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Abstract. In this paper we study the topology of transversals to a family of convex sets
as a subset of a Grassmanian manifold. This topology seems to be ruled by a combinatorial
structure which we call a separoid. With these combinatorial objects and the topological
notion of virtual transversal we prove a Borsuk—Ulam-type theorem which has as a corollary
a generalization of Hadwiger’s theorem.

1. Introduction

SupposeF is a family of convex sets in EuclideamspaceR". Then Helly’s classical
theorem asserts that if eanht 1 members ofF have a common point, there is a point
common to all members of. It is natural to expect generalizations of this theorem
replacing the concept of a common point (O-transversal) by the concepk-plane
that intersects all the convex sekst(ansversa). The first attempts in this direction are
due to Vincensini [19] and Klee [16], but, most significantly, to Hadwiger [13]. The
next important contributions are due to Goodman and Pollack [11] who generalized
Hadwiger’s theorem from line transversalsRAto hyperplane transversalsif. There
have been many more important contributions to the area of geometric transversal theory.
For more on its history and literature see [6]-[8] and [12]. With this paper we emphasize
that transversals, as a subset of a Grassmanian manifold, should be studied topologically
(see also[3]), and that the topology of the space of transversals, as often appears in classic
topology, seems to be ruled by simple combinatorial objects which we call Separoids.
See also [4].

More precisely, if a family of convex sets in the plane has the property that every
three of them have a transversal line, then the complete family does not necessarily
have a transversal line. Adding the extra condition of a linear order such that every
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three sets are met by a line consistently with it, then Hadwiger proved that the complete
family has a transversal line [13]. This result for higher dimensions is not true (see
Fig. 1(b)). The generalizations of Hadwiger’s theorem relevant here are due to Goodman
and Pollack [11], to Pollack and Wenger [17] and to Anderson and Wenger [1]. All of
them have as a hypothesis the existendewhnsversals to subfamilies consistent with

a given combinatorial structure and as a conclusion the existence of a single transversal
hyperplane.

Our generalization includes two new ideas. The first is to define a general combina-
torial separation structure of the family of convex sets, on which a simple hypothesis is
to be made. The second is to give as a conclusion what we call a rtuahsversal,
which is the existence of (homologically) as many transversal hyperplanes as if there
was ak-transversal. This notion follows the spirit of Horn’s theorem in [14].

In Section 2 we introduce and briefly study the notion of a separoid, which gener-
alizes the previously used concepts of order type [10] and oriented matroid [2]. These
combinatorial objects give information about the topology of the space of transversals.
Namely, we prove a Borsuk—Ulam-type theorem for separoids which has as a corollary
a new generalization of Hadwiger’s theorem.

2. The Categories of Separoids

Definition 2.1. A separoid Sis a set together with a binary relation on its subsets,
denoted and called theseparation relationthat satisfies the following properties for
o, BCS

() alBp=Ble,
(i) ¢ | B=>anp =40,
(i) | Bandoe’ Cca =o' | B.

Whenea | g we call it aseparationof S, or say that & is separated frong.” If Sfurther
satisfies tha@ | S, then it is calledacyclic

Example 1. Letay, ..., a be pointsin some Euclidean (or affine) space. They define
an acyclic separoi®(a, . . ., a) whose underlying set sy, . . ., &}, and two subsets

«a andg are separated if there exists a hyperplane that leagesone side ang on the
other. That is,

alpela)yn(B)=1,
where( ) denotes the convex hull. These separoids are cphét separoids

Example 2. Let F = {Ao, ..., A} be a family of convex sets in some Euclidean
space. It defines a separdidF) with F as the underlying set and, again, with strict
separation of subfamilies by hyperplanes as the separation relation. If the convex sets are
compact, or bounded, thé&{F) is acyclic. We prove below that any acyclic separoid is
isomorphic to one of these.

Observe that the separoid axioms are quite general because ti# setsd not be
convex or even connected, however the separoid coincides with that of their convex hulls.
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Example 3. Given an oriented matroid, it naturally defines a separoid over the same
base set by declaring that the negative part of each covector is separated from its positive
part. The topes are then the maximal separations, so that the separoid has all the infor-
mation of the oriented matroid. Hence separoids generalize oriented matroids. Observe
that the oriented matroid is acyclic if and only if its separoid is acyclic.

Example 4. There are other natural separoids arising in various branches of mathe-
matics. For example, for a topological space a separation relation arises by the existence
of disjoint open neighborhoods.

