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ABSTRACT. In this paper we “measure” the size of the set of n-transversals
of a family F of convex sets in R™T* according to its homological complexity
inside the corresponding Grassmannian manifold. Our main result states that
the “measure” p of the set of n-transversals of F' is greater or equal than k if
and only if every £ 4+ 1 members of F have a common point and also if and
only if for some integer m, 1 < m < n, and every subfamily F’' of F with
k + 2 members, the “measure” u of the set of m-transversals of F’ is greater
or equal than k.

1. INTRODUCTION.

For a family F' = {A!, ..., A%} of d convex sets in R"*%  let T}, (F) be the set of
n-transversals to F, that is, the set of all n-planes in R"** which intersect every
member of F.

If X is a set of n-planes in R"**, we say that ;(X) > r if X has “homologically”
as many n-planes as the set of n-planes through the origin in 2**". Thus, ¢ “mea-
sures” the homological complexity of X inside the corresponding Grassmannian
manifold. We will use this “measure” to prove that if subfamilies of F' with few
members have enough transversals of small dimension, then the whole family F'
has many transversals of a fixed dimension. That is, after a formal definition of
1, in Section 2, we shall prove in Section 3 the equivalence of the following three
properties.

* Bvery k 4+ 1 members of I’ have a point in common;

“ u(To(F)) > ks

* Tor some integer m where 1 < m < n and every subfamily F’ of F with k 42
members (T, (F')) > k.

The first equivalence can be thought of as a homological version of Horn and
Klee’s classical results [5,6]. See also [4]. They proved that the following assertions
are equivalent.

a) Every &k + 1 members of F' have a point in common;

b) Every linear n-subspace of R™** admits a translate which is a member of
T (F);

¢) Every (n — 1)-plane A lies in a member of T5,(F).

First note that b) is just assertion ¢), when A lies at infinity. In fact, the set of all
n-planes that contain A is a manifold embedded in the corresponding Grassmannian
manifold, which represents an element of its cohomology. So, by using the product
structure of the cohomology we shall prove that

w(h(F)) > k = b) and ¢).
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If X is a set of n-planes in R*™* and for every linear n-subspace of R"t* we can
choose a translate which is a member of X, then 1(7,,(F)) is not necessarily greater
or equal that &, unless, of course, according with our definition of , the choice can
be done continuously. If X = T,,(F), the existence of a member of T,,(F) parallel
to every linear n-subspace of R*1* implies that we can choose continuously this
member and hence that:

w(h(F)) > k = b) and ¢).

The spirit of the complete equivalences follows the topological study of the space
of transversals initiated in [1] and [2].

We shall consider Euclidean n-space E™ and complete it to the n-projective space
P™ by adding the hyperplane at infinity. Let G(n + k,n) be the Grassmannian
nk-manifold of all n-planes through the origin in euclidean space R"T*. Although
we summarize what we need in Section 2, good references for the homology and
cohomology of Grassmannian manifolds are Milnor and Stasheff [7], Pontryagin [9]
and Chern [3]; see also [8]. In this paper, we will use reduced Cech-homology and
cohomology with Zo-coeflicients.

2. THE TOPOLOGY OF GRASSMANNIAN MANIFOLDS.

Let Aq,..., \n be a sequence of integers such that 0 < Xy < ... < A\, < k. Let us
denote by:
(2.1) {1,y M} = {H € G(n+ k,n) | dim(H N RYNTI) > 4, j = 1,..,n}. For
example, {0,\,..,\} = {H € G(n+k,n) | R C HC R""*} and {k— \,....,k —
Mk} ={H € Gn+k,n)|dim(HNR =) >n 1}

