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Abstract

Following the spirit of Hadwiger´s transversal theorem we stablish a
Caratheodory type theorem for closed halfspaces in which a combina-
torial structure is required.
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1 Introduction

Let F = {x1, ..., xm} be a finite collection of points in Sn. The classic
Caratheodory Theorem (see [2]) asserts that F is contained in an open semi-
sphere of Sn if and only if every subset of n+ 2 points of F is contained in
an open semisphere of Sn. The purpose of this paper is to study the same
problem but for closed semispheres.
First of all note that a square inscribed in S1 has the property that any

three of its vertices is contained in a closed semicircle of S1 although the
whole square is not contained in a closed semicircle of S1. As in Hadwiger´s
Transversal Theorem [4], it is required an extra combinatorial hypothesis, in
this case, the order. That is, suppose F = {x1, ..., xm} is an ordered collection
of points in S1. Then, F is contained in a closed semicircle of S1 if and only
if every subset A of three points of F is contained in an open semicircle C
of S1 in such a way that the order of A is consistent with the order of the
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semicircle C. Note that this hypothesis is not satisfied for F , when F consists
of the four vertices of an inscribed square. In higher dimensions we follow the
spirit of Goodman Pollack Transversal Theorem [3], but instead of using the
notion of order type it is more natural to use the notion of separoid developed
in [1]. Our main tool is the Borsuk Ulam Theorem [6].
Of course, the following version of Caratheodory Theorem, for closed

semispheres, follows straightforward from the n − 1 dimensional version: if
F = {x1, ..., xm} is a finite collection of points in Sn, then F is contained
in a closed semisphere of Sn if and only if there is a point Ω ∈ Sn with
the property that every subset of n+ 1 points of F is contained in a closed
semisphere of Sn which does not contain Ω. Our results are of a complete
different character.

2 Separoids

Definition A separoid S is a set together with a binary relation on its sub-
sets, denoted | and called the separation relation, that satisfies the following
properties for α, β ⊂ S :

i) α | β ⇒ β | α,
ii) α | β ⇒ α ∩ β = ∅,
iii) α | β and α0 ⊂ α⇒ α0 | β.

When α | β we call it a separation of S, or say that “α is separated from
β”. If S further satisfies that ∅ | S then it is called acyclic.

Example 1. Let a0, . . . , ar be points in some Euclidean (or affine) space.
They define an acyclic separoid S(a0, . . . , ar)whose underlying set is {a0, . . . , ar},
and two subsets α and β are separated if there exists a hyperplane that leaves
α on one side and β on the other. That is,

α | β ⇔ cc(α) ∩ cc(β) = ∅,

where cc denotes the convex hull. These separoids will be called point sepa-
roids.
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Example 2. Let a0, . . . , ar be points in the sphere Sn. They define a separoid
R(a0, . . . , ar) whose underlying set is {a0, . . . , ar}, and two subsets α and β
are separated if there exists a hyperplane through the origin that leaves α on
one side and β on the other. These separoids will be called real separoids.

Example 3. Let F = {A0, . . . , Ar} be a family of convex sets in some
Euclidean space. It defines a separoid S(F) with F as underlying set and,
again, with strict separation of subfamilies by hyperplanes as separation re-
lation. If the convex sets are compact, or bounded, then S(F) is acyclic. It
is proved in [1] that any acyclic separoid is isomorphic to one of these.

Example 4. Given an oriented matroid, it naturally defines a separoid
over the same base set by declaring that the negative part of each covector is
separated from its positive part. The topes are then the maximal separations,
so that the separoid has all the information of the oriented matroid. Hence
separoids generalize oriented matroids. Observe that the oriented matroid is
acyclic if and only if its separoid is acyclic.

Definition. Let S and T be separoids, and let ḟ : S → T be a function.
Then f is a comorphism if α | β in S ⇒ f(α) | f(β) in T .

3 The Theorems

Our main theorem, whose proof requires the Borsuk Ulam Theorem, is the
following one

Theorem 1. Let F = {x1, ..., xm} be a finite collection of points in Sn.
Then F is contained in a closed semisphere of Sn if and only if there is a
collection of points {y1, ..., ym} ⊂ Rn such that the function (xi → yi) is
a separoid comorphism from the real separoid R{x1, ..., xm} into the point
separoid S{y1, ..., ym}.
Proof. Suppose not, suppose that every hyperplane H through the origin
separates some subset of F from some other subset of F. If v ∈ Sn, denote
by Hv the closed semispace {x ∈ Rn+1 | x ∗ v ≤ 0} orthogonal to v. where ∗
denotes the interior product in euclidean space Rn+1

Observe that

p(v) =
rX

i=0

d(xi,Hv),
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where d(xi,Hv) denotes the infimum of the distances of xi and points in Hv,
is never zero and that it depends continuously on v ∈ U . Therefore, we have
a continuous map

f : Sn → Rn

f(v) =
mX
i=0

d(xi,Hv)

p(v)
yi.

By Borsuk-Ulam Theorem (see [6]), there exists v0 ∈ Sn for which f(v0) =
f(−v0).

Let φ : {x1, ..., xm}→ {y1, ..., ym} be the map given by φ(xi) = yi. and let
α = {xi ∈ F |xi ⊂ Hvo} and β = {xj ∈ F |xj ⊂ H−vo}. By definition, α is
separated from β and hence, since φ is by hypothesis a separoid comorphism,
φ(α) is separated from φ(β). On the other hand, note that f(vo) is a convex
combination of the points φ(β) and also f(−vo) is a convex combination of
the points φ(α). Hence, f(vo) = f(−vo) ∈ cc(φ(α)) ∩ cc(φ(β)) 6= ∅, which is
a contradiction.

A straightforward application of Kirchberger’s Theorem [5] gives the fol-
lowing corollary

Theorem 2. Let F = {x1, ..., xm} be a finite collection of points in Sn. Then
F is contained in a closed semisphere of Sn if and only if there is a collection
of points {y1, ..., ym} ⊂ Rn such that for every subset {xi1 , ..., xin+2} of F
with n+ 2 points, the function (xi → yi) is a separoid comorphism from the
real separoid R{xi1, ..., xin+2} into the point separoid S{yi1 , ..., yin+2}.
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