
Phantom points and critical connectivity of
matroids

Omar Antolín, Jorge L. Arocha∗, Javier Bracho∗and Luis Montejano∗

August 26, 2005

Abstract

The concept of phantom point of a matroid is introduced. With it, we de-
duce recursive characterizations of the critically connected matroids contained
in a minor-closed class. We give two applications: first, a Helly-type theorem
for matroid partitions i.e. submatroids in which each connected component
is a flat of the ambient matroid and second, a characterization of projective
pseudobases i.e. minimal sets of points in a projective space such that any
matroid isomorphism uniquely extends to a projectivity.

1 Fixing sets; a motivation

To fix a sheet of paper to a board, we need two tacks. Mathematically, this means
that a set of two points of the plane has the property that any preserving orientation
rigid transformation of the plane which is the identity in these two points is the
identity in the whole plane. We will say that a set of points A of a space E (a set
with a group action) fixes if any transformation of E (by the action) which is the
identity in A is also the identity in the whole space E.
For example, a linear transformation in a vector space is determined by its values

on any basis of the space. Therefore, any basis of a vector space fixes it. The bases
of a vector space are not the only fixing sets: a set of vectors fixes a vector space if
and only if it spans the space. Therefore, the minimal fixing sets of a vector space
are precisely the bases. The same result holds for affine spaces.

∗These authors where partially supported by grants CONACYT-U41340-F and DGAPA-
IN111702-3
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In a projective space things are not so simple. In n-dimensional projective space
any set of n + 2 points in general position (no n + 1 of them contained in a proper
subspace) does fix, but these are not the only minimal fixing sets. For an example,
take real three dimensional projective space to be Euclidean space augmented by a
plane at infinity. The vertices of a regular octahedron form a minimal fixing set.
(That they do in fact fix projective 3-space is easy to prove once one notices that
four coplanar vertices of an octahedron fix the plane they span.) However, minimal
fixing sets of points in the projective space are a key tool to reveal the structure of
the space of configurations of projective points (see [1]). So, we begin this paper
with a characterization of such sets.

Proposition 1 A set of points in a finite-dimensional real projective space fixes it
if and only if it is not contained in the union of two complementary subspaces.

Proof. Let A be a set of projective points. Assume that A ⊂ L1 ∪ L2 for two
complementary subspaces. Consider the linear transformation λI1 ⊕ µI2 where λ
and µ are two scalars different from each other and from zero, and Ij denotes the
identity on the vector subspace corresponding to Lj. This transformation defines a
projectivity that fixes both L1 and L2, but fixes no other point of the space. Therefore
A does not fix L.
Reciprocally, suppose now that A does not fix and let f be a linear transformation

corresponding to a projectivity that fixes every point in A but is not the identity. The
vectors that represent points of A are eigenvectors of f . If the set of all eigenvectors
of f did not span, then A would be contained in a proper projective subspace.
Therefore, the map f is diagonalizable. Since f is not a multiple of the identity,
it must have at least two eigenvalues. Let λ be any eigenvalue of f . Then the
vector subspace of eigenvectors with eigenvalue λ and the vector subspace spanned by
the other eigenvectors define two complementary projective subspaces that together
contain A.

Remark 2 For simplicity, we stated our result for a projective space over the field
of real numbers, but the argument actually works over any field with more than two
elements. Since a projective space over Z/2Z is simply the set of nonzero vectors of
a vector space, then a set of vectors fixes the space if and only if it spans.

Now, we will translate Proposition 1 to the language of matroid theory. Observe
that a set of points in a projective space is a matroid. This matroid structure can
be defined in many equivalent ways. For example, the projective closure operator
A 7→ hAi can be used to define bases, independent sets, the rank function, circuits,
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etc. It is precisely in the context of matroid theory, where minimal fixing sets of
projective points can be better understood. It is well known that a projective matroid
is connected if and only if its points are not contained in the union of two non
intersecting projective subspaces. From Proposition 1 we immediately obtain the
following.

Theorem 3 A set of points in a finite-dimensional real projective space fixes the
subspace it spans if and only if it is a connected matroid.