(2.2) Tt is known that {A\1,...,A,} C G(n+ k,n) is a closed connected A-manifold,
where \ = Z;L i, except possibly for a closed connected subset of codimension
three. Thus, H*({\1,...; My }; Z2) = Zo = HyA({\1,s M )5 Z2). Let (Ap,...,\,) €
Hy\(G(n+k,n); Z2) be the A-cycle which is induced by the inclusion {Aq, ..., A\, } C
G(n+k,n). These cycles are called Schubert-cycles. A canonical basis for Hy(G(n+
k,n); Za) consists of all Schubert-cycles (£,,...,&,,) such that 0 < &, < .. <¢ <k

and > 7 & =\

(2.3) Let us denote by [Ay, ..., \n] € HM(G(n + k,n); Z2) the A-cocycle whose value
is one for (Ay, ..., Ay,) and zero for any other Schubert-cycle of dimension A. Thus a
canonical basis for H*(G(n + k,n); Z3) consists of all Schubert-cocycles [¢1, ..., £,,]
such that 0 < ¢, <...<¢, <k and 2?51 =\

The isomorphism D : Hy(G(n + k,n); Zg) — H™ NG(n + k,n); Z2) given by:
D((A1, .-y An)) = [k — An, ..., & — 1] is the classical Poincaré Duality Isomorphism.

(2.4) By the above, if X C G(n + k,n) is such that X N {A1,...,Ax} = ¢ and
ix : X — G(n+ k,n) is the inclusion, then

P (DI, s A))) = % ([ = Ay eees b — M]) =0

(2.5) Let M(n + k,n) be the set of all n-planes in R"**. Thus, G(n + k,n) C
M(n+ k,n). We shall regard M (n + k,n) as an open subset of G(n+k+1,n+1),
making the following identifications:

Let 29 € R*F+1 — R be a fixed point and, without loss of generality, let
G(n+k+1,n+ 1) be the space of all (n + 1)-planes in R"**+1 through 29 Let us
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identify H € M(n + k,n) with the unique (n + 1)-plane H' € G(n + &k + 1,n+ 1)
which contains H and passes through zp. Thus

Gn+kn)CcMn+kn) CGn+k+1,n+1),

where M(n + k,n) is an open subset of G(n + k + 1,n 4+ 1) and G(n + k,n) C
G(n+k+1,n+ 1) may be regarded as {0, k, ..., k}, the set of all (n + 1)-planes in
R"#+1 wwhich contains R'. In other words, if j : G(n+k,n) — G(n+k+1,n+1)
is the inclusion, then j({A1, ..., A\n}) = {0, A1, ..., A\n}. So, if 0 < A <k, {0, A, ..., A}
as a subset of M(n + k,n) is the set of all n-planes H through the origin in Rk
with the property that H C R* 1.

If X Cc M(n+k,n),then ix : X — G(n+k+1,n+1) will denote the inclusion.

(2.6) Let A be a subset of X, i : A — X the inclusion and let v € H*(X; Z2). We
say that -y is zero or not zero in A, provided i*(vy) is zero or not zero respectively,
in H*(A4; Z2).

Now we are ready to state our main definition which captures the basic idea of
having as many n-planes as the set of all n-planes through the origin in B**7.
Definition. Let X C M(n+k,n) C G(n+k+1,n+1). For 0 <r <k, we say
that the “measure” of X is at least r,

wX) =,

if [0,7,...,7] is not zero in X.

It is easy to verily that if @(X) > r, then, for any integer 0 < r, < r, u(X) >
7,. Furthermore, observe that for m > 0, then X is also naturally contained in
M(n+m+ k,n) and the definition of the “measure” y is independent of m.

Example 2.1. Let F'={A°, ..., A%} be a family of convex sets. We say that F has
a cycle of transversal lines if there is a transversal line that moves continuously
until it comes back to itself with the opposite orientation. Observe that, F has a
cycle of transversal lines if and only if n(T1(F)) > 1

The following lemma will be very useful for our purposes

Lemma 2.1. Let X C M(n + k,n) be a collection of n-planes and let H be a r-
plane of R 1 <r < k. If u(X) > r, then there is I' € X such that 7y (T) is a
single point, where wy : R* ™% — H is the orthogonal projection.

