HELLY TYPE THEOREMS ON THE HOMOLOGY OF THE SPACE OF TRANSVERSALS

J. BRACHO AND L. MONTEJANO

ABSTRACT. In this paper we "measure" the size of the set of *n*-transversals of a family F of convex sets in \mathbb{R}^{n+k} according to its homological complexity inside the corresponding Grassmannian manifold. Our main result states that the "measure" μ of the set of *n*-transversals of F is greater or equal than k if and only if every k + 1 members of F have a common point and also if and only if for some integer $m, 1 \leq m \leq n$, and every subfamily F' of F with k + 2 members, the "measure" μ of the set of *m*-transversals of F' is greater or equal than k.

1. INTRODUCTION.

For a family $F = \{A^1, ..., A^d\}$ of d convex sets in \mathbb{R}^{n+k} , let $T_n(F)$ be the set of *n*-transversals to F, that is, the set of all *n*-planes in \mathbb{R}^{n+k} which intersect every member of F.

If X is a set of n-planes in \mathbb{R}^{n+k} , we say that $\mu(X) \geq r$ if X has "homologically" as many n-planes as the set of n-planes through the origin in \mathbb{R}^{n+r} . Thus, μ "measures" the homological complexity of X inside the corresponding Grassmannian manifold. We will use this "measure" to prove that if subfamilies of F with few members have enough transversals of small dimension, then the whole family F has many transversals of a fixed dimension. That is, after a formal definition of μ , in Section 2, we shall prove in Section 3 the equivalence of the following three properties.

* Every k + 1 members of F have a point in common;

* $\mu(T_n(F)) \ge k;$

* For some integer m where $1 \le m \le n$ and every subfamily F' of F with k+2 members $\mu(T_m(F')) \ge k$.

The first equivalence can be thought of as a homological version of Horn and Klee's classical results [5,6]. See also [4]. They proved that the following assertions are equivalent.

a) Every k + 1 members of F have a point in common;

b) Every linear *n*-subspace of \mathbb{R}^{n+k} admits a translate which is a member of $T_n(F)$;

c) Every (n-1)-plane Λ lies in a member of $T_n(F)$.

First note that b) is just assertion c), when Λ lies at infinity. In fact, the set of all *n*-planes that contain Λ is a manifold embedded in the corresponding Grassmannian manifold, which represents an element of its cohomology. So, by using the product structure of the cohomology we shall prove that

$$\mu(T_n(F)) \ge k \qquad \Rightarrow \qquad b) \text{ and } c).$$

Date: October, 2001.

If X is a set of n-planes in \mathbb{R}^{n+k} and for every linear n-subspace of \mathbb{R}^{n+k} we can choose a translate which is a member of X, then $\mu(T_n(F))$ is not necessarily greater or equal that k, unless, of course, according with our definition of μ , the choice can be done continuously. If $X = T_n(F)$, the existence of a member of $T_n(F)$ parallel to every linear n-subspace of \mathbb{R}^{n+k} implies that we can choose continuously this member and hence that:

$$\iota(T_n(F)) \ge k \qquad \Leftrightarrow \qquad b) \text{ and } c).$$

ŀ

The spirit of the complete equivalences follows the topological study of the space of transversals initiated in [1] and [2].

We shall consider Euclidean *n*-space \mathbb{R}^n and complete it to the *n*-projective space \mathbb{P}^n by adding the hyperplane at infinity. Let G(n + k, n) be the Grassmannian *nk*-manifold of all *n*-planes through the origin in euclidean space \mathbb{R}^{n+k} . Although we summarize what we need in Section 2, good references for the homology and cohomology of Grassmannian manifolds are Milnor and Stasheff [7], Pontryagin [9] and Chern [3]; see also [8]. In this paper, we will use reduced Cech-homology and cohomology with \mathbb{Z}_2 -coefficients.

2. The topology of Grassmannian manifolds.

Let $\lambda_1, ..., \lambda_n$ be a sequence of integers such that $0 \leq \lambda_1 \leq ... \leq \lambda_n \leq k$. Let us denote by:

 $\begin{array}{l} (2.1) \ \{\lambda_1,...,\lambda_n\} = \{H \in G(n+k,n) \ | \ \dim(H \cap R^{\lambda_j+j}) \geq j, \ j = 1,...,n\}. \ \text{For example,} \ \{0,\lambda,...,\lambda\} = \{H \in G(n+k,n) \ | \ R^1 \subset H \subset R^{n+\lambda}\} \ \text{and} \ \{k-\lambda,...,k-\lambda,k\} = \{H \in G(n+k,n) \ | \ \dim(H \cap R^{n-1+k-\lambda}) \geq n-1\}. \end{array}$

