lemma 2.2.2). Actually

w51 for j even, (x;) = x1 or j odd, ¥(w;) # 21,

z;j1 for j odd, ¥(x;) = x;1 of j even, ¥(x;) # 1.
(5.2)
The next step is to find the even subgroup (N, )" of N; . Since its
generators are products of two generators of N; we will analyze the action
of elements of the form ¢! py1p¢~ pod, with 1), ¢ € (py,. .., pa) on the vertices
of Gos. From (5.2) it follows that for j even

¢_IPO¢($Z‘J) = {

zij i @la) = 21, Y(33) = 213

or ¢(x;) # w1, Y(w;) # 215
T1,5+2 if ¢($z) # 1, w(iﬂz) = T1;
z1jo if ¢(zi) = 21, Y(23) # 135

O o pod(wi ) = (5.3)
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while for 5 odd the subindices 7 + 2 and 7 — 2 in the right side of 5.3 are
interchanged. It follows from (5.3) that any two generators of (N; )™ com-
mute.

Now we introduce the mapping ® from the generators of (N; )" into Z?

given by (4~ pg¢ o) = (yas - -, yn), Where

0 if ¢(w;) = 21, Y(23) = 215

or ¢(x;) # w1, Y(w;) # w15
1 if o) # xq, Y(x;) = x4
—1 if ¢(x;) = xq, Y(x;) # x1.

Note that if any of these elements is different from (0, ..., 0), then it has only
one entry equal to 1 and one equal to —1.

The mapping ® can be extended to a group morphism ¥ from (N; )" to
Z7 because the relations of the generators of (N; )™ (commutativity and the
order of each generator) are also satisfied by their images in Z”. It is clear
that if two automorhisms of 2s*~! have the same image under ¥ then they
have the same action on the vertex set of Gas (and thus they are the same
automorphism), hence ¥ is a monomorphism. Moreover, the image under ¥
of the generators of (N; )" is a generating set of {(z1,...,x,) € Z} | > x; =
0}. Hence

Yi =

(Nt 2 {(z1,...,2,) €ZF| Y x; = 0}.

It follows from (5.3) that py ¢ (N; )*. Hence (N, )" is a subgroup of
index 2 of Nj and we can rewrite

Ny 22 (N7 % (po) = {(x1, ..., 20) € 27| Sy = 0} %1 Zo.

Since pg interchanges even and odd second subindices of the vertices of
Gy, it follows from Equation 5.3 and the correspondent for j odd that Zs
acts on {(z1,...,x,) € Z"| > x; = 0} by sending each element to its inverse.

We recall that the first subindex of the vertices of Gy, represents the
vertices of IC. It follows from the definition of Gas that (pi, ..., p4) acts on
{(z1,...,2n) € Z?| >  x; = 0} X Zy by interchanging the entries in the first
factor. Now we can state the following theorem.

Theorem 5.2.1 The automorphism group of 2s*~1 is

(pos -+ par) % (H x {po)). (5.4)
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where H = {(x1,...,x,) € Z2|> x; = 0}, (po) acts in H as the auto-
morphism that sends each element to it’s inverse, and (pg, ..., ps—1) acts on
H % {po) permuting the coordinates of the elements of H.

Note that if s = 2 then the product of H and (pg) in Equation 5.4 is a
direct product and
re- 2 ~r(K) x zs (5.5)

The automorphism group of the polytope 2% is the same as the one in
(5.5), and its generators py, ..., pq are embedded in the natural way while
po is assigned to the element [Id,(0,...,0,1)]. Since the polytopes 2 and
2 - 251 have the same automorphism group with the same identification of
their generators the next corollary follows.

Corollary 5.2.2 The polytope 2 - 2871 is isomorphic to the polytope 2~.

5.3 Main Construction

In Section 5.1 we constructed extensions only for polytopes such that their
automorphism groups act faithfully on their facets. In this section we give a
different construction that may be applied to any polytope. It turns out that
the polytope obtained by the first construction is the same as the polytope
obtained by this one, so we can construct the polytope 2s*~! for any polyope
K. We consider the Cayley graphs (see Example 3.1.6 and Appendix B) of
the polytopes rather than their vertex CPR graphs, while the set of vertices
representing the flags containing the base vertex of the polytope will play
the role that played the base vertex z; in the first construccion.

Let IC be a polytope with vertex set wy, ..., w, and G be its Cayley graph
(its CPR graph of the permutations of the flags) with vertex set {vy,..., v},
where m = nt and vy,...,v; correspond to the flags that include the base
vertex w; of K. Consider the graph G** with vertex set

{U@j‘i € {1,...,m},j € ng}

and such that two vertices v; ;,vr; are adjacent if and only if one of the
following conditions is satisfied.

1) j =1 and v; is adjacent to v in G. The label of this edge will be one
plus the label of the edge between v; and vy.
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Figure 5.3: G*

2)i=ke{l,...,n}, j=1+1, j even, with label 0.
3)i=k¢{l,....,n}, j=1+1, j odd, with label 0.

Picture 5.3 shows how the graph G?* looks like. Each elipse altogether
with the small circle joined to it by blue edges represents a copy of the Cayley
CPR graph G of K, each small circle represents the vertices vy, ..., v; of each
copy of G (note that they form a connected component of G if we erase the
edges of label 1 or color blue) and the red edges are again the new edges of
label 0.

The following results show that the graph G?* is a CPR graph of an
extension of K. Their proofs are analogous to those of Theorem 5.1.1 and
Proposition 5.1.2.

Theorem 5.3.1 For any regular polytope K of Schlafli type {p1,...,pa-1}
the graph G* described above is a CPR graph of a polytope (2s*1)" with
vertex figure isomorphic to IC and Schlafli type {2s,p1, ..., Pa—1}-

Proposition 5.3.2 The polytope (2s*71) has the FAP with respect to its
vertex figures.
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To determine the automorphism group of (2s*~1)" we proceed in a similar

way to that used for 2s*~1.
Propositions 3.5.1 and 5.1.2 also imply that

D((2s"71)) 2= Ny ((28*71)) % (o1 ..., pa).

We still have to say which group is Ny = Ny ((2s*7!)) and how does

(p1,...,pa) act on it.

Again we study the group N; by describing first (N; ).

Every ¢ in N, still preserves the first subindex of the vertices of G*, but
now (5.2) and (5.3) are changed to

v; ;-1 for j even, ¥(v;) € {vy,..., v}
or j odd, ¥(v;) & {v1,..., v},
v j+1 for j odd, ¥(v;) € {v1,..., v}
of j even, ¥(v;) & {vi,..., v},

U potp(viy) = (5.6)

and (for j even)

Vi, 5 if ¢(U2) € {Ulw‘wvt}u ¢(U1) € {Ula"'avt};

or ¢(v;) & {vr,... v}, Y(vi) & {vr, ... vl

vijve i o(vi) € {or,. . v, ¥(vi) € {vr, . vl

v 2 if ¢(vi) € {vr, .. v}, V(i) & {vr, ..o vk

(5.7)

while for 7 odd the subindices 57 + 2 and j — 2 in the right side of 5.3 are
interchanged.

Now we construct again the mapping ® from the generators of (N; )™ into

Z" redefining it by ®(v "' povdtpod) = (1, - - ., Yn), where, for any vertex v
of GG corresponding to a flag containing the vertex w; of IC

0 if o(v) €{v1,..., v}, Y(v) € {vy,..., v };

i = or p(v) & {vy,..., v}, ¥(v) & {v1, ..., v }; (5.8)

O porbd ™ pod(vi ) =

L 6(0) € o v}, 0(0) € {urn . ur):
—1 if ¢(U) € {vh s avt}a w(v) ¢ {vl? s 7Ut}‘

Note that ¢(v) € {vy,..., v} for some v corresponding to a flag contain-

ing a given vertex wy, of K if and only if ¢(z) € {vq,...,v} for every z

corresponding to a flag containing wy, so ® is well defined.
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By similar reasons than those explained in Section 5.2 for the first exten-
sion, we extend the mapping ® to the group morphism ¥ from (N, )" to Z2,
implying that

(N =2 {(21,...,2,) €Z7|> x; = 0}.
We imply from (5.7) that py ¢ (N, )*, and we can rewrite
NO_ = (NO_)+ X <,00> = {(xl,...,xn) € ZZ|ZI‘Z = 0} X Zo.

with Zs acting on {(z1,...,x,) € Z*| > x; = 0} by sending each element to
its inverse, and (py, ..., pq) acting on {(z1,...,x,) € Z7| Y x; = 0} x Zy by
interchanging the entries in the first factor.