Proof. Let Y C M(n+k,n) be the set of all n-planes I in R"** such that 75 (T') is a
single point. Asin (2.5), weregard Y C M (n+k,n) as a subset of G(n+k+1,n+1).
Let A be the (n + k — r)-plane in R"**+! through 2o orthogonal to the (r + 1)-
plane that contains H and passes through 2. Note that I' € Y if and only if the
(n+1)-plane I' that contains I' and passes through 2g is such that dim(I"NA) > n.
Consequently, if we regard Y as a subset of G(n+k+1,n+ 1), by (2.1) and (2.5),
Y={k—r .. k—rk}

Let us regard X as a subset of G(n+ &+ 1,n+ 1) and suppose that X NY = ¢.
Then, by (2.4), i%([0,,...,7]) = 0, which means that [0,r,...,7] is zero in X, but
this is a contradiction because p(X) > 7. Then, X NY # ¢. This completes the
proof of Lemma 2.1. i

Remark 2.1. If in the above proof, k =r, and Y C M(n + k,n) is the set of all
n-planes T in R" ™% such that T C A, where A is a (n—1)-plane in PtF then we
obtain the following result. Let X C M(n+k,n) be a collection of n-planes with the
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property that w(X) > k, then: every linear n-subspace of R % admits a translate
which is a member of X; and every (n — 1)-plane A lies in a member of X.

3. THE SPACE OF TRANSVERSALS

Let F'={A°, ..., A%} be a family of convex sets in "% and let T,,(F), the space
of n-transversals of F, be the subset of the Grassmannian manifold M(n + k,n)
of n-planes that intersect all members of F.

Before stating our first result we need the following technical lemma.

Lemma 3.1. Let A A'... A" be k+ 1 conver sets in R*T* n > 0, such that
ﬂ]g A' = ¢. Then there is a k-dimensional linear subspace H of R™* with the
property that ﬂ]g TH (Ai) = ¢, where Ty : R** — H is the orthogonal projection.

Proof. The proof is by induction on k. If X = 1, the proof follows by the separation
theorem for disjoint convex sets. Suppose the theorem is true for &, we will prove
it for k& + 1.

Let A% A'..., A** be k + 2 convex sets in R"T*, such that ﬂ§+1 A" = ¢. Since
(ﬂ]g AN A*+L = ¢ then there is a hyperplane A that separates ﬂ]g A? from AR,
Suppose ﬂ]g A C A~ and A*1 C AT, where AT and A~ are the closed half-spaces

determined by A. Note that ﬂ]g (AN AT) = ¢.

By induction hypothesis, there is a k-dimensional linear subspace Hg such that
ﬂ]g T (A' M AT) = ¢. Let H be a (k + 1)-dimensional linear subspace containing
Hjp and the 1-dimensional linear subspace orthogonal to A. We shall prove that

k41

ﬂ WH(Ai)

Assume the opposite and take x € ﬂ§+1 7 (AY). Since v € gy (AF) Cwy(AT),
then z € mg (A'"NAT), for ¢ = 0, ..., k, which is a contradiction because ﬂ]g g (AN
AT) # ¢ implies (Vs Taro (T (AT N AT)) = e ma, (ATNAT) # ¢. I

¢.

Our first result characterizes families of convex sets with the (k + 1)-intersection
property.

Theorem 3.2. Let = {A' ..., A%} be a family of d convex sets in R" % d > k+1.
Every subfamily of F' with k + 1 members has a common point if and only if

(T (F)) = k.

Proof. Suppose every subfamily of F' with & + 1 members has a common point.
We start by constructing a continuous map % : G(n + k,n) — T, (F) as follows:
for every m-plane H through the origin, let 7y : R*"** — H' be the orthogonal
projection, where H' is the k-plane through the origin orthogonal to H. Let us
consider the family wy (F) = {7y (AY),...,mu(A%)} of d convex sets in H-. Note
that every subfamily of 7z (F) with k+1 members has a common point. Therefore,
by Helly’s Theorem, the convex set F'(H) = ﬂf g (AY) is not empty. Note also
that F(H) C H*+ depends continuously on H € G(n + k,n). Let ¥)(H) be the n-
plane through the center of mass of F(H) and orthogonal to H*. By construction,
Y(H) € Ty (F).
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Let ¢ : T,(F) — G(n+k+1,n+1) and note that i) : G(n+k,n) — Gn+k+
1,m + 1) is homotopic to the inclusion. Therefore, by (2.1) and (2.3), [0, %, ..., k] is
not zero in T,,(F) and hence u(7T,(F)) > k.