(2.2) It is known that $\{\lambda_1, ..., \lambda_n\} \subset G(n+k, n)$ is a closed connected λ -manifold, where $\lambda = \sum_{1}^{n} \lambda_i$, except possibly for a closed connected subset of codimension three. Thus, $H^{\lambda}(\{\lambda_1, ..., \lambda_n\}; Z_2) = Z_2 = H_{\lambda}(\{\lambda_1, ..., \lambda_n\}; Z_2)$. Let $(\lambda_1, ..., \lambda_n) \in H_{\lambda}(G(n+k, n); Z_2)$ be the λ -cycle which is induced by the inclusion $\{\lambda_1, ..., \lambda_n\} \subset G(n+k, n)$. These cycles are called *Schubert-cycles*. A canonical basis for $H_{\lambda}(G(n+k, n); Z_2)$ consists of all Schubert-cycles $(\xi_1, ..., \xi_n)$ such that $0 \leq \xi_1 \leq ... \leq \xi_n \leq k$ and $\sum_{1}^{n} \xi_i = \lambda$.

(2.3) Let us denote by $[\lambda_1, ..., \lambda_n] \in H^{\lambda}(G(n+k, n); Z_2)$ the λ -cocycle whose value is one for $(\lambda_1, ..., \lambda_n)$ and zero for any other Schubert-cycle of dimension λ . Thus a canonical basis for $H^{\lambda}(G(n+k, n); Z_2)$ consists of all Schubert-cocycles $[\xi_1, ..., \xi_n]$ such that $0 \leq \xi_1 \leq ... \leq \xi_n \leq k$ and $\sum_{i=1}^{n} \xi_i = \lambda$.

The isomorphism $D: H_{\lambda}(G(n+k,n); Z_2) \to H^{nk-\lambda}(G(n+k,n); Z_2)$ given by: $D((\lambda_1,...,\lambda_n)) = [k-\lambda_n,...,k-\lambda_1]$ is the classical *Poincaré Duality Isomorphism*.

(2.4) By the above, if $X \subset G(n+k,n)$ is such that $X \cap \{\lambda_1,...,\lambda_n\} = \phi$ and $i_X : X \to G(n+k,n)$ is the inclusion, then

$$i_X^*(D((\lambda_1, ..., \lambda_n))) = i_X^*([k - \lambda_n, ..., k - \lambda_1]) = 0$$

(2.5) Let M(n + k, n) be the set of all *n*-planes in \mathbb{R}^{n+k} . Thus, $G(n + k, n) \subset M(n+k, n)$. We shall regard M(n+k, n) as an open subset of G(n+k+1, n+1), making the following identifications:

Let $z_0 \in \mathbb{R}^{n+k+1} - \mathbb{R}^{n+k}$ be a fixed point and, without loss of generality, let G(n+k+1, n+1) be the space of all (n+1)-planes in \mathbb{R}^{n+k+1} through z_0 . Let us

identify $H \in M(n+k, n)$ with the unique (n+1)-plane $H' \in G(n+k+1, n+1)$ which contains H and passes through z_0 . Thus

$$G(n+k,n) \subset M(n+k,n) \subset G(n+k+1,n+1),$$

where M(n+k,n) is an open subset of G(n+k+1,n+1) and $G(n+k,n) \subset G(n+k+1,n+1)$ may be regarded as $\{0,k,...,k\}$, the set of all (n+1)-planes in \mathbb{R}^{n+k+1} which contains \mathbb{R}^1 . In other words, if $j: G(n+k,n) \to G(n+k+1,n+1)$ is the inclusion, then $j(\{\lambda_1,...,\lambda_n\}) = \{0,\lambda_1,...,\lambda_n\}$. So, if $0 \leq \lambda \leq k$, $\{0,\lambda,...,\lambda\}$ as a subset of M(n+k,n) is the set of all *n*-planes *H* through the origin in \mathbb{R}^{n+k} with the property that $H \subset \mathbb{R}^{n+\lambda}$.

If $X \subset M(n+k,n)$, then $i_X : X \to G(n+k+1,n+1)$ will denote the inclusion. (2.6) Let A be a subset of X, $i : A \to X$ the inclusion and let $\gamma \in H^*(X; Z_2)$. We say that γ is zero or not zero in A, provided $i^*(\gamma)$ is zero or not zero respectively, in $H^*(A; Z_2)$.