Since T'(2s*71) = T'((2s*71)’), and the string C-group generators of the
two polytopes correspond to the same elements in that group, we conclude
the following theorem.

Theorem 5.3.3 For any polytope K such that T'(KC) acts faithfully on its
vertices we have that 251 = (2sF71).

The construction described in this section along with some results from
the following sections will be published in [16].
From now on we refer to (2s*71) just by 2s*71.

5.4 Results and Examples

In this section we give some examples and results to illustrate some properties
of the polytope 251,

Proposition 5.4.1 Let K be a polytope with even subgroup of index 2 on
['(K), then the even subgroup of 2s*~1 has index 2 on T'(2s*71).

Proof
Since the even subgroup has index at most 2 it suffices to prove that it is not
the whole group I'(2s*~1). We will prove that p, is not an element of the
even subgroup.

Let

Pd = PirPis * " Pim (5.9)
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with 5, € {0,...,d}. Proposition 5.3.2 implies that, if we remove all the py’s
in (5.9), we get an expression for py in terms of py,..., pgs. Since the even
subgroup of K has index 2 in I'(K), this expression has an odd number of
factors.

In the other hand, py interchanges the parity of the second coordinate of
any vertex of G**, where G** is the graph constructed in Section 5.3. Since
pi preserves that entry for ¢ > 0, there has to be an even number of factors

po’s in (5.9). Hence the total number of factors is odd.
U

Corollary 5.4.2 The polyhedron 251 is an orientable polyhedron with
Schlifli type {n,2s} with genus 1+ [s"2(ns — 2s —n)]/2.

Proof
To determine the genus of the polyhedron it suffices to notice that the num-
ber of vertices is ns" 2, the number of edges is ns"! and the number of

facets is 25" L.
|

The polytope 2% is centrally symmetric if K has a finite number of vertices
(see [14] Chapter 8C). Now we give a sufficient condition for the polytope
255=1 to be centrally symmetric.

Proposition 5.4.3 Let K be a polytope with an even number of vertices.
Then, for s even, the polytope 251 is centrally symmetric.

Proof
The involution £ given by a half turn rotation on Figure 5.3 corresponds to
the element [e, ((s/2,...,5/2),0)] in

(p1y- oy pa) ¥ [{(x1,...,20) €EZ2| > x; = 0} X Zg]

(note the importance of the parity of s and of the number of vertices of ).
Then, ¢ is also an element of I'(2s*~1). The commutativity can be checked

for each p; either using Proposition 3.2.3 or directly from the group.
O

Unfortunately this conditions are not necessary for the polytope K to
be centrally symmetric. The cube is isomorphic to 213} and is centrally
symmetric but the number of vertices of the triangle is odd.
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Figure 5.4: CPR graphs of {4,4},) and {4,2}

Proposition 5.4.4 Given a polytope K of Schlifli type {4,p1,...,pa_2}, the
polytope 2% is a polytope with 3-faces isomorphic to the toroidal polytope
{4,4} 10

Proof

The only connected components of the subgraph of the Cayley graph G of IC
induced by edges of labels 0 and 1 are alternating octagons. It is easy to see
that the only connected components of the graph G?* defined in Section 5.3
after deleting the edges of labels 3, ...,d—1 are the CPR graphs of {4,4}4,)
and {4,2} shown in Figure 5.4. Since {4,4},0{{4,2} = {4,4}(4,0), there
are no other choices for the vertex figure.

O

It was already known that the polytopes 2{4*@o and 2{**e0 are the
universal polytopes 2’]’(3’0)7(270) and 2’1’(370)7(370) respectively (see [14] Chapter
10C). This extensions provide another universal locally toroidal polytope (the
facets and vertex figures are toroidal polytopes).

Example 5.4.5 The polytope 2 - 313311 is the universal polytope 37(%’0) (see
[14] Chapter 11B). This follows from the cardinality 1296 of the automor-
phism groups of these polytopes. The facet type of 2 - 3331 can be de-
rived from the corresponding CPR graph and the relations (pop1p2)® = € and
(p2(p1p0)?)® = € (see Figure 5.5, black =0, red = 1, blue = 2 and green = 3).
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Figure 5.5: CPR graph of 2 - 3{33}-1

5.5 The Lattice Property

Now we will prove that the polytope 2s*~1 satisfies the lattice property with
respect to the polytope K. With that in mind we define a polytope Pa,(K),
we prove that it is regular and that its dual is an extension of the dual of K
that satisfies the lattice property. Finally we prove that the polytope Pas(K)
is isomorphic to 2571,

In [4] they give a purely combinatorial construction of the polytope 2% (see
also [24] and [14] Chapter 8D). The construction in this section is somewhat
similar to it.

5.5.1 The Polytope Py (K)

Let K be a regular d-polytope with vertex set Ky = {v1,...,v,}, with base
vertex vy and such that each face is determined by its vertex set (it can be
easily seen that this is the case if I is a lattice).

Let 9sG(K) be the graph with vertex set

V(esG(K)) =4z =[(z1,...,2n), 73| |25 € Zs, Y x; =0, 13 € Zso}

such that z is adjacent to y if and only if r; = 0, 7; = 1, and one of the
following conditions is satisfied

o 1, =y, for all 7, or
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ey =y +1,y, = x;+ 1 for some i € {2,...,n}, and z; = y; for

ie {2, np\ )

Another way of describing the adjacencies of 9sG(K) is by defining the
involutory bijections ny, ..., n, in V(3,G(K)), where for i > 1

772'[([['1, e ,xn),O] = [(ZEl — ]_,ZEQ, ey i1, + 17$i+17 Ce . ,In), ]_],
iy, yn), 1 = [(vi+Ly2, o ¥im, ¥ — L Wi, -+, Yn), 0],
and
ml(z1, .. xn),rz] = [(x1,. .., 20), 72 + 1].

Now z is adjacent to g if and only if z = n;(y) for some 4.
Proposition 5.5.1 The graph osG(K) is connected.

Proof
Given two vertices z = [(z1,...,%,),0] and §¥ = [(y1,...,Yn), T3] it is not
hard to see that

g _ (771772)3127@ . (nmn)ynfxn (a_:) if
N2 (mm2) ¥~ (g )8 753 - -« (g )P0 (Z)  if

y=0
j=1.

Hence all the vertices are in the same connected component as = and »,G(K)
is connected.

O

For any face F' of I of rank at least 1 and any vertex = of o,G(K) we
define F(z) as the set of vertices

{z|z = x(z) for some x € (n; | v;is a vertex of F')}. (5.10)
Note that the edge between the vertices Z and 7;(Z) can be also defined by

v;(Z) while the vertex T can be defined by #(z). The following remark follows
directly from the definition of F ().

Remark 5.5.2 Let F' and G be faces of K, and T and y vertices of 235G (K).
If F(z) € G(y) then G(z) = G(7).
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Now we construct a poset Pas(K) including the empty set, V(2,G(K)),
and the set
{F(2)| 2 € V(2sG(K)), F is a face of K}

with the order relation given by the set contention. Note that if v; is a vertex
of F' then

F(z) ={z € V(2sG(K)) | z; = z; if v; is not a vertex of F'}.

First we have to prove that Ps,(K) is an abstract (d + 1)-polytope.

The empty set is F_; and V(2sG(K)) is Fyyq. Clearly F(z) C G(z) if
F < G and we have a proper contention if and only if we F' < G. As a
consequence of this and of Remark 5.5.2 Pys(K) is a flagged poset where
rank(F(z)) = rankc(F)+ 1. Remark 5.5.2 also implies that Pa,(KC) satisfies
the diamond condition.

To prove the strongly flag connectivity note that if f and g are two flags
containing the same vertex, the strongly flag connectivity of IC implies that
we can find the desired sequence of flags between them. Since all the edges
have exactly two vertices we can also find a 0O-adjacent flag to each flag.
The connectedness of o,G(K) finishes the proof. Hence Py (K) is an abstract
(d + 1)-polytope.

Remark 5.5.2 implies that the vertex figure at any vertex is isomorphic
to KC.

Once we know that Pas(K) is an extension (probably not regular) of K
we prove the lattice property.

Let I be a lattice and let F'(Z) and G(7) be two faces of Pos(KC). If they
have a vertex Z in their intersection then F(z) = F(z) and G(y) = G(z). It
follows that the meet of F(z) and G(y) is H(Z), where H is the meet of F
and G. Hence every two elements of Pos(K) have meet. Now Proposition
B.1.1 implies that Pos(K) is a lattice.