Suppose now (1, (F)) > k and suppose that ﬂ]f+1 A" = ¢. By Lemma 3.1, there
is a k-dimensional linear subspace H of R*** with the property that ﬂ]f+1 mg(AY) =
¢, where 7y : R** — H is the orthogonal projection. This is a contradiction
because, by Lemma 2.1, there is I € T,,(F) such that 7y (') is a single point which
lies in ﬂf 7 (AY). This completes the proof of Theorem 3.2.

Example 3.1. For k=1 and n = 2, Theorem 3.2 states that every two members
of F have a common point if and only if for every direction there is a transversal
plane to F' orthogonal to il.

Our next result characterizes families of k + 2 convex sets with the (k + 1)-
intersection property. Note that this time our transversals need not to be of dimen-
sion k.

Theorem 3.3. Let F' = {A', ..., A**2} be a family of k + 2 convex sets in R"*F
and let us consider an integer 1 < m < n. Every subfamily of F' with k+1 members
has a common point if and only if

(T (F)) = k.

Proof. Suppose every subfamily of F' with £+ 1 members has a common point. For
i1=1,.,k+2,let a; € ﬂj#i{Aj € F} # ¢ and let T' be a (m + k)-plane containing
© ={ay,...,ax12}. Furthermore, for i = 1, ...,k + 2, let B® C T be the convex hull
of the set {a; € © | i # j}. Therefore, F' = {B!,..., B*¥"2} is a family of convex
sets in the (m + k)-plane I' with the property that T,,,(F") C T:(F) because for
i=1,..,k+2, Bt C A". By Theorem 3.2, for n = m, u(T,,,(F')) > k, which
immediately implies that (7, (F)) > k.

Suppose now (7, (F)) > k and suppose ﬂ]f+1 A" = ¢. By Lemma 3.1, there is a
k-dimensional linear subspace H of R*** with the property that ﬂ]f+1 Ty (Ai) = ¢,
where Ty : R"™* — H is the orthogonal projection. Note now that T (F) C
M(m+(n—m+k),m) is a collection of m-planes in R™+("~™+%) with the property
that p(T;,(F)) > k, and H is a k-plane, 1 <k <n —m+ k. By Lemma 2.1, there
is I € T3, (F) such that 7y (') is a single point which lies in ﬂ]f+1 7 (AY). This is
a contradiction. |

Example 3.2. For k = 1 and m = 1, Theorem 3.3 stales thal three conver sets
have the property that every two of them have a common point if and only if there
is a cycle of transversal lines to them.

We conclude with our main result, whose proof follows immediately from Theo-
rems 3.2 and 3.3.

Theorem 3.4. Let ' = {A', ..., A%} be a family of d convex sets in R"T* d >
k+2, and let us consider an integer 1 < m < n. Every subfamily F' of F with k+2
members has the property that u(Tn,(F')) > k if and only if u(T,(F)) > k.
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Example 3.3. Following Horn and Klee’s spirit, for k = 1, n = 2, and m = 1,
Theorem 3.4 states that every 3 convex sets of F' have a cycle of transversal lines
if and only if F' has transversal planes orthogonal to every direction.

Example 3.4. For m = n, Theorem 3.4 states that if for every subfamily F' of F
with k42 members and for every linear n-subspace of R*1F there is a translate which
is a n-transversal to F', then every linear n-subspace of R*"* admits a translate
which is a n-transversal to F.

Example 3.5. Let ' = {A!, ..., A%} be a family of convex sets in R"T*. According
to [1], F has a virtual n-point, if there are (homologically) as many n-transversals
to F as if I had a common point, thatl is, as many n-transversals as there are
n-planes through the origin in R"T*. More precisely, F' has a virtual n-point and
only if (T, (F)) > k. For m = n, Theorem 3.4 states that every subfamily F' of F
with k + 2 members has a virtual n-point if and only if F' has a virtual n-point
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