So, minimal fixing sets are exactly the critically connected projective matroids
(i.e. connected projective matroids that become disconnected after a removal of any
point).
In this paper we characterize all critically connected matroids and give two appli-

cations, but first, in the next section, we recall some basic definitions and results in
matroid theory. In Section 1 we define the two basic matroid operations needed to
generate all critically connected matroids. In Section 4 we give two recursive char-
acterizations of the critically connected matroids which are contained in a fixed but
arbitrary minor-closed class of matroids, hereby solving a problem of Murty [5] (for
another approach to this problem see [6]). In Section 5 we introduce the partition
lattice of a matroid and prove the existence of some special matroid extensions. This
result leads in Section 6 to a formula for the Helly number of a partition lattice of
“full” matroids. We conclude, in Section 7, characterizing the uniquely representable
minimal fixing sets of projective points.

2 Preliminaries

We assume that the reader is at ease with matroid theory. We will use here the
geometric language. So, the elements of M will be called points. The dimension
of a set of points is its rank minus one. All our matroids will be finite dimensional.
The codimension of a set of points is equal to the dimension of the whole matroid
minus the dimension of the set. The flats (closed sets) of dimension one will
be called lines and the flats of codimension one will be called hyperplanes. The
corank of a finite matroid is its number of points minus its rank. Abusing language
we will often not distinguish between M and the set of its points.
For a point p inM we denote byM − p the deletion of p. A submatroid of M

is any matroid which can be obtained from M by a series of deletions. The inverse
operation of a point’s deletion is the simple extension. If M 0 =M − p, then we say
that M is a simple extension of M 0 by p and we will write M = M 0 + p. The
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extension M is said to be free if p is a coloop i.e. if M 0 is a hyperplane of M . Any
two deletion operation commute, therefore for a set of points N ⊆ M the equality
M 0 = M − N makes sense. The inverse operation is M 0 + N . This means that we
will use the symbol + to denote a union of two disjoint sets of points.
One of the difficulties of matroid theory is that there is no such thing as a “uni-

versal matroid”: a matroid which contains as a submatroid any matroid. This leads
to the common practice of thinking on matroids as entities which are defined up to
isomorphism. We will avoid this practice by thinking that we have a “big” matroid
which contains all the points we might need. So, the notation M + p has meaning
because the name of the point p “knows” which are the circuits of M + p. If p0 is
another point, then the matroid M + p0 can be isomorphic or not to M + p, but in
any case they are different because they have different sets of points.
IfM,N are two matroids with no common points, then their direct sumM⊕N

is M + N but with the condition that any circuit (a minimal dependent set) of
M⊕N is a circuit ofM or is a circuit of N . The equality rk (M +N) = rkM+rkN
is necessary and sufficient for the sum to be direct. IfM⊕N is a projective matroid,
then this equality means that the projective subspaces spanned by M and N are
complementary.
Two points of a matroid are said to be connected if there is a circuit containing

both. A consequence of the circuit exchange axiom is that the connectivity relation
is transitive. Therefore, every matroid is partitioned into classes which are called
connected components. Any matroid is the direct sum of its connected compo-
nents. A matroid is connected if it has only one connected component. Matroid
connectivity was discovered by Tutte in [9] where he proved the fundamental facts
cited above. The following facts which we will use below are straightforward or have
proofs of routine nature.

Proposition 4 Any connected matroid with at least 2 points has no loops and no
coloops.

Proposition 5 Every non free simple extension of a connected matroid is connected.

Proposition 6 Let p, q be points of a matroid M . If p is a coloop in M − q and it
is not a coloop in M , then q is a coloop in M − p.

Proposition 7 If M +p and N +p are two circuits intersecting exactly in the point
p, then M +N is also a circuit.

Let us call a point p of a matroid M inessential if M − p is connected. A
connected matroid is said to be critically connected if every one of its point is
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essential. An obvious example of a critically connected matroid is a single circuit.
We will use the acronym CC for “critically connected”. To avoid the discussion of
trivialities we postulate that a CC matroid must have at least dimension one.