5.5.2 The Automorphism Group

Now we prove that Py, () = 25871, To do this we prove first that Ps,(K) is
regular by giving automorphisms o; that send a base flag to its i-adjacent.
Some of these automorphisms are defined in terms of automorphisms of I in
the way described next.

Any ¢ € I'(K) determines a permutation of the (indices of the) vertices
of IC and it induces a bijection ¢’ in V(Pas(K)) given by the corresponding
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permutation 7 of the coordinates of the vetices

(21, 2n)s7a] = [@rys- s Toiuy) 7]

We choose a base flag f of K containing the vertex v; and the edge
between the vertices v, and vy, and the base flag g of Py (K) containing the
vertex Zo = [(0,...,0),0] and the faces F(Z) for each face F' on f.

Since any face of P, (K) is determined by its vertex set it suffices to define
the functions oy, ..., 04 on V(Pas(K)) in the following way.

oil(xy, .. xn), 2] = pi[(x1, ..o ), rz]  fori > 2,
or[(z1,...,2,),0l = pyl(x1, ..., 2,),0],

o1[(z1,.. . x0), 1] = ppller + 1,20 — 1,23, ..., 20), 1],
ool(x1, ... xn),mz) = [(—21,...,—xn),rz + 1]

The proof of the following lemmas is straightforward.

Lemma 5.5.3 Letny,...,n,, 0o be as defined above. Then oy commutes with
n; forj=1,...,n.

Lemma 5.5.4 The functions oy, ...,04 and ny,...,n, defined above satisfy
oinj = Nk0o;
where p;_1(v;) = vy.

It follows from 5.10 and Lemmas 5.5.3 and 5.5.4 that the o;’s map j-
faces of Pas(K) into j-faces of Pos(K). It is also straightforward that o; is
an order preserving bijection of the faces of Pys(K) for i = 0,...,d and that
0i(g) = ¢'. Proposition 2.1.2 implies that P,,(K) is a regular polytope with
automorphism group (ay, ..., 0q).

Now we find explicitely the automorphism group of Pas(K) in a similar
way as for T'(2s*71). First we prove that Py, (K) satisfies the FAP with
respect to its vertex figures.

Proposition 5.5.5 Let K be a reqular polytope. Then the polytope Pag(K)
defined above satisfies the FAP with respect to its vertex figures.
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Proof
For any relation

0104504, = E
we can get another relation of I'(Py,(K)) by deleting all the factors oo’s be-
cause it does not involve permutations of the entries of the vertices but the
other generators do. Proposition 2.2.4 implies that Py (K) satisfies the FAP

with respect to its vertex figures.
O

Now note that each generator ¢togdp~tog); ¢, € (04,...,04), of the
even subgroup of the normalizer N of o in T'(Pa,(K)) acts on the vertices =
of Pas(K) such that rz = 0 by adding 1 to the j-th entry and —1 to the k-th
entry where ¢(v;) = ¢(vx) = v1 (we are considering ¢, ¢ € (01,...,0q4) =
D(K) = {po,-- -, pa-1))-

Since oy is not an element of the even subgroup of N (it changes the
entry in Zsy) it follows that

D(Pos(K)) = (01, 00) % [{(21, -, 20) € Z" | s = 0} x Zy] = T(2551).

Since the identification of the generators oy, ..., 04 of I'(Pas(K)) is the same
as that of the generators py, . .., pg of I'(2s*71) it follows that the polytopes
Pos(K) and 25%~1 are isomorphic.

5.6 An Alternative Construction

In this section we give a construction of another CPR graph of the polytope
2551,

Given a d-polytope K we construct the graph (G**)’ by deleting the ver-
tices v; ; of G**, such that j = 0 or j > s+ 1. We are taking only half of the
vertices of G** (see Figure 5.6).

Note that the graph (G**)’ can be obtained from G** in the way described
in Proposition 3.2.5 by taking A = ()\) as the group of automorphisms of G**
as a labeled graph, where \ is the bijection on the vertex set of G** given by

)\(xi,j) = Ti1—j-

In Figure 5.3, A is a reflection with respect to a line through the center of the
graph that intersects two sets of five red edges that join two pairs of elipses.



78 CHAPTER 5. THE POLYTOPE 2S8%-!

Figure 5.6: The graph (G**)' for s =2 and s =5

It can be proved directly that the graph (G**) is a CPR graph of a
polytope with automorphism group isomorphic to I'(2s*~1) and conclude by
studying the generators that (G2*)' is another CPR graph of 257!, as we
did in Section 5.3. This time we will prove it in a different way.

In order to use Proposition 3.2.5 on G** note that if ¢ € I'(2s*71) is such
that ¢(v) € {v, A\(v)} for all vertex v and ¢(vg) = A(vg) for some vertex vy of
G*, then ¢(v) = \(v) for every vertex v of G** because \ changes the parity
of the second subindex of the vertices. Hence

{0 € D25 1) [ ¢(v) € {v,A(v)}} < (V).

For s > 3, A is the action of no automorphism of K on the vertices of
G?* because it acts like py on Tm,1, but not on z,,3 and, since there is an
automorphism of G** as a labeled graph that takes z,,1 to z,,3 (a rotation
of /2 on Figure 5.3), any automorphism of I has to act like pg in both or
in none of them.

For s = 2, poA corresponds to the element [e, ((1,0,...,0),0)] of

<p17"'7pd> X [Z? X ZQ]

(see (5.8)) but is not an element of

D2 = (p1,...,p40) X {(z1,. .., 20) € Z"| S i = 0} x Zy).

Hence \ corresponds to the action of no element of I'(2s*~1) on the vertex
set of G?¢ for any s.

From the proof of Proposition 3.2.5 we imply that the permutation group
generated by the graph (G*) is isomorphic to I'(2s*~1) with such isomor-
phism mapping the permutation corresponding to the edges of label i to p;.
Hence (G*)' is another CPR graph of the polytope 251
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o

Figure 5.7: CPR graph of the hemicube

This construction has the advantage that needs only s copies of GG, while
graph G?* needs 2s.
Note that if we change the definition of A to

N(wij) = ig—;

then, for s = 2, we can no longer say that A’ corresponds to no action of
an automorphism of I'(2s*~1). For example, Figure 5.7 shows the extension
with X for s = 2 applied to the triangle. That graph is a CPR graph of
the hemicube (apply the petrie operation to the graph of Figure 3.2C), while
218} =~ 9. 92811 ig the cube. In this case X corresponds to the central
involution of the cube.

5.7 Related Extensions

Given a CPR graph G of a d-polytope K we can construct several graphs of
the type of Go, and G**. The only important condition of G to construct
those graphs is to be connected but to get disconnected if we delete the edges
of label 0. In this section we briefly discuss the extensions determined by
these constructions of CPR graphs.

For d > 2 let G = Gy, 4-1 be a connected CPR graph with vertex set
V(G) ={z1,...,x,} of the d-polytope K and let C' be a nonempty family of
connected components of G141, but not the whole graph (if we choose G

.....

.....

the following way.

V(G{Q&C}) = {‘Ii,j 1= 1, c. ,TL,] € ZS},
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and there is an edge between the vertices z; ; and xy, if and only if one of
the following conditions is satisfied.

1) j =1l and {z;, 24} € E(G). The label of {x;;, x),;} will be 1 plus the
label of {x;, ) }.

2) i=keC,j=1+1,]jeven, with label 0.
3) i=k¢C,j=1+1,]jodd, with label 0.

Clearly the graphs G20y and Gyas\¢) are isomorphic.
The proofs of the following results are analogous to those of Theorem
5.1.1 and Proposition 5.1.2.

Theorem 5.7.1 Let G be a CPR graph of the polytope K. Then the graph
G2s,0y described above is a CPR graph of a polytope ZSI{CG_}C} with vertex figure
type isomorphic to K and first entry of the Schldfli symbol equal to 2s.

Proposition 5.7.2 The polytope 23’{%_’10} defined in Theorem 5.7.1 has the
FAP with respect to its facets.

The polytope 2s*~!

-----

.....

By similar arguments to those of Sections 5.2 and 5.3, the automorphism
group of QSI{CGT’ 10} is
(Pos -+ s pa—1) X (H X Zy),

where the group H is a subgroup of {(z1,...,x,) € Z*| > x; = 0} that
depends on the graph G and the set C'. The actions that determine the
semidirect products are the same actions as for the polytope 2571,

We finish this section showing an example of these constructions.