Now we are ready to state our main definition which captures the basic idea of having as many *n*-planes as the set of all *n*-planes through the origin in \mathbb{R}^{n+r} .

Definition. Let $X \subset M(n+k,n) \subset G(n+k+1,n+1)$. For $0 \leq r \leq k$, we say that the "measure" of X is at least r,

$$\mu(X) \ge r,$$

if [0, r, ..., r] is not zero in X.

It is easy to verify that if $\mu(X) \ge r$, then, for any integer $0 \le r_o \le r$, $\mu(X) \ge r_o$. Furthermore, observe that for m > 0, then X is also naturally contained in M(n + m + k, n) and the definition of the "measure" μ is independent of m.

Example 2.1. Let $F = \{A^0, ..., A^d\}$ be a family of convex sets. We say that F has a cycle of transversal lines if there is a transversal line that moves continuously until it comes back to itself with the opposite orientation. Observe that, F has a cycle of transversal lines if and only if $\mu(T_1(F)) \ge 1$

The following lemma will be very useful for our purposes

Lemma 2.1. Let $X \subset M(n+k,n)$ be a collection of n-planes and let H be a rplane of \mathbb{R}^{n+k} , $1 \leq r \leq k$. If $\mu(X) \geq r$, then there is $\Gamma \in X$ such that $\pi_H(\Gamma)$ is a single point, where $\pi_H : \mathbb{R}^{n+k} \to H$ is the orthogonal projection.

Proof. Let $Y \subset M(n+k,n)$ be the set of all *n*-planes Γ in \mathbb{R}^{n+k} such that $\pi_H(\Gamma)$ is a single point. As in (2.5), we regard $Y \subset M(n+k,n)$ as a subset of G(n+k+1,n+1). Let Δ be the (n+k-r)-plane in \mathbb{R}^{n+k+1} through z_0 orthogonal to the (r+1)-plane that contains H and passes through z_0 . Note that $\Gamma \in Y$ if and only if the (n+1)-plane Γ' that contains Γ and passes through z_0 is such that $\dim(\Gamma' \cap \Delta) \geq n$. Consequently, if we regard Y as a subset of G(n+k+1,n+1), by (2.1) and (2.5), $Y = \{k-r, ..., k-r, k\}$.

Let us regard X as a subset of G(n+k+1, n+1) and suppose that $X \cap Y = \phi$. Then, by (2.4), $i_X^*([0, r, ..., r]) = 0$, which means that [0, r, ..., r] is zero in X, but this is a contradiction because $\mu(X) \ge r$. Then, $X \cap Y \ne \phi$. This completes the proof of Lemma 2.1.

Remark 2.1. If in the above proof, k = r, and $Y \subset M(n+k,n)$ is the set of all *n*-planes Γ in \mathbb{R}^{n+k} such that $\Gamma \subset \Lambda$, where Λ is a (n-1)-plane in \mathbb{P}^{n+k} , then we obtain the following result. Let $X \subset M(n+k,n)$ be a collection of *n*-planes with the

property that $\mu(X) \ge k$, then: every linear n-subspace of \mathbb{R}^{n+k} admits a translate which is a member of X; and every (n-1)-plane Λ lies in a member of X.

3. The Space of Transversals

Let $F = \{A^0, ..., A^d\}$ be a family of convex sets in \mathbb{R}^{n+k} and let $T_n(F)$, the space of *n*-transversals of F, be the subset of the Grassmannian manifold M(n+k,n)of *n*-planes that intersect all members of F.

Before stating our first result we need the following technical lemma.

Lemma 3.1. Let $A^0, A^1, ..., A^k$ be k + 1 convex sets in \mathbb{R}^{n+k} , $n \ge 0$, such that $\bigcap_0^k A^i = \phi$. Then there is a k-dimensional linear subspace H of \mathbb{R}^{n+k} with the property that $\bigcap_0^k \pi_H(A^i) = \phi$, where $\pi_H : \mathbb{R}^{n+k} \to H$ is the orthogonal projection.

Proof. The proof is by induction on k. If k = 1, the proof follows by the separation theorem for disjoint convex sets. Suppose the theorem is true for k, we will prove it for k + 1.

Let $A^0, A^1..., A^{k+1}$ be k+2 convex sets in \mathbb{R}^{n+k} , such that $\bigcap_0^{k+1} A^i = \phi$. Since $(\bigcap_0^k A^i) \cap A^{k+1} = \phi$, then there is a hyperplane Λ that separates $\bigcap_0^k A^i$ from A^{k+1} . Suppose $\bigcap_0^k A^i \subset \Lambda^-$ and $A^{k+1} \subset \Lambda^+$, where Λ^+ and Λ^- are the closed half-spaces determined by Λ . Note that $\bigcap_0^k (A^i \cap \Lambda^+) = \phi$.