3 Subdivisions and Phantom subdivisions

Let us describe the first operation which preserves CC matroids. LetM be a matroid
and {a, b, p} a 3-circuit such that {a, b} is a 2-cocircuit. We will say that the matroid
M − {p} is obtained from M − {a, b} by subdividing the point p (see Figure 1).
We chose this name because this is the usual operation of edge subdivision for
graphic matroids. To use fewer words, we will say that N is a subdivision of M if
N is obtained from M by subdividing some point of M .

p p

a
b

Figure 1: Subdividing a projective matroid

It is easy to see that any circuit of M − {p} can be obtained from a circuit
of M − {a, b} replacing the point p by the points {a, b}. Therefore, M − {p} is
connected if and only if M − {a, b} is connected. The same property holds for
matroids M − {p, q} and M − {a, b, q} for any q ∈M − {a, b, p}. Since the matroids
M − {a, p} and M − {b, q} are not connected (because they have coloops), hence we
obtain thatM−{p} is CC ifM−{a, b} is CC. These results first appeared in his full
generality in [5] (there, the name “series extension” is used instead of “subdivision”).
We state them in two propositions for easy cross referencing:

Proposition 8 (Murty) Let N be a subdivision of M . Then M is connected if and
only if N is connected.

Proposition 9 (Murty) Any subdivision of a CC matroid is CC.
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Figure 2: Phantom points of a circuit and an octahedron

Now, let us describe the second operation which preserves CC matroids. When
we look at some projective matroids we get the feeling that some points are missing
(see Figure 2).
The following is a key definition in this paper. Let M 0 = M + p be a non-

free simple extension. If p is the only inessential element of M 0, then we call M 0 a
phantom extension of M and we call p a phantom point of M . Furthermore,
if we subdivide the point p in M 0 we obtain a phantom subdivision of M (at the
point p). Observe that any phantom subdivision is a two point extension (see again
Figure 1).

Proposition 10 If a matroid has a phantom point, then it is CC.

Proof. Let p be a phantom point of the matroidM . Since p is inessential, henceM
is connected. Let q be any point ofM . Since p is the only inessential point inM+p,
then we know that M + p− q is not connected. Suppose M − q is connected. Then
by Proposition 5 the point p has to be a coloop inM + p− q and p is not a coloop in
M + p. Therefore, by Proposition 6 the point q is a coloop in M . This contradicts
that M is connected (using Proposition 4).

Proposition 11 Any phantom subdivision is CC.

Proof. Let M + p be a phantom extension of the matroid M . Denote by N =
M + {a, b} the phantom subdivision of M at p. By the previous proposition M is
CC. By propositions 5 and 8 the matroid N is connected.
The matroids N−a and N− b are not connected because both have coloops. Let

q be any point of M . Since p is the only inessential point in M + p, then M + p− q
is not connected. By Proposition 8 the matroid N − q is also not connected.
Let us briefly describe the inverse operations of subdivision and phantom subdi-

vision. First, observe that in both cases two new points {a, b} appear. Moreover,
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in the new matroid {a, b} is a 2-cocircuit. So, if we want to apply some inverse
operation, then the first thing to do is to find out a 2-cocircuit. However, it is well
known (see [5], [8] and [10]) that any CC matroid has a 2-cocircuit (see also [6] page
49 for historical data).
Let M be some matroid in which {a, b} is a 2-cocircuit. It is easy to see that

the contraction M/a followed by a subdivision (of b) is the identity. However, to
get this, we need to define the “contraction” M/a as a matroid whose points are
those of M − a. On the contrary, we see the contraction as an operation which is
well defined only up to matroid isomorphism. For example, for projective matroids,
contractions are the projections from a point to a hyperplane, any hyperplane does
the job and there is not a canonical one. There is no way to avoid this uncertainty in
the general case. However, if we are contracting by an element of a 2-cocircuit {a, b}
the set of points M − {a, b} is a hyperplane of M and we can use it to naturally
define our operation. Let M + p be the simple extension of M such that p is in
the intersection of the line {a, b} and the hyperplane hM − {a, b}i. We will call
M + p − {a, b} the quotient of M by the 2-cocircuit {a, b}. It is clear that any
quotient is isomorphic to a contraction and that the quotient is the inverse operation
of the subdivision operation. We will call the point p the projection of {a, b}.
Observe that M + p− {a, b} is always a non-free extension of M − {a, b}.
The importance of fine tuning our definitions of inverse operations becomes evi-