The square has only three connected CPR graphs, they are its Cayley
graph, its vertex CPR graph, and its edge CPR graph (see Figure 5.8, black
=0, red = 1), and they have 4,2 and 3 connected components respectively if
we eliminate the edges of label 1. Applying these constructions with s = 2,
we get the following toroidal polyhedra.

1) {4,4},0) when we take the edge CPR graph with C' a component with
a single vertex (see Figure 5.9 A, black = 0, red = 1, blue = 2) or the
Cayley graph with C' a single component.
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SETNE

Figure 5.8: Connected CPR graphs of the square

B ‘ [ C
Figure 5.9: CPR graphs of {4,4} 0y, {4,4}22) and {4,4} .0

2) {4,4}(2,2) when we take the vertex CPR graph with C' any of its two
components (see Figure 5.9 B) or the Cayley graph with C' consisting
of two components that have an edge of label 1 (red) between them.

3) {4,4}2,0), when we take, and when we take the edge CPR graph with
C' the component with an edge of label 0 (see Figure 5.9 C) or the
Cayley graph with C' two opposite components.

5.8 Remarks

The polytope 25! in the way constructed in Section 5.3 gives an affirmative
answer to the extension problem for even last entries of the Schlafli symbol.
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Additionally it satisfies the FAP with respect to its vertex figures and the
finiteness and lattice properties.

Michael Hartley proved in [10] that, for n > 3, no n-hemicube can be
extended with an odd number as last entry of its Schlafli symbol. This gives
a negative answer to the extension problem for odd last entries of the Schlafli
symbol. It remains open to give sufficient conditions on K that guarantee the
existence of extensions of K with odd numbers as last entry of the Schlafli
symbol.

In [23] Egon Schulte shows that if the vertex figures of a polytope P are
isomorphic to the facets of a polyope Q, and additionally P has the FAP
with respect to its vertex figures and Q with respect to its facets, then the
set of amalgamations of P and Q is not empty. Moreover, if P is the dual of
Q then there is a self-dual amalgamation of P and Q. In the same paper he
states the following conjecture.

Conjecture 5.8.1 Given a self-dual reqular (d—1)-polytope KC there is a self-
dual regular (d+1)-polytope Q such that its medial section {F |Fy < F < Fy}
(Fo and Fy are incident vertex and facet respectively) is isomorphic to K and
the first and last entries of the Schldfli symbol are equal to a preassigned
natural number n.

They already knew that the conjecture is true for n = 4, 6.
This conjecture is now proved for n even by taking an amalgamation of
2(n/2)*~1 and its dual. However it remains open for n odd.



Chapter 6

Extensions of Dually Bipartite
Polytopes

In this chapter we construct extensions with an even number as last entry of
the Schléifli symbol of regular polytopes such that the 1-skeleton of their duals
are bipartite, and their automorphism groups act faithfully on the facets.

This extension is related to two extensions discovered by Egon Schulte
(see [19], [20], [21] and [22]) that can be applied to any polytope such that
its automorphism group acts faithfully on its facets. The last entry of the
Schlafli symbol of those extensions is 6. One of those extensions is equivalent
to the extension described in this chapter for s = 3 since for that case the
bipartition on the facets of the polytope is not needed. Unfortunately for the
remaining values of s the construction does not give as a result an extension
of the polytope if its facet graph is not bipartite.

6.1 Previous results

In this chapter we refer mostly to the class of regular polytopes defined next.

Definition 6.1.1 A regular dually bipartite polytope is a reqular poly-
tope that satisfies that

e its automorphism group acts faithfully on its facets and

o the 1-skeleton (the graph determined by the vertices and edges of the
polytope) of its dual is a bipartite graph.

83
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Before explaining the constructions, some results on the facet CPR graphs
of these kind of polytopes are necessary.

Remark 6.1.2 Let K be a regular polytope and let G = Gy, q4-1 be its j-
faces CPR graph. Then, the vertex of G corresponding to the base j-face of
K has degree 1, and the edge incident to it has label j.

Proposition 6.1.3 Let KC be a reqular dually bipartite polytope and K* its
dual. Then, the miz IC*Q{ } is isomorphic to K*.

Proof
It follows from Theorem 2.3.7.
O

As a consequence of Proposition 6.1.3 we have the following corollary.

Corollary 6.1.4 Let G be a CPR graph of the reqular polytope K. Then
the graph obtained from G by adding two vertices and an edge of label d — 1
between them is another CPR graph of K.

The facet CPR graph G of a regular dually bipartite polytope IC behaves
well with respect to the bipartition of the vertices of G corresponding to the
bipartition of the facets of C. This is described by the following results.

Lemma 6.1.5 Let K be a reqular dually bipartite d-polytope with bipartition
U,V of its facets, then pq_1 induces a perfect matching on the facet CPR
graph of IC such that each edge of color d — 1 is incident to a vertex corre-
sponding to a facet in U and a vertex corresponding to a facet in V.

Proof

Suppose without loss of generality that the base facet F' is an element of U.
While pg_; moves F' to an adjacent facet F’, F’ has to be in V. In order to
preserve the bipartition in the facets, the image under p;_; of any facet in
U has to be in V' and vice versa. This induces the perfect matching required

on the vertices of the facet CPR graph.
O
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Figure 6.1: Facet CPR graph of a regular dually bipartite polytope

Lemma 6.1.6 Let IC be a regular dually bipartite d-polytope with biparti-
tion U,V of its facets, then every edge of labels 0,...,d — 2 joins vertices
corresponding to two facets in U or two facets in V.

Proof
Let F' be the base facet of IC. Then, p; fixes F' for k=1,...,d— 2. In order
to preserve the bipartition in the facets, the image of any facet in U under
pr has to remain in U, and the image of a facet in V' under p; has to remain
inV.

O

Proposition 6.1.7 The facet CPR graph of every reqular dually bipartite
polytope has an even number of edges of label k for k =0,...,d — 3.

Proof
This follows from the commutativity of p;_1 with p, for £k = 0,...,d — 3,
Proposition 3.2.1 and Lemmas 6.1.5 and 6.1.6.

O

We now know that the facet CPR graph of a regular dually bipartite
polytope looks like the one in Figure 6.1. The sets U and V' correspond to
the sets of the bipartition of the facets of the polytope. The vertex at the
right belongs to V' and represents the vertex corresponding to the base facet.
The black edges represent the perfect matching between U and V' of edges
of label d — 1 and no other edge joins a vertex on U to a vertex on V.
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Figure 6.2: Graph G,

6.2 The main extension

Once we have the necessary results we proceed with the construction.

Let IC be a regular dually bipartite polytope, G = Gy,.._4—1 its facet CPR
graph and let s > 3. We now construct a new graph G,(K) = G, by adding
to G an alternating path of length s — 2 of colors d and d — 1 to the vertex
x correspondent to the base facet. Then, in G, the path P of labels d and
d—1 of maximal length including x has length s—1, and includes the vertices
V1, ooy Vs = pa(T),v5-1 = and vy = pg_1(x). (see Figure 6.2).

Proposition 6.1.7 implies the following remark.

Remark 6.2.1 Let G be the facet CPR graph of a regular dually bipar-
tite polytope IC. Then the graph G4 has an even number of edges of colors
0,...,d—3.

Now we prove that the graph G, is a CPR graph of an extension of K.

Theorem 6.2.2 Let K be a regular dually bipartite d-polytope of Schlafli
type {p1,...,pa_1} with G its facet CPR graph, and let d > 2 and s > 3.
Then the graph G, constructed as above is a CPR graph of a d + 1-polytope
Q,(K) = Qg with facets isomorphic to IKC and Schlifli symbol {p1, ..., pa—1,5}
is s is even, or {pi,...,Ppi-1,2s} if s is odd.

Proof

We can easily see that this construction with s = 3 leads to the extension
introduced in [20]. For that particular construction, the intersection prop-
erty had already been proved in that paper. We use this fact to prove the
intersection property in general.

Let I'(K) = {po, - . -, pa—1), let p; be determined by the edges of label i in
Gy, and let ¢ € (po, ..., pa_1) N {pj,-..,pa). We may assume that ¢ fixes v;
for j =1,...,s—2 and thus preserves the sets U and V shown in Figure 6.1,
otherwise we take py_1¢ instead of ¢.
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Let pl,_; and p), be ps—1 and pg respectively restricted to the vertex
set of the original graph G and v,_5. We can construct an element ¢’
in (po,...,pda-1,p}_;) from any expression of ¢ in terms of py,..., ps—1 by
changing every factor p;_; to a factor pj,_,. Then the actions of ¢ and ¢’ on
V(G) U{vs_2} are the same. In particular ¢’ also fixes the sets U and V.