By induction hypothesis, there is a k-dimensional linear subspace H_0 such that $\bigcap_0^k \pi_{H_0}(A^i \cap \Lambda^+) = \phi$. Let H be a (k+1)-dimensional linear subspace containing H_0 and the 1-dimensional linear subspace orthogonal to Λ . We shall prove that

$$\bigcap_{0}^{k+1} \pi_H(A^i) = \phi.$$

Assume the opposite and take $x \in \bigcap_{0}^{k+1} \pi_{H}(A^{i})$. Since $x \in \pi_{H}(A^{k+1}) \subset \pi_{H}(\Lambda^{+})$, then $x \in \pi_{H}(A^{i} \cap \Lambda^{+})$, for i = 0, ..., k, which is a contradiction because $\bigcap_{0}^{k} \pi_{H}(A^{i} \cap \Lambda^{+}) \neq \phi$ implies $\bigcap_{0}^{k} \pi_{H_{0}}(\pi_{H}(A^{i} \cap \Lambda^{+})) = \bigcap_{0}^{k} \pi_{H_{0}}(A^{i} \cap \Lambda^{+}) \neq \phi$.

Our first result characterizes families of convex sets with the (k + 1)-intersection property.

Theorem 3.2. Let $F = \{A^1, ..., A^d\}$ be a family of d convex sets in \mathbb{R}^{n+k} , $d \ge k+1$. Every subfamily of F with k + 1 members has a common point if and only if

$$\mu(T_n(F)) \ge k$$

Proof. Suppose every subfamily of F with k + 1 members has a common point. We start by constructing a continuous map $\psi : G(n + k, n) \to T_n(F)$ as follows: for every *n*-plane H through the origin, let $\pi_H : R^{n+k} \to H^{\perp}$ be the orthogonal projection, where H^{\perp} is the *k*-plane through the origin orthogonal to H. Let us consider the family $\pi_H(F) = \{\pi_H(A^1), \dots, \pi_H(A^d)\}$ of d convex sets in H^{\perp} . Note that every subfamily of $\pi_H(F)$ with k+1 members has a common point. Therefore, by Helly's Theorem, the convex set $F(H) = \bigcap_1^d \pi_H(A^i)$ is not empty. Note also that $F(H) \subset H^{\perp}$ depends continuously on $H \in G(n + k, n)$. Let $\psi(H)$ be the *n*plane through the center of mass of F(H) and orthogonal to H^{\perp} . By construction, $\psi(H) \in T_n(F)$. Let $i: T_n(F) \to G(n+k+1, n+1)$ and note that $i\psi: G(n+k, n) \to G(n+k+1, n+1)$ is homotopic to the inclusion. Therefore, by (2.1) and (2.3), [0, k, ..., k] is not zero in $T_n(F)$ and hence $\mu(T_n(F)) \ge k$.

Suppose now $\mu(T_n(F)) \ge k$ and suppose that $\bigcap_{1}^{k+1} A^i = \phi$. By Lemma 3.1, there is a k-dimensional linear subspace H of R^{n+k} with the property that $\bigcap_{1}^{k+1} \pi_H(A^i) = \phi$, where $\pi_H : R^{n+k} \to H$ is the orthogonal projection. This is a contradiction because, by Lemma 2.1, there is $\Gamma \in T_n(F)$ such that $\pi_H(\Gamma)$ is a single point which lies in $\bigcap_{1}^{d} \pi_H(A^i)$. This completes the proof of Theorem 3.2.

Example 3.1. For k = 1 and n = 2, Theorem 3.2 states that every two members of F have a common point if and only if for every direction there is a transversal plane to F orthogonal to it.

Our next result characterizes families of k + 2 convex sets with the (k + 1)intersection property. Note that this time our transversals need not to be of dimension k.

Theorem 3.3. Let $F = \{A^1, ..., A^{k+2}\}$ be a family of k + 2 convex sets in \mathbb{R}^{n+k} and let us consider an integer $1 \le m \le n$. Every subfamily of F with k+1 members has a common point if and only if

$$\mu(T_m(F)) \ge k.$$

Proof. Suppose every subfamily of F with k+1 members has a common point. For i = 1, ..., k+2, let $a_i \in \bigcap_{j \neq i} \{A^j \in F\} \neq \phi$ and let Γ be a (m+k)-plane containing $\Theta = \{a_1, ..., a_{k+2}\}$. Furthermore, for i = 1, ..., k+2, let $B^i \subset \Gamma$ be the convex hull of the set $\{a_j \in \Theta \mid i \neq j\}$. Therefore, $F' = \{B^1, ..., B^{k+2}\}$ is a family of convex sets in the (m+k)-plane Γ with the property that $T_m(F') \subset T_m(F)$ because for $i = 1, ..., k+2, B^i \subset A^i$. By Theorem 3.2, for $n = m, \mu(T_m(F')) \geq k$, which immediately implies that $\mu(T_m(F)) \geq k$.