dent when we consider a class of matroids which are submatroids of a given one. For
example, consider the real projective plane with a hole (the Möbius band). If we take
four points in a square with its center in the hole, then its quotient by a diagonal
of the square is not defined inside our Möbius band. However, the band contains
contractions by any of the points (three point lines). This “labelled approach” will
be essential only in Section 6.
The inverse operation to phantom extension is easier. Since a phantom extension

is a particular case of a two point extension, then its inverse is a two point deletion.
We only have to check that the projection of the 2-circuit is a phantom point.

4 Generating all critically connected matroids

Now, we show that subdivisions and phantom subdivisions are the only operations
needed to generate all CC matroids.

Lemma 12 If {a, b} is a 2-cocircuit of the CC matroid M , and p is the projection
of {a, b}, then for any q ∈M − {a, b} the matroid M + p− {a, b, q} is not connected.
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Proof. Denote N =M − {a, b}. We have to show that N + p− q is not connected.
If p /∈ hN − qi, then p is a coloop in N + p− q and we are done. If p ∈ hN − qi, then
{a, b} is a 2-cocircuit in M − q and the matroid N + p− q is the quotient of M − q
by {a, b}. Since M − q is not connected, hence Proposition 8 concludes the proof.

Proposition 13 If {a, b} is a 2-cocircuit of the CC matroid M , then either the
quotient of M by {a, b} is CC or the projection of {a, b} is a phantom point of
M − {a, b}.

Proof. Let p be the projection of {a, b} and denote N =M−{a, b}. By Proposition
8 the quotient N + p is connected. If N is connected, then by the lemma p is the
only inessential point in N + p i.e. the point p is a phantom point of N . If N is not
connected, then by the lemma N + p is critically connected.

Theorem 14 The class of CC matroids coincides with the class of matroids which
can be obtained from a 3-point line by a series of subdivisions and phantom subdivi-
sions.

Proof. The only CCmatroid of dimension 1 is the 3 point line. Suppose by induction
that the theorem is true for all matroids of dimension at most d. By propositions
9 and 11 any matroid of dimension d + 1 obtained by a subdivision or a phantom
subdivision of a CC matroid of dimension d is also CC. Reciprocally, if M is a
CC matroid of dimension d + 1, then by the Murty-Seymour-White theorem it has
a 2-cocircuit {a, b}. By Proposition 13 M is either a subdivision or a phantom
subdivision of a matroid of dimension d.
Straightforward proofs of several known results can be obtained from this theo-

rem. For example, if we notice that a 4-circuit is the only CC matroid of dimension
2 and observe that phantom subdivisions increase the corank just in one, then we
obtain that the corank of a CC matroid is less or equal than the dimension (see [5]
and [6]). The fact that this bound is attained only by the d-dimensional octahedron
is a consequence of the not difficult to prove fact that this matroid has only one
phantom point (for d ≥ 3). Those are the main results of [5].
Theorem 14 is perfect for proving (by induction) properties of CC matroids.

However, it produces a very long proof that a given matroid is CC. To do this, it
is better to have an operation such that, given two CC matroids we obtain another
CC matroid. Let A and B be two flats of at least dimension one of the matroid M .
It is said that {A,B} is a 2-cut of M if hA ∪Bi =M and rkA+ rkB = rkM + 1.
By semimodularity of the rank function for any 2-cut we have that rk hA ∩Bi ≤ 1.
The set A ∩ B will be called the intersection of the 2-cut. If M has no parallel
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points, then rk hA ∩Bi ≤ 1 implies that either the intersection is empty or consists
of exactly one point p. It is not difficult to see that in the latter case any circuit
which contains p must be contained in A or in B.