Lemma A.2.1 implies that (p;,..., pa—2, py_1,p};) contains a symmetric
group on the vertices of the connected component of z on (GU{vs_2}); j+1,..4-
Since the remaining connected components of (G U {vs_2});j+1,..4 are also
connected components of (@s) j.j+1,...d it is not hard to see that the subgroup
of (p;, ..., pa) that fixes v; for j =1,...,s—2is contained (as actions on the
vertices) on the subgroup of (p;, ..., pa—2, pli_1, py) that fixes v,_;. Hence we
can also get an expression for ¢’ in terms of p;, ..., pi—2, Pli_1, Py-

This means that ¢’ € (p;,...,p}_,) in the construction with s = 3, but
then we can find an expression for ¢ in terms of p;, ..., ps—1 by changing the
factors pl,_; to pa—1 of any expression of ¢’ in terms of p;, ..., pa—2, p,_; (this
can be done because ¢’ fixes the sets U and V'), and the intersection property
holds for s < 3.

The facet of Q; is isomorphic to I because of Corollary 6.1.4, and the last
entry of the Schlafli sybol can be easily obtained from the polygonal action
of (pa — 1, pa) on the connected components of G414 and the fact that G
has at least two edges of label d — 1 (see Lemma 6.1.5).

O

In order to describe the automorphism group for this construction we will
discuss the cases s even and s odd separately.

6.2.1 s even

For s even, the first and last edges of P will be of color d—1, and the graph G,
will have a bipartition of the vertices into sets U’ and V' of the type described
on Lemmas 6.1.5 and 6.1.6 (see Figure 6.3). Proposition 3.5.1 implies that
the automorphism group of Q; is a semidirect product (pg_1) x H, where the
elements of H are pairs (o, 7) with o € Sy and 7 € Sy, and pg_1 acts on H
by interchanging the entries of the elements.

The actions of pg and pg_1pgpqs—1 on the vertex set of G, are given by the
involutions

Pd = (I'Us—Q)(Us—3Us—4) cee (U3U2)
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Figure 6.3: Graph G, for s even

pa—1 = (Vs0s-3)(Vs—Vs—5) ..., (v4v1).

Now we find certain conjugates of pg in T'(Q,) whose action on V(G,) is the
same of pg or pg_1papq—1 except in one transposition.

Without loss of generality assume x € U and let y € V(G,)\{v1,...,vs 2}
and ¢ € (po, ..., pa—1) such that ¢(y) = x. Then

_ pa (T Vs—2)(y Vs ity eU,
pup = { P17 ) o) . (6.1)
Pa-1Pdpd—1 (Vs Vs—3)(y vs—g) ify eV
(see Figures 6.2 and 6.3). Now we have
pad~'patp = (wvs_oy) foryeU, 6.2)

Pd-1PaPd-—10 'pad = (vsvs_3y) for (y) € V.

By Lemma A.2.2 we can obtain any 3-cycle in Ayyg,_,y and in Ayyg,, 3.
Now we consider the element (pgpq_1)?, that induces two disjoint cycles, one
of them on the set U’ N P, and the other on V' N P. Conjugating a 3-cycle
including x (or pg—1(z)) with this element we obtain all the necessary 3-cycles
including elements of U’ (or V) to use Lemmas A.2.2 and A.2.3 and conclude
that

A, x A, <H<ZS, xS,

where n is the number of vertices in U’ (or V).

By Proposition A.3.2, H is isomorphic A, x A,,, S, XS, or (S, X S,)] (A4, X
Ay).

If G, has an odd number of edges of color d — 2 (or of color d), say an odd
number in U’ and an even number in V', then, we can multiply ps_o (or pg)
by (pd,g)"vl, (or (pd)"vl,) in order to get an element (o, Id) € Aut(G,) with o
odd. In this case,

['(Qs) =[Sy X Sy X Zs. (6.3)
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Figure 6.4: Graph G, for s odd

Now, if G, has an even number of edges of colors d — 2 and d, but there
is a color k € {1,...,d — 2,d} such that U" has an odd number of edges of
color k, then

0(Q,) 2 {(Sy % Su)(Ap X An)} % Zo. (6.4)

Finally, if both, U’ and V'’ have an even number of edges of colors
1,...,d— 2 and d, then

T(Q,) & [A, x Ay] x Zo. (6.5)

6.2.2 s odd

If s is odd then the edge between v; and vy has label d (see Figure 6.4). In
order to find T'(Q;) we proceed in a similar way to the case s even.

Assuming that x € U’ the conjugate of pg with an element ¢ € (py, ..., pa_1)
is again

—1 Pd (ZE Us—?)(y Us—2) if y e Uu
Gpap~ = .
Pd—1PdpPd—1 (Vs Us—3)(y vs—3) ify eV,

where ¢(y) = x (see (6.1)), and we can also get the 3-cycles

pad 'pad = (zvs_9y) forye U,
Pa-1papa-19 " pad = (vsvs_gy) for d(y) € V;

but now vy = (pgp4_1)*(vs). Since vy and v belong neither both to U’, nor
both to V', we have that (pgpq_1)* doesn’t fix U" and V' (as sets) any longer.
Actually, (pgpq—1)? induces a cycle including all the vertices of P while the
remaining vertices of G, remain fixed (this can also be seen in the connected

components of (Gs)4-1,4 because P is a path of even length). Lemma A.2.3
allows us to obtain the 3-cycles in U U{vs_o} and V U {vs_3} as well as their
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A B C D
Figure 6.5: Connected components

conjugates by_(pdpd,l)Q, so A, < Aut(Q;) < Sy, where n is now the number
of vertices of Gj.

If G, has an even number of edges of each label k for k =d —2,d — 1,d,
then

Aut(Q,) = A, (6.6)

and if there exists k € {d — 2,d — 1,d} such that G, has an odd number of
edges of label k then

Aut(Q,) = S,. (6.7)

6.3 Results and examples

The result of the construction described above applied to the square with
s = 4 is the toroidal polyhedron {4,4} ). The relation (pop1p2p1)® can be
derived directly from the graph of the construction, that is shown in Figure
6.5 A.

However the construction applied to every regular dually bipartite polyhe-
dron K with Schlafli type {p, 4}, except m({4,4}30) (here m means the petrial
operation, see Section 2.3, and Figure 6.6 for its facet CPR graph), gives rise
to a polytope Q4 with Schlafli type {p, 4,4} with vertex figure isomorphic
to {4,4},0)- This is because the CPR graph of the vertex figure of Q4, ob-
tained from the graph G of the construction by deleting the edges of label 0,
will have as connected components some copies of the graphs in Figure 6.5.
If the graphs B or C of this figure are connected components it is easy to
see that the vertex figure of Q4 is the polyhedron {4,4}300{} = {4,4} 6.0
(see Theorem 2.3.7). The vertex figure of Q4 will be isomorphic to {4, 4} )
only if there is only one edge of label 1 in the facet CPR graph of K, but
the only regular dually bipartite polyhedron satisfying this extra condition
is precisely m({4,4}3,0).
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Figure 6.6: Connected components

Since symmetric and alternating groups are involved in the automorphism
groups of the extensions described in this chapter we expect no centrally
symmetric polytopes as a result of this constructions.

Proposition 6.3.1 For any polytope K and s < 3, the polytope Qs(K) de-
seribed in Section 6.2 is not centrally symmetric.

Proof
The center of any of the groups A,,, S,, A, x A,, S, x S, and (A, x A,)U
(Sn x Sp)](A, x A,) is trivial.

O

Now we explore the polyhedra obtained by this construction applied to
polygons. Since the automorphism groups involve symmetric and alternating
groups, the genus of the polyhedra are expressions involving factorials that
are not to hard to obtain but make little contribution to this work, so we
omit them. Note that the n-gons with n odd are not dually bipartite, so we
restrict ourselves to the polyhedra Qs({2n}).

Proposition 6.3.2 For all n < 2 the polyhedron Q,({2n}) with s odd is
non-orientable.

Proof
Let e; be the number of edges of label i in G for i = 0,1, 2. Then e; is even
(odd) if and only if p; induces an even (odd) permutation of the vertices of

Gs.

If ey, e1, ey are even, then the I'(Q,({2n})) = A, and Q4 ({2n}) cannot
be orientable because A,, has no subgroup of index 2.