Definition 2.2. Let SandT be separoids, and ldt S— T be a function:

e fisamorphismifoa |BiNT = ()| f1(B)inS,
e fisacomorphisnif @ | Bin S= f(a)| f(B)INT.

It is easy to see that separoids together with morphisms (or comorphisms) form a
category. Both categories are important. We use the morphism category in this section,
butin Section 4 comorphisms play an essential role. Furthermore, both types of functions
arise in natural situations, as the following examples suggest.

Remark 1. Strong maps of oriented matroids yield morphisms of their separoids.

Remark 2. LetF = {Ay, ..., A} be a family of convex sets iR", and letg: R" —
R™ be a linear (or affine) map. " = {g(Ao), . .., g(Ar)}, then the canonical bijection
S(F) — S(F') is a morphism.

Remark 3. Let F be as above, and I’ = {By, ..., B/} be such thaB; Cc A ,
i =0,...,r. Then the obvious corresponder®er) — S(F’) is a comorphism.

Observe that iff: S— T is a bijection, then it is a separoid morphism if and only
if f~1isacomorphism. Aisomorphisnis a bijection which is both a morphism and a
comorphism. Arembeddings an injection which is a morphism and a comorphism; it
is then an isomorphism with the separaiducedby its image (with the natural notion
of “induced by").

Theorem 2.1(Realization). Let S be afinite acyclic separoithen there exists afamily
of convex setg in some Euclidean space such that S is isomorphia#)S

Proof! The basic idea is to embeslcanonically in a separoid of bounded convex
sets. For this, le\ denote the acyclic separoid over the set 0, +} with the unique
nontrivial separatiof—} | {+} (where trivial separations are those of the empty set).

1 We thank E. Schepin for his collaboration in this proof.
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Then, for every separatiom | 8 in an acyclic separois, we have a characteristic
morphism

Xa|B+ S— A,
— if X € «,
Xa“g(X)I + ifXEﬂ,
0 otherwise

Now, in the category of separoids and morphisms, the categorical product is defined as
follows. LetSandT be separoids; their produtx T has base s&x T and separations

a|p — 7ms() | ns(B) orwr(e) | (),

whererrs andzt are the projections. It is easy to see that for an acyclic sep&oid

X: S— HalﬂA,
X = H(x\ﬂ Xalp

is an embedding, where the product is taken over all separatidhs/éé can therefore
conclude that any finite separoid is embedded in a finite product of copigsTfius,
we are left to prove thad" := []" A is isomorphic to a separoid of convex sets.

To seerthisleB = {[—1, 0), [—1, 1], (O, 1]}. It is a family of convex sets i®, where
the separations are given by points, tius S(B). Given two families of convex sets
F andg, defineF x G = {Ax B | A e F, B e G}, afamily of convex sets in the
product of the ambient spaces. It is also easy to prove that

A" = S(B") = s(ﬁ B)

and we are done.

The theorem can be refined to the realization by families of compact convex sets by
taking B, = {[—1, —¢], [—1, 1], [, 1]} with O < ¢ < 1; and proving than\" = S(B7)
ifandonlyif0< e < 1/(2n —1).

This concludes the proof of the theorem. The reader may recognize in it a classic idea
of Alexsandroff. O

From now on we assume that separoids are finite and acyclic. The realization theorem
allows us to define the geometric dimension of separoids (see also [5]).

Definition 2.3. Given a separoi®, its geometric dimensigrlimy(S), is the leask for
which there exists a familyF of convex sets iRk such thatS = S(F).

A straightforward generalization of Kirchberger's theorem [15] (see (2.4) of [6])
to families of convex sets gives the following characterization of separations by small
subfamilies.
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Theorem 2.2(Kirchberger). Let S be a separoid wittimg(S) < k. Theno | g if and
only if for every Sc S with#S < k + 2, we have thatS N«) | (S N B).

This yields a criterion for a function to be a comorphism which is used in the last
section.