Proposition 15 Any 2-cut {A,B} of a CC matroid has empty intersection.

Proof. Suppose p = A ∩ B and denote M = hA ∪Bi. Let us show that M − p is
also connected. Let x, y be two points in M − p. Since M is connected, then there
is a circuit C containing x, y. If C does not contain p, then x, y are connected in
M−p. If C contains p, then C is contained (say) in A. Since p ∈ hB − pi (otherwise
M = A⊕ (B − p) would be not connected), then there exists a circuit C 0 in B which
contains p. By Proposition 7 (C ∪ C 0)− p is a circuit in M − p containing x, y.
If {A,B} is a 2-cut of the matroidM and A∩B is empty, then there exist a simple

extension M + p (unique up to the name of the new point) in which {A+ p,B + p}
is a modular pair of flats. Intuitively we add the missing point in the intersection.
Formally, M + p can be defined as the matroid whose circuits are those of M and
those of the form A0+p , B0+p where A0 ⊆ A, B0 ⊆ B are non-empty and A0∪B0 is
a circuit of M . We will call the point p the projection of A to B (also of B to A).
The matroid A+p is the quotient ofM by B. It is clear that if p0 is any point in B,
then A+ p is isomorphic to the contraction M/ (B − p0). Observe that if {a, b} is a
2-cocircuit of a matroid M , then {{a, b} ,M − {a, b}} is a 2-cut and our definitions
of projections and quotients are just generalizations of the ones given previously.

Proposition 16 Let {A,B} be a 2-cut of the matroid M and p be the projection of
A to B. Then M is connected if and only if A+ p and B + p are connected.

Proof. Suppose first that M is connected. If A + p is not connected and A + p =
(A1 + p) ⊕ A2, then M = (B +A1) ⊕ A2 and this is a contradiction. So, A + p is
connected and by symmetry B + p it is also connected.
Now, suppose that both A+ p and B + p are connected. Let x, y be two points

in M . If x, y ∈ A, then let C be a circuit of A + p containing x, y. If C does not
contain p, then x, y are connected in M . If C contains p, then let C 0 be a circuit in
B + p containing p. By Proposition 7 (C ∪ C 0)− p is a circuit in M containing x, y.
If x ∈ A and y ∈ B, then let C be a circuit of A + p containing x, p and let C 0 be
a circuit of B + p containing y, p. By Proposition 7 (C ∪ C 0) − p is a circuit in M
containing x, y. So, in any case we obtain (using symmetry) that x, y are connected
in M .

Corollary 17 Let {A,B} be a 2-cut of the matroid M with empty intersection and
let p be the projection of A to B. Then M is CC if and only if
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1. A+ p is connected and any a ∈ A is essential in A+ p,

2. B + p is connected and any b ∈ B is essential in B + p.

Proof. SupposeM is CC. By the previous proposition A+p and B+p are connected.
If A+p−a is connected, then by the previous propositionM−a would be connected
and this is a contradiction. By symmetry, B + p− b is not connected.
Suppose the properties 1 and 2 hold. By the previous propositionM is connected.

If for some x ∈M it happens thatM is connected, then by the previous proposition
X + p− x is connected, where X is A if x ∈ A or is B if x ∈ B.
Let us closely analyze the properties stated in Corollary 17. If A+p is connected

and any a ∈ A is essential in A+ p, then there are 2 possibilities:

1. p is essential in A+ p, in which case A+ p is CC,

2. p is inessential in A+ p, in which case A is CC and p is a phantom point of A.

Now, it is clear how to build new CC matroids from smaller ones. Let A+ p and
B+p be two matroids intersecting just in the point p. Denote by A~B the matroid
on A+B whose circuits are those of A and B and those of the form A0 +B0 where
A0+p and B0+p are circuits of A+p and B+p respectively. We have the following:

Theorem 18 The matroid A ~ B is CC if and only if for any X ∈ {A,B} either
X + p is CC or p is a phantom point of X. Any CC matroid can be obtained by a
series of these operations starting from the 3-point line.