Now assume that e; is odd for some 7. From Figure 6.4 we can see that
e1 = eg + eo, hence at least one of eq,es,e3 is even. Then at least one of
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Figure 6.7: CPR graph of Qg({10})

PoP1, PopP2, p1p2 induces an odd permutation on the vertex set of G,. Since
A, is the only index 2 subgroup of S, it follows that the even subgroup is
the whole group I'(Qs({2n})) = S,.

O

For s even we will use Proposition A.3.3 and the action of pgp, pop2 and
p1p2 on the vertex set of G to determine when the polyhedron Qy,({2n}) is
orientable.

The action of pop; on the vertex set of G is the product of transpositions
determined by the edges of label 0 composed with the interchange of the
vertices in U’ with their correspondents in V'. Analogously the action of p;ps
is the product of transpositions determined by the edges of label 0 composed
with the interchange of the vertices in U’ with their correspondents in V” (see
Figure 6.3). Finally the action of pyps is simply the product of the n+s/2—1
transpositions induced by the edges of labels 0 and 2. See Figure 6.7 for the
CPR graph of Qg({10}).

In Table 6.1 we give the automorphism group of Qs({2n}) for s even and
for different cases of values of n and s/2. The first two columns indicate that
n and s/2 are even, odd, or congruent to the number in the table modulo
4. The elements of the even subgroup of I'(Qs({2n})) are of type [(o, 7), 7],
where o and 7 are permutations of the vertices in U’ and V' respectively.
We have that x = 0 if the element fixes the sets U’ and V', and x = 1 if
the element interchanges these two sets. Note that x = 1 for pgp; and p;p9,
and = 0 for ppps. In the column of p;p; we put “even” (“odd”) if o and
7 are even (odd) permutations for that generator of the even subgroup of
['(Qs({2n})), and we put “both” if o is odd and 7 is even or vice versas.
Observe that for s even the dual of Q4({2n}) is the polytope Qs,({s}) (see
Figure 6.7), so there are no more necessary rows in Table 6.1.

Now it is clear that if n and s/2 are even the three generators of the even
subgroup of I'(Qs,,({s})) are in

{a)] 7€ {(Sux Sul(An x A}, =0;
or 7€ [(Sn~ An) X AU A X (Sy~ A,z = 1}.
Hence the polyhedron Qy,({s}) is orientable.
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n | s/2| pop1 | p1p2 | Pop2 I'(Qs)
= =0 | both | both | odd (Sn X Sp) X Zs
= = 2 | both | both | even (Sn X Sp) X Zs
= =2 | both | both | odd (Sn X Sp) X Zs
even | =1 | both | even | both (Sp X Sp) X Zs
even | =3 | both | odd | both (Sn X Sp) X Zsg

= =1 | even | even | even (A, X Ay,) X Zs
=1 |=3|even | odd | odd | (S, x S,)|(A, x A,) x Zy
=3 | =3| odd | odd | even | (S, X S,)|(A, x A,) x Zy

Table 6.1: Parameters of Q4({2n}) for s even

If n is even and s/2 is odd or n is odd and s/2 is even, then pyps is of
type [(o,7),0] with ¢ even and 7 odd or ¢ odd and 7 even. Proposition A.3.3
implies that the even subgroup of I'(Qy,({s})) is either (S, x S,) x Zs or
[(Sy, x Syp),0], but since pop; and p1ps do not belong to the second group
we have that the even subgroup of I'(Qs,({s})) is of index one, and hence
Q5. ({s}) is non-orientable.

Similarly, if n is congruent to 1 and s/2 is congruent to 3 modulo 4 or
vice versa, then pgp, is not an element of the groups 5) and 6) of Proposition
A.3.3. The even subgroup of I'(Qs,({s})) cannot be the group 4) of Propo-
sition A.3.3 because pop; and p1ps interchange U’ and V| so it is an index 1
subgroup and Qs, ({s}) is non-orientable.

If n and s/2 are congruent to 3 modulo 4 the even subgroup of I'(Qa,, ({s}))
is

{(na)] e (AxA)z=0;
or TE (SpAy) X (Sp~ Ay a= 1}.

and Qs,({s}) is orientable.

The only subgroup of index 2 of (A4,, X A,,) X Cy is A, X Ay, but popy
and pypo interchange the sets U’ and V’. Hence the polyhedron Qa({2n})
is non-orientable if n and s are congruent to 1 modulo 4.

Now we can state the following theorem.
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Figure 6.8: CPR graphs G’ of the reflection and half turn constructions

Theorem 6.3.3 The polytope Q;({2n}) for s even is orientable if and only
if n and s/2 are both even or both congruent to 3 modulo 4.

6.4 Reflection and half turn constructions

Given a regular dually bipartite polytope K with facet CPR graph G, and
the graph G,(K) described in Section 6.2, we can construct a CPR graph
G (K) = G, of another extensions R for I in the following way.

We take two copies of Gy and join the last vertices of the corresponding
paths P by an edge of label d if s is even, or of label d—1 if s is odd (see Figure
6.8). The following result shows that this is a CPR graph of an extension of
K.

Theorem 6.4.1 For s > 3 and for any reqular dually bipartite d-polytope IC
with Schlifli symbol {p1, ... ,pa-1}, the graph G'(K) described above is a CPR
graph of a regular d + 1-polytope Ry with Schlifli symbol {p1,...,ps—1,2s}
and facets isomorphic to K.

Proof
The intersection property can be checked in a similar way than the one in
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theorem 6.2.2, the last entry of the Schlafli symbol can be obtained from the
polygonal action of the corresponding generators on G(K), and the facet
type follows from Proposition 6.1.3 and Theorem 2.3.7.

O

It can be seen immediately from Figure 6.8 that this construction has a
suitable drawing in the plane such that allows a reflection symmetry if s is
even, and a half turn symmetry if s is odd. From now on, this construction
for s even will be the reflection construction, and for s odd will be the
half turn construction.

Since we have a bipartition of the vertices of each copy of the graph G,
constructed in Section 6.2 satisfying the conditions of Lemmas 6.1.5 and
6.1.6, we also have a bypartition of the vertices of the CPR graphs of the
reflection and half turn constructions in the sets U” and V" shown in Figure
6.8 that also satisfy the conditions of Lemmas 6.1.5 and 6.1.6.

Proposition 3.2.5 implies that I'(Q4(K)) is a quotient of I'(R4(K)), and

['(R(K)) = T(Qs(K)) x N (6.8)

with NV defined as in Lemma 3.2.4.

Now we derive the automorphism groups of the reflection and half turn
construction separately. It can be done by different ways but we think this
is the simplest.

6.4.1 Half Turn construction

Let 1 denote the half turn symmetry of G’,. We recall that
N={peI'(K)|¢(v) € {v,n(v)} for all v € V(G)}.

Since 7 interchanges the sets U” and V" (see Figure 6.8), and a vertex v
of G is in U” if and only if n(v) is in V", we have that N is either {¢} or
(A) where A is an automorphism of Ry whose action on the vertex set of G/,
is 1. Proposition 3.2.3 implies that if A is an automorphism of R, then it is
a central involution.

The set U” (or V") contains exactly one element of each orbit of vertices
of G', under the action of (n). This implies that

A :={¢ € I'(Ry) | ¢ fixes the sets U"” and V"} 2 T'(Qy).
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It follows that the half turn 7 is an element of I'(R) if and only if A contains
the product of all the transpositions of type (ab) where b = npg_1(a), but
this occurs if ['(Qy) = S, and if I'(Q,) = A,, and the number of vertices in
U" is congruent to 1 modulo 4 (note that this number cannot be even). Now
(6.6), (6.7) and (6.8) imply the following.

Let IC be a regular dually bipartite polytope, k, t and m be the number
of edges of labels d — 2, d — 1 and d respectively on the graph G’ of the half
turn construction, and let s < 3. Then if £ or m are odd then

['(Qs(K)) =2 S, X Za,
if K and m are even and t is congruent to 1 modulo 4 then
F(QS(/C)) = A, X Zo,
and if £ and m are even and ¢ is congruent to 3 modulo 4 then
[(Qs(K)) = S,

The polytope Q4(K) is centrally symmetric if and only if the half turn
is the action of an element ¢ € I'(Q4(K)). It is clear now that this happens
always except if k and m are even and t is congruent to 3 modulo 4.

6.4.2 Reflection Construction

For s even, let £ denote the reflection symmetry of G’,. Then
N={pecT'(K)|p(v) € {v,&(v)} for all v € V(G)}.

Now it is possible to have ¢(u) = &(u) and ¢(v) = v for two vertices u
and v of G and ¢ € I'(R4(K)).