Suppose now $\mu(T_m(F)) \ge k$ and suppose $\bigcap_1^{k+1} A^i = \phi$. By Lemma 3.1, there is a k-dimensional linear subspace H of \mathbb{R}^{n+k} with the property that $\bigcap_1^{k+1} \pi_H(A^i) = \phi$, where $\pi_H : \mathbb{R}^{n+k} \to H$ is the orthogonal projection. Note now that $T_m(F) \subset M(m+(n-m+k),m)$ is a collection of m-planes in $\mathbb{R}^{m+(n-m+k)}$ with the property that $\mu(T_m(F)) \ge k$, and H is a k-plane, $1 \le k \le n - m + k$. By Lemma 2.1, there is $\Gamma \in T_m(F)$ such that $\pi_H(\Gamma)$ is a single point which lies in $\bigcap_1^{k+1} \pi_H(A^i)$. This is a contradiction.

Example 3.2. For k = 1 and m = 1, Theorem 3.3 states that three convex sets have the property that every two of them have a common point if and only if there is a cycle of transversal lines to them.

We conclude with our main result, whose proof follows immediately from Theorems 3.2 and 3.3.

Theorem 3.4. Let $F = \{A^1, ..., A^d\}$ be a family of d convex sets in \mathbb{R}^{n+k} , $d \ge k+2$, and let us consider an integer $1 \le m \le n$. Every subfamily F' of F with k+2 members has the property that $\mu(T_m(F')) \ge k$ if and only if $\mu(T_n(F)) \ge k$.

Example 3.3. Following Horn and Klee's spirit, for k = 1, n = 2, and m = 1, Theorem 3.4 states that every 3 convex sets of F have a cycle of transversal lines if and only if F has transversal planes orthogonal to every direction.

Example 3.4. For m = n, Theorem 3.4 states that if for every subfamily F' of F with k+2 members and for every linear n-subspace of R^{n+k} there is a translate which is a n-transversal to F', then every linear n-subspace of R^{n+k} admits a translate which is a n-transversal to F.

Example 3.5. Let $F = \{A^1, ..., A^d\}$ be a family of convex sets in \mathbb{R}^{n+k} . According to [1], F has a virtual n-point, if there are (homologically) as many n-transversals to F as if F had a common point, that is, as many n-transversals as there are n-planes through the origin in \mathbb{R}^{n+k} . More precisely, F has a virtual n-point and only if $\mu(T_n(F)) \geq k$. For m = n, Theorem 3.4 states that every subfamily F' of F with k + 2 members has a virtual n-point if and only if F has a virtual n-point

References

- J. Arocha, J. Bracho, L. Montejano, D.Oliveros and R. Strausz, Topological transversal theory and the categories of Separoids. To appear in Discrete and Computational Geometry.
- [2] J. Bracho, L. Montejano and D. Oliveros, The topology of the space of transversals through the space of configurations. To appear in Topology and its Applications.
- [3] S. S. Chern, On the multiplication in the characteristic ring of a sphere bundle, Annals of Math., 49 (1948), 362-372.
- [4] L. Danzer, B. Grünbaum, and V. Klee, Helly's theorem and its relatives, Convexity, vol. 7, Proc. Sypos. Pure Math., Amer. Math. Soc., Providence, RI, 1963, pp. 389-448.
- [5] A. Horn, Some generalizations of Helly's theorem on convex sets, Bull. Am. Math. Soc., 55 (1949), 923-929.
- [6] V. Klee, On certain intersection properties of convex sets, Canad. J. Math. 3 (1951), 272-275.
- J.W. Milnor and J. D. Stasheff, Characteristic Classes, Annals of Mathematical Studies No.76, Princeton University Press, N.J., 1974.
- [8] L. Montejano, Recognizing sets by means of some of their sections, Manuscripta Math., 76 (1992), 227-239.
- [9] L. S. Pontryagin, Characteristic cycles on differential manifolds, Translations of the Amer. Math. Soc. No.32 (1950), 149-218.