Proof. The first statement of the theorem is a reformulation of Corollary 17. For
the proof of the second, observe that, if B + p is a 3-point line, then A ~ B is a
subdivision of A or a phantom subdivision of A.
The circuit matroid of a graph (with at least 3 vertices) is connected if and only

if the graph is biconnected. Biconnected graphs are also called blocks. A block is
minimal if after removal of any edge the result is not a block i.e. minimal blocks
are exactly those graphs whose circuit matroid is CC. The study of minimal blocks
started with a paper of Dirac [3] (see also [7]). However, we did not find in the
literature a precise answer to the construction of all minimal blocks.
A non-edge of a graph is a pair of vertices which is not an edge of it. We will

say that a non-edge p of a minimal block G is a phantom edge if for any edge e
of G, the graph G+ p− e is not a block. A subdivision of a phantom edge p is
the operation which consist of adding the phantom edge and subdividing it. From
Theorem 14 we obtain the following:
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Theorem 19 Minimal blocks are exactly the graphs which can be obtained from the
complete graph K3 with a series of edge and phantom edge subdivisions.

In [4] Hedetniemi proved that any minimal block can be obtained from the com-
plete graph K3 with a series of edge and non-edge subdivisions. However, he noted
that not every non-edge subdivision produces a minimal block and asked which do.
Theorem 19 is the answer to his question1.
Aminor of a matroidM is a matroid that can be obtained fromM by a series of

deletions and contractions. A minor-closed class is a class of matroids such that
if a matroid is in the class, then any of its minor is also in the class. It is easy to
see (by taking a matroid and subdividing each of its points) that the only minor-
closed class which is closed by subdivision and phantom subdivisions is the class of
all matroids. If the minor-closed class is closed by subdivisions (this is the case for
graphic, linear, etc. matroids), then to obtain all CC matroids inside the class we
only need to worry about when a phantom extension is inside the class. So, theorems
similar to Theorem 19 can be obtained for such classes of matroids: for graphs the
phantom point must be a phantom edge, for projective matroids the phantom point
must be a projective point, etc.

5 The partition lattice of a matroid

Let M be a matroid and N be a set of its points. Since N is a submatroid of M ,
then N splits into the direct sum of its connected components N1, . . . , Nt. We will
call [N ] = hN1i∪ . . .∪ hNti the closure by components of N . It is easy to see that
the operator N 7→ [N ] is increasing, monotone and idempotent, i.e. it is a closure
operator. However, it is not a matroidal closure operator, i.e. in the general case
the exchange closure property does not hold. For example, if N is a circuit and
N+p =M is a phantom extension, then for any q ∈ N we have that q /∈ [N − q + p]
but p ∈ [N ] \ [N − q].
A set of points which is closed under the connected closure operator will be

called a partition of the matroid. Any partition is a union of flats. A union of
flats F1 ∪ . . . ∪ Ft is a partition if and only if F1 ∪ . . . ∪ Ft = F1 ⊕ . . . ⊕ Ft. The
set of all partitions is naturally ordered by inclusion and it is a lattice with meet
A ∧ B = A ∩ B and join A ∨ B = [A ∪B]. We will call it the partition lattice of
the matroidM . It is easy to see that the partition lattice of a matroid splits into the
direct product of the partition lattices of its connected components. In particular,

1We thank Eduardo Rivera-Campo for bringing our attention to this paper.
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if M is a matroid with no circuits, then its partition lattice is the boolean algebra
2M i.e. for any N ⊆ M the equality N = [N ] holds. The following is an interesting
characterization of CC matroids.

Proposition 20 The partition lattice of a connected matroid M is the boolean alge-
bra 2M if and only if M is CC.

Proof. If M is not CC, then there is q ∈ M such that M − q is connected and
therefore q ∈ [M − q]. Now, suppose that M is CC and for some q /∈ N ⊂ M we
have that q ∈ [N ]. Let N 0 be the connected component of N such that q ∈ [N 0].
Since M is CC, then M − q = M1 ⊕M2. Since N 0 is connected, we can suppose
that N 0 ⊆ M1. Therefore q ∈ [N 0] ⊆ [M1] = M1 ⊆ M1 ⊕M2 = M − q and this is a
contradiction.