Let W be one of the subgraphs of G”, isomorphic to G,. Then W contains
exactly one element of each orbit of vertices of G, under the action of (£).
We name again vy, . .., vs the vertices in W corresponding to the path P as in
Figure 6.2. Then we have to determine when there exists an automorphism of
R whose action on the vertex set of W is the transposition (v, pg—1&(v1)),
and by conjugacy, obtain automorphisms whose actions are the remaining
transpositions (v, pg—1£(v)). Equivalently, we have to determine when it is
possible to obtain an automorphism of Ry whose action is the permutation

<U2, U3) T </05727 Usfl) <§(’U571)7 5(0572)) e <f(?}3)> 5(02))- (6.9)
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Note that when we use p; we are interchanging a vertex of W with a vertex
outside W. In the cases when it is not possible to obtain such automorphism
it will remain to determine the permutations induced by the action of auto-
morphisms of R, on the vertex set of G, that include a single transposition
of type (v, pg-1£(v)).

Let n be half of the vertices of W, then equations 6.1 and 6.2 still hold.
Similar arguments than those used to derive equations (6.3), (6.4) and (6.5)
imply that the permutation in (6.9) is the action of an automorphism of R
if

e W has an odd number of edges of label d — 2,

e IV has an even number of edges of label d —2 and the numbers of edges
of labels d and k are congruent to 2 modulo 4 for some k € {0, ...,d—2},
and

e The number of edges of every color is a multiple of 4.

In this case
['(Rs) = T'(Q;s) X Zg”,

where I'(Q,) acts in Z3" by permuting the coordinates of the elements (note
that an element of Z2" has as many coordinates as W vertices). It follows
that the semidirect product is actually a wreath product.

The remaining cases are when W has an odd number of edges of label d
and an even number of edges of label d — 2, and when the number of edges
of label d in W is congruent to 2 modulo 4 and the numbers of edges of
labels k& are multiples of 4 for k € {0,...,d — 2}. In the first case there is
no automorphism of R, having the permutation in 6.9 as its action on the
vertex set of W, but there is one whose action is

<Uz,v3) Tt <Us—4,vs—3) <§(Us—3)a 5(%—4)) <5(U3)75(U2))-

This implies that whenever we interchange only one vertex v of W (or an
odd number of them) with 7(v) we get an odd permutation on the vertex set
of W.

In a similar way, if the number of edges of label d in W is congruent
to 2 modulo 4 and the numbers of edges of labels k& are multiples of 4 for
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k€ {0,...,d — 2} there is an automorphism whose action on the vertex set
of W is

<U2> vg) e (7)5767 vsfs) (6(’0875)7 6(0576)) e <€(vs), f(vz)),

implying that whenever we interchange only one vertex v of W (or an odd
number of them) with n(v) we get a permutation in (S, X S,,)|(A, X Ap) X Zs
on the vertex set of W.

Now we describe explicitly the automorphism groups.

Let K be a regular dually bipartite polytope with G its facet CPR graph.
Let G, be the graph explained in Section 6.2 for s even, let n be half of its
number of vertices and let e; denote the number of edges of label i in G for
i=0,....d

Let Nj be the subgroup of [(S,, X S,) X Zs| 1 Zs consisting of the elements

(71, T2, Y, T1, - -, Tam) € [(Sh X Sy) X Zg] X z3"

with 77 even if > x; = 0, and 775 odd if > 2; = 1; and N, the subgroup
where 71, 75 are even if Y x; = 0 and 7y, 75 are odd if > x; = 1.
If e4_9 is odd then

T(Rs(K)) = [(Sy X Sp) X Zs) 1 Zs,

if e4_o is even and ey, e are congruent to 2 modulo 4 for some k € {0,...,d—
2} then
T'(R(K)) = [(Sy x Sp)](An X Ap) X Zs)| 1 Zs,

if e; is a multiple of four for ¢ =0,...,d — 2,d then
[(Rs(K)) = [(An X An) X Zo] 1 2o,
if e4 is odd and e;_o is even then
[(Rs(K)) = Ny,

and if ey is congruent to 2 modulo 4 and e; is a multiple of four for ¢ =
0,...,d— 2 then
['(Rs(K)) = Na.

In all the cases Zs acts on the corresponding group by interchanging the en-
tries of the elements so we actually have a permutation group on 2n elements
(vertices of W).
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Note that the involutions (a,&(a))(b, £(b)) are always actions of automor-
phisms of R4(K)). Since W has an even number of vertices the reflection is
always the action of an element ¢ € I'(Rs(K)). Hence the polytope R4(K))
is always centrally symmetric (see Proposition 3.2.3).

The extensions described in this chapter will be published in [17].






Chapter 7

Open questions

In this chapter we expose some open questions originated by the definitions
and results of this work.

7.1 CPR Graphs

The main problem to determine whether a d-edge labeled graph is a CPR
graph or not is to verify the intersection property.

Question. Give a characterization of the intersection property for proper
d-edge labeled graphs.

It is hard to work with some aspects of the permutation groups, for exam-
ple to determine the number of elements of the subgroup of S,, generated by
certain elements. This makes a hard task to determine most of the properties
of a polytope even if we have a CPR graph of it.

Question. Give two CPR graphs, are there any criteria to determine if
they represent the same polytope?

Question. Given a disconnected CPR graph of a polytope I, how can
we find a connected CPR graph for 7

Question. Given a CPR graph G of a polytope I, is there a procedure
to find the Cayley graph of K from the properties of G as a graph?

7.2 Polyhedra

In Aveiro, 2006, Roman Nedela talked about gquiral maps (maps with two
orbits of flags under the automorphism group in such a way that adjacent

101
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Figure 7.1: The graphs G and G5 for d =4

flags belong to different orbits) with alternating automorphism group. He
showed conditions for p and ¢ in order to allow infinitely many polytopes
with Schléfli symbol {p, ¢} with alternating automorphism group.

Question. For what p and ¢ are there infinitely many regular polyhedra
with Schlafli symbol {p, ¢} and alternating automorphism group?

In Section 4.2 we explain that all the proper 3-labeled graphs with 7
vertices are CPR graphs of polyhedra with automorphism group isomorphic
to S7. It is not hard to see that if we consider all the proper 3-labeled graphs
with 5 vertices we get CPR graphs of the seven polyhedra with automorphism
group S5 and the three with automorphism group As.

Question. Is any proper 3-labeled graph with p vertices, a CPR graph
of a polyhedron with alternating or symmetric automorphism group, for any
prime number p?

7.3 Extensions

The d-simplex {3%} can be extended with any number m at the end in the
following way. Take the vertex (of facet) CPR graph G; this is a path of
length d with the i-th edge of label ¢ — 1. There is a vertex u such that only
one edge of label d — 1 is incident to it. Add to u an alternating path of
labels d and d — 1, of length m — 3 to obtain a graph G,, (see Figure 7.1 for
an example). The intersection property follows from Proposition 2.1.4 and
the fact that ['({3?}) = S,,1. Moreover, the last entry of the Schléfli symbol
is m due to the polygonal action of (p4_1, pa) in (Gp,)d — 1,d.

Question. Give necessary conditions for a regular polytope K in order
to accept extensions with any number m > 3 as last entry of the Schlafli
symbol.

And in particular,
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Question. Can the regular dually bipartite polytopes be extended with
any number as last entry of the Schlafli symbol?

Conjecture 5.8.1 remains open for odd numbers n. We restate it like the
following question.

Question. Given a self-dual regular (d — 1)-polytope K, is there a self-
dual regular (d+1)-polytope Q such that its medial section {F' |Fy < F' < Fy}
(Fy and Fj are incident vertex and facet respectively) is isomorphic to K and
the first and last entries of the Schldfli symbol are equal to a preassigned odd
natural number n < 37.






Appendix A
Algebra

This appendix contains the purely algebraic definitions and results used in
the previous chapters, all of them on group theory.

In all the work we may denote the identity element of any group by e,
and we denote the alternating and symmetric groups on any set M by A,
and Sy, respectively.

A.1 General Results

Every group acts in a natural way on the left (right) cosets of any of its
subgroups. We say that this action is faithful if the only element of the group
that fixes all the cosets is €. The following two results give an equivalence
for a group acting faithfully on the cosets of one of its subgroup.