Corollary 2.1. LetSandT be separoidsandlet$ — T be afunctionlf dimg(T) <
k, then f is a comorphism if and only if for every & S with#S < k 4 2, we have that
f|s is a comorphism

Proof. One direction is obvious. Now, suppasgé g in S; we must prove thaf («) |
f(B) in T. For this we use the criterion of Theorem 2.2. 0t ¢ T be such that
#T' < k+2.We can easily construgt ¢ Ssuchthat® < k+2, f(SNa) =T'Nf(a)
andf(SNp)=T'n f(B). Sincef|g isacomorphisman& No | SN Bin S, then
TNnf@ | T NP InT. O

3. Virtual Transversals

If three plane convex sets intersect pairwise, they do not necessarily have a common
point, nevertheless they do have a common transversal line. However, there is not only
one such transversal line. In fact, there are as many, from the homological point of view,
as there are lines through a point—that is, we can have a line moving in the plane, always
transversal to the convex sets, and coming back to itself with the opposite orientation,
see Fig. 1(a). In this sense, we may think that we have a “virtual” point transversal to
our convex sets. As a particular case of Corollary 4.2=(0), this will be proved for
any family of more than three convex sets.

As stated in the Introduction, Hadwiger [13] proved that if every three sets of a family
of plane convex sets are met by a line consistently with some given order, then the
complete family has a transversal line. This result is not true for convex sets in Euclidean
three space. For a simple example consider the four convex sets shown in Fig. 1(b). Itis
easy to see that there is no transversal line to these convex sets, but every three of them
are met by a line consistently with the ordering. However, there are many transversal
planes to the four convex sets (because convex set 1 “sees” Fig. 1(a)). In fact, there are as
many transversal planes, from the homological point of view, as there are planes through

Fig. 1
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a line, and in this sense we may think that there is a “virtual” transversal line to them.
This motivates our next definitions.

All our homology and cohomology groups are wifh coefficients. ByG,, we de-
note the space of hyperplanesRA*2. It is retractable to the classic Grassmannian of
codimension 1 subspaces, and therefore homotopy equivalBht to

Definition 3.1. For a familyF of convex sets, we denote By(F) the subspace @b,
consisting of all hyperplanes transversalfio

Definition 3.2. LetF = {A, ..., A/} be a family of convex sets iR"*. We say that
F has avirtual k-transversalf the homomorphism induced by the inclusion

Hn—k (T (F)) = Hnk(Gn)

is nonzero.

In particular, ifL is ak-transversal toF, thenF has a virtuak-transversal, because
if L is the set of all hyperplanes through thenH,_ k(L) — Hh_k(Gp) is not zero (in
fact, H,_«(Gp) is generated by the fundamental claséaf Gp), and sincd. ¢ T(F),
thenHn_« (7 (F)) — Hn_k(Gy) is nonzero.

Our next theorem states that for a familykof 2 convex sets, the notions of virtual
transversal ank-transversal coincide. The proof is simple thanks to a classic technique
in fiber bundles.

Theorem 3.1. LetF = {Ao, ..., A1) be afamily of convex setsRi"?1, with k < n.
ThenF has a virtual k-transversal if and only if it has a k-transversal

Proof. We have just proved one implication. For the other, consideF) = {(H, ao,
a1 | H e T(F),a € HN A} with the two natural projections giving the
diagram

T(F)

v \

T(F) X Ayt

Observe that; is ahomotopy equivalence because the ﬁzk{é(H) = k+1(H NA)
is contractible for every € 7 (F). Onthe other hand, suppose there i«kftoansversal
to F. Then each collection of pointsy, .. ., akr1) with & € A; determines a unique
(k+1)-planeL in R, Thennz‘l(ao, ..., &+1) consists of the hyperplanes that contain
L, whichis homeomorphic 8" k-1, Furthermore, itis easy to see thais a fiber bundle
with fiber "1, Since its base is contractible, théi.F), and hence (F), has the
homotopy type oP"k-1, Finally, this implies that the homeomorphistia_ (7 (F)) —
Hn_k(Gp) is zero, and therefor& does not have a virtu&ttransversal. ]
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4. Borsuk—Ulam for Separoids

The purpose of this section is to establish the following Borsuk—Ulam-type theorem
for separoids which has as a corollary a generalization of Hadwiger’s theorem for
transversals. Its proof follows the ideas of Pollack and Wenger in [17]. Furthermore,
this theorem is related with the results of Goodman and Pollack in [11] and Ander-
son and Wenger in [1]. All these previous results have as a conclusion the existence
of one transversal hyperplane, but our results follow the spirit of Horn’s theorem [14]
in which the conclusion states the existence of a virksthnsversal, that is, of ho-
mologically as many transversal hyperplanes as the hyperplanes that contain a fixed
k-plane.