Remark 21 We have to define an independent point as the only CC matroid with
less than 3 points to make the previous proposition true.

Let M be a CC matroid and M + p a simple non-free extension of M . We will
say that p is a strong phantom point of M if for every q ∈M the point p belongs
to [M − q]. In this case, we notice that M + p is connected and for any q ∈ M the
matroid M − q + p is not connected. This means that every strong phantom point
is a phantom point.

Proposition 22 A CC matroid has a strong phantom point if and only it is not a
circuit.

Proof. Let C be a circuit. For any q ∈ C the set C− q is independent and therefore
[C − q] = C − q. So, the set

T
q∈C [C − q] =

T
q∈C C − q is empty.

Now, let M be a CC matroid different from a circuit and let m be a point in
M . The matroid M −m is not connected and therefore it splits into its connected
components M −m =M1 ⊕ · · ·⊕Mt. Since M is not a circuit not all of the Mi are
single point matroids, therefore at least one of them (say M1) has 3 points. Denote
N =M2⊕ · · ·⊕Mt. We see that the pair {M1, N +m} is a 2-cut ofM and therefore
M1 ∩N +m is empty. Let p be the projection of M1 to N +m. We will show that
p is an strong phantom point of M .
Indeed, let q be a point in M . If q = m, then we have p ∈ hM1i ⊆ [M −m]. If

q ∈ N , then it is not hard to see that one of the components ofM−q (sayM 0
1) contains

M1 and therefore p ∈ hM1i ⊆ hM 0
1i ⊆ [M − q]. Finally, suppose that q ∈ M1, then

(since M1 is connected) p ∈ hM1 − qi and p ∈ hN +mi. Let C1 ⊆ M1 − q and
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C2 ⊆ N +m such that C1+ p and C2+ p are circuits. By Proposition 7 the matroid
C1 + C2 is a circuit and therefore p ∈ hC1 + C2i = [C1 + C2] ⊆ [M1 − q +N +m]
= [M − q].

Remark 23 The strong phantom extension built in the proof of the previous propo-
sition often does not get us outside of a given class of matroids. For example, if the
matroid is projective, then this strong phantom point is a projective point (because it
is the intersection of two projective flats). The situation for graphic matroids is not
so nice because the projection of a 2-cut is not always a pair of vertices of a graph
(i.e. the extension may not be graphic). However, an easy analysis of the deletion of
an edge from a minimal block shows that in all cases the projection of M1 to N +m
from the previous proof is always a non-edge of M .

6 The Helly number of a lattice

Let L be a lattice. In order to make our exposition clearer, we will suppose (all the
time) that L is complete and atomic i.e. it has a minimum element, every element of
L is a join of a set of atoms and every set of atoms has a join. This means that L is
defined by a closure operator (denoted by hi) on the set of atoms. So, the elements
of L will be called closed sets and its minimum can be identified with the empty set.
The join, is the closure of the union and the meet is equal to the intersection.
We will say that L is k-Helly if for any finite family T ⊆ L the condition

that every subfamily of T of cardinality k has non-empty intersection is sufficient
to conclude that the whole family has non-empty intersection. If L is k-Helly, then
it is k0-Helly for any k0 ≥ k. The Helly number of L is the minimum number h
such that the lattice is h-Helly. Of course, L may have or not Helly number. If
every chain of L has bounded length, then it has (see [2]). The classic Helly theorem
states that the lattice of all convex sets (ordered by inclusion) of an affine space of
dimension d has Helly number d+ 1. From now on, in all cases, the existence of the
Helly number will be obvious and our task will be to find its value. Therefore, we
will not make any provisions for the case that the Helly number does not exist. We
will denote by h (L) the Helly number of L. For a finite set A of atoms we will call
Z (A) =

T
a∈A hA− ai the center of A. Denote by h∗ (L) the maximum cardinality

of a finite set of atoms of L with empty center.

Proposition 24 h (L) = h∗ (L).