Lemma A.1.1 Let G be a group, H < G. Then, G acts faithfully on the
set of left (right) cosets of H on G if and only if

ﬂ g 'Hg=¢ (A.1)

geEH

Proof
Let S be the symmetric group on the left cosets of H, and H be the left side
of equation A.1. The natural action given by

G— S
g—9,
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where g(kH) = (gk)H acts faithfully if and only if € is the only element that
fixes all the left cosets.
We can easily see that gg is such that gokH = kH for all k € G if and
only if go € H. This finishes the proof.
O

Lemma A.1.2 Let G be a group, H < G. Then, H contains no normal
subgroup of G different from {e} if and only if

(Vg ' Hg = {e} (A2)
geG
Proof
Let H be the left part of equation A.2.
If H contains a normal subgroup H’ of G, then H' C H. In the other
hand, H < G. To see this, note that

ht (ﬂ g_ng> h = m h g 'Hgh = m ¢ 'Hy.

geG geG geG

A.2 Symmetric and Alternating Groups

The following results are a useful tool to determine that a group G is isomor-
phic to the symmetric group Sy, or the alternating group Ay, once we have
a description of GG as a permutation group on the set M. More information
about these results can be found in Rotman [18].

Lemma A.2.1 If a subgroup I" of S,, contains the transposition (n—1 n) as
well as a subgroup acting transitively on {1,...,n— 1} while keeping n fized,
thenI' = S,,.

Lemma A.2.2 If a subgroup I' of S,, contains all the 3-cycles of the form
(ijk), k€ {1,...,n}\ {4, 4} for any fized i and j, then A, <T < S,.

Lemma A.2.3 If a subgroup T of S, contains the 3-cycle (n—2 n—1n) as
well as a subgroup acting transitively on {1,...,n—2} while keepingn—1,n
fized, then A, <T.
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A.3 Index 2 Subgroups

Now we present some notation and results involving index 2 subgroups of
certain groups.

Given a group A and an index 2 subgroup A there exists an index 2
subgroup of A x A consisting in the pairs such that both or none of the
elements are in A.

Notation A.3.1 Let A be a subgroup of index 2 of A. The group
[A X AJU[(AXxA)\ (A xA)

will be denoted by (A x A)](A x A).

Proposition A.3.2 Let A be a subgroup of index 2 of A, and a € Aut(A x
A) be the automorphism interchanging the entries of the elements. Then the

only groups I" invariant under conjugation by «, and such that A x A <T' <
A x A are

e A XA,
e (AXA)|(AXxA), and

o A X A.

Proof

The quotient (A x A)/(A x A) is isomorphic to Zy X Zg, that has three sub-
groups of index 2. By the one to one correspondence theorem (mentioned in
[11] as the fourth isomorphism theorem), A x A has three subgroups of index
2 containing A x A. The subgroups A x A and A x A are not invariant under

conjugation by «, so the proposition holds.
OJ

Proposition A.3.3 The index 2 subgroups of (S, X Sp) X Zy are
1) {(r,0)[ 7 € Sn X Sn}

2) {(Sn X Sp)|(An X Ap)} X Zs
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3) {(T, 2) |7 € {(Sn % S)](An x A,)},z = 0;
orT € [(Sn ~ An) X An] U [Ap X (S~ Ap)], 7 = 1};

and those of {(S, % Sp)](An X An)} X Zy are

4) {(7,0) |7 € (Sn % Sn)l(An x An)}
5) (A, X A,) X Zy

6) {(T,x)\T € (A, x Ay),z = 0;
orT € (S, N Ap) X (SN Ay),x = 1}.

Proof
The group A, x A, has no index 2 subgroups, otherwise such a subgroup
should induce an index 2 subgroup of A,. It follows that any index 2 sub-
groups of (S, x S,,) X Zy and {(S,, x S,)](A, X A,)} X Zy contain the normal
subgroup group {(7,0) : 7 € A, x A, }.

Note that the quotient

(S, % S,) NZQ/{(T,O):TeAnxAn}gD4,

and
(S % Su)](An x A,)} % Zg/{(T, 0):7€ A, x A,) =72

The one to one correspondence theorem applied to (S, x S,) % Zs and
{(Sn x Sp)](An x Ap)} X Zy, and their normal subgroup {(7,0) : 7 € A, x A, }
implies that there are only three index 2 subgroups of each of these two
groups. It is straightforward to check that they are the ones mentioned in
the proposition.

O

A.4 Semidirect and Wreath Product

Given a group A, if there exist two subgroups A and I" of A such that A = AT’
and A < A, then for any v € I" there is an automorphism ¢, of A given by
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conjugacy by ~. This induces an action of I' on A that determines the
multiplication rule

(01,71) - (02,72) = (07 - (O (2),7172)-
We say that A is a semidirect product of A and I' and we denote it by
A=AxT=TxA.

A particular case of a semidirect product is the wreath product explained
next.

Definition A.4.1 Let A be a group and A a permutation group on the set

{1,...,n}. The wreath product of A by A, denoted by AV A is the group
A™ x A where

[(xlu .- .,ﬂﬁn),h][(yl, e 7yn>7k] = [(9517 e 7%) : (yh(1), e 7yh(n))vhk]‘

In other words, A acts on A" by permuting the coordinates of the elements.

An analogous definition can be seen in M. Hall jr. [6].






Appendix B

Combinatoric Concepts

In this appendix we discuss only the concepts of lattices and Cayley graphs.
These are mainly combinatorial concepts.

B.1 Lattices

A lattice is a partially ordered set such that for every two elements there
exist an unique least upper bound called join and an unique greatest lower
bound called meet.

Since polytopes partially ordered sets with least and greatest elements
and has no infinite ascending or descending chain, the following proposition
is useful to help determining that a polytope is a lattice (see G. Birkhoff [1],
Chapter 2.3 for details).

Proposition B.1.1 Let (P, <) be a poset such that

e has a least (greatest) element,

e has no infinite ascending (descending) chains, and

e cvery two elements have least upper bound (greatest lower bound),
then (P, <) is a lattice.
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B.2 Cayley Graphs

Any group acts on itself by multiplication by the left (right) side. The Cay-
ley graph of a finite group I' is a representation of this action in a digraph
(oriented graph) given a generating set of I'. To construct this graph we
consider every element of I' as a vertex and we add an arc (directed edge)
from a vertex u to a vertex v whenever v = gu for some g in the generating
set.

If the generating set consists only of involutions then the Cayley graph
will be symmetric (if there is an arc from u to v then there is an arc from v
to u). In this case it is enough to add simple edges rather than symmetric
arcs.

Let the generating set of the group I' be X = {g1,...,¢,}, then we may
label each arc (edge) of the Cayley graph in such a way that the arc (edge)
from u to v has label j if g;(u) = v. In [27] they call these graphs by Cayley
color graphs. Whenever we refer to “Cayley graphs” on the previous chapters
we are talking about the labeled graphs.

For example, Figure 3.2 F shows the Cayley graph of S4, the automor-
phism group of the tetrahedron, with the generating set {(12),(23), (34)}.
In this figure the generator (12) induces black edges, (23) induces red edges
and (34) induces blue edges.

We mention briefly two properties of the Cayley (color) graphs.

Remark B.2.1 The Cayley (color) graph of a group T' with generating set
X ={g1,-..,9n} consisting only of involutions is n-reqular (every vertez has
degree n) with every vertex having an edge of each label incident to it.

Remark B.2.2 Let X = {g1,...,9,} be a generating set of a group T such
that X ~ {gn} is no longer a generating set. Then the subgraph induced by
the edges of labels 1,...,n — 1 of the Cayley (color) graph of I" with X as
generating set is disconnected.

For further details about Cayley graphs see [27].



Appendix C
Catalog of CPR graphs

Now we present some CPR graphs of some well known polyhedra. Since we
can get the vertex CPR graph of a polytope from the faces CPR graph of
the dual interchanging labels 0 and 2, we do not include CPR graphs of the
octahedron, icosahedron, hemioctahedron and hemiicosahedron.

We recall that there are no i-face CPR graphs for polytopes such that
their automorphism grou, do:-hot act faithfully on their ¢-faces. This is the
reason why welinclude reither a face CPR graph of the hemicube nor a vertex
(face) CPR graph of the toroid {4,4} ).

Color black represents label 0, color red label 1 and color blue label 2.

*—o—0o o *—0o—0—0

Figure C.1: Vertex, edge and face CPR graphs of the tetrahedron
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aavaslieve aliatans

Figure C.2: Vertex, edge and face CPR graphs of the cube

Figure C.3: Face, vertex and edge CPR graphs of the dodecahedron

NI

Figure C.4: Vertex and edge CPR graphs of the hemicube




115

Figure C.5: Face, vertex and edge CPR graphs of the hemidodecahedron

..

Figure C.6: Edge CPR graphs of {4,4} and vertex CPR graph of the
14,4} 22
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