Theorem 4.1. LetF = {Ao, ..., A/} be afamily of convex setsRi"2. If there exists
a separoid comorphism

. S(F) - T,

wheredimg(T) < k < n, thenF has a virtual k-transversal

Proof. By Remark 3, we may assume tfais a separoid of points iR*. Suppose that
F does not have a virtu#-transversal, that is, that the homomorphism induced by the
inclusion

Ho—k(7(F)) = Hn-k(Gn) )

is zero.

LetU = {v € S | thereisnoH € 7 (F) suchthatd L v}. Note thatU = —U.
Let U’ c P" be the projection ol c S"in P". Observe that the canonical retraction
that take<s,, to P", takes7 (F) to P" — U’, so that (1) implies that the homomorphism
induced by the inclusion

Hn«(P" —U") — Hy_k(P")
is zero. By Alexander Duality, this implies that, in cohomology, the homomorphism
induced by the inclusion
HX(P") — HXU") 2

is nonzero.

If v e U, then the hyperplanes perpendiculav that yield a nontrivial separation of
F form an open interval; leH, be the one at the middle. Clearly, = H_,. Let H,'
andH, be the two open half-spaces determinedyy so thatH - = H_,.

Observe that

p() =Y d(A, H),
i=0

whered(A;, H;") denotes the infimum of the distances of pointsAinand points in
H.t, is never zero and that it depends continuouslyoa U. Therefore, we have a
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continuous map

f: U — RK
—d(A, H)
fv) =) ———0(A).
2 p
Recallthat) = —U is an open set &&" and that (2) is nonzero. By the Borsuk—Ulam

theorem [18], there existg € U for which f (vg) = f (—vp).

leta ={Ae F| AC Hf}andg = {A € F | A C HY,}. By definition,«
is separated frong and hence, sincg is a comorphismg () is separated from(8).
On the other hand, note thdt(vg) is a convex combination of the poingg8) and
also f (—wp) is a convex combination of the poinggw). Hence, f (vg) = f(—wvg) €
{p(a)) N {p(B)) # @, which is a contradiction. O

Corollary 4.1. LetF be a family of convex sets R'"*1, and let T be a separoid with
dimy(T) < k. Suppose there exists a function F — T such that for every subfamily
F' c Fwith#F =k + 2,the restriction £ S(*') — T is a comorphisithenF has
a virtual k-transversal

Proof. Follows immediately from Corollary 2.1 and Theorem 4.1. O

Definition 4.1. Let F = {Ao, ..., A/} be a family of convex sets iR"+1, and let

B = {by,...,b} be a family of points inR¥, k < n. A k-planeL transversal to
F = {Ai, Ay, ..., Ay, } isconsistenwith B if there are points;, € A, N L such that
the correspondende;; — by, ) is an isomorphism from the separdy,, . . ., &,,,) to

the separoid(b,, ..., bi,,,).

Corollary 4.2 (Hadwiger-Type Theorem). Let F = {Ay, ..., A;} be a family of con-
vex sets iR, and let B= {by, . .., b, } be a family of points ilR, k < n. If for every
subfamilyF c F with #7 = k + 2 there exists a k-transversal {6 consistent with
B, thenF has a virtual k-transversal

Proof. Forevery subfamily¥’ c F with #7" = k+ 2 there exists &-planeL transver-
saltoF’ = {Aj,, Ai,. ..., Ai,,,} with the property that there are poirgs € A; NL such
thatthe correspondent&, — by,) isanisomorphism fromthe separ@,, .. ., a,,,)

to the separoi®(bi,, ..., by.,). Thus, by Corollary 2.13(5, . . ., &,,,) — S(B) is a
comorphism. However, by Remark S(*') — S(a,, . .., &,,,) is also a comorphism.

So, this corollary is implied by the preceding one, since the composition of comorphisms
is a comorphism. O

Corollary 4.2 is related but does not generalize the results of Anderson and Wenger in
[1] and of Goodman and Pollack in [11]. The hypothesis in these theorems is that there
exists ak-transversal to each subfamily of siket 2 consistent with a given oriented
matroid. The hypothesis in Corollary 4.2 assumes that there existsaamsversal to
each subfamily of siz& + 2 consistent with a given realizable oriented matroid, that
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is, an oriented matroid which can be represented by a set of poifs iRealizability

is required in order to create the separoid comorphism needed to apply Theorem 4.1.
Observe however that our conclusion is stronger. We conjecture that under the hypothesis
in [1] and [11] it is also possible to conclude the existence of a viltttghnsversal.
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