Proof. Let A be a set of atoms with empty center. The family T = {hA− ai}a∈A
has the property that any subfamily of cardinal #A− 1 has non-empty intersection
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but the whole family has empty intersection. Therefore L is not (#A− 1)-Helly and
so h (L) ≥ #A. This shows that h (L) ≥ h∗ (L).
Now, let T be any finite family with empty intersection and such that any of its

subfamilies of cardinality h (L)− 1 has non-empty intersection. By the definition of
the Helly number, there must exist T 0 ⊆ T with empty intersection and such that
#T 0 = h (L). Any subfamily of T 0 of cardinality h (L)−1 has non-empty intersection
and there are h (L) such subfamilies. For each such subfamily we choose an atom
in the intersection, thus obtaining a set of atoms A of cardinality h (L) (no two of
the chosen atoms can be equal). It is clear that the center of A is contained in the
intersection of T 0 and therefore is empty. So, h (L) ≤ h∗ (L).

Corollary 25 h (L1 × L2) = h (L1) + h (L2)

Proof. Let A and B be sets of atoms of L1 and L2 respectively. Denote A0 =
{(a,∅) | a ∈ A} and B0 = {(∅, b) | b ∈ B}. The set C = A0 + B0 is a set of atoms
of L1 × L2. Reciprocally, let C be a set of atoms of L1 × L2. Any atom of L1 × L2
is of the form (a,∅) or is of the form (∅, b). Therefore, there exist A and B sets of
atoms of L1 and L2 respectively such that C = A0 +B0.
The center is a monotone function and therefore Z (A0) ⊆ Z (C) and Z (B0) ⊆

Z (C). On the other hand, if c is an atom in Z (C), then c = (a,∅) and c ∈ Z (A0)
or c = (∅, b) and c ∈ Z (B0) . So, Z (C) = Z (A0) + Z (B0). This equality with an
easy reasoning about maximum cardinalities concludes the proof.
Proposition 24 is a powerful tool to compute the Helly number of a lattice. For

example, in the lattice L of convex sets of the affine space of dimension d any affine
independent set of points has empty center. On the other hand, if the set of points A
is not affinely independent, then it is very well known (the so called Radon theorem)
that there is a partition A1+A2 = A such that hA1i∩hA2i 6= ∅ (their convex closures
intersect). Any point in this intersection is in the center of A. So, the maximal sets
with empty center are the affine bases and therefore h (L) = d+ 1 which gives us a
proof of the classic Helly theorem. Other easy examples are the lattices of flats of
matroids (semimodular atomic lattices). Any independent set has empty center and
if p ∈ hAi \ A, then A + p has p in its center. This shows that here, the maximal
sets of points with empty center are the bases and therefore, the Helly number is the
rank of the matroid. A more complicated example will be studied bellow.
LetM be a matroid (without loops and parallel elements) and π (M) its partition

lattice. We will discuss the problem of computing the Helly number of π (M). The
atoms of π (M) are just the points of M . If M is not connected, then π (M) splits
into the direct product of the partition lattices of its connected components and
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by Corollary 25 its Helly number is the sum of the Helly numbers of the partition
lattices of its connected components.
Let A be a set of points of M . The center of A in π (M) depends not only of A

but also of M (the ambient). However, no mater what M it is, if A is not connected
and A = A1 ⊕ A2, then a straightforward computation (which uses the definition
of the closure by components and the distributive properties between union and
intersection) gives us that\

a∈A
[A− a] =

\
a∈A1

[A1 − a] ∪
\
a∈A2

[A2 − a]

and therefore A has empty center in π (M) if and only if both A1 and A2 have empty
center in π (M).
So, we have to find out which connected submatroids of M have empty center in

π (M). If A is connected but not CC, then there is p ∈ A such that A−p is connected
and therefore p ∈ hA− pi = [A− p]. This implies that p is in the center of A in
π (M). Hence our chances to find out connected submatroids with empty center in
π (M) are limited to single points and CC submatroids. If A is a single point, then
its center in π (M) always is empty. In Section 5 we called the elements of the center
in π (M) of a CC matroid “strong phantom points” and proved that circuits do not
have any (i.e. circuits have empty center no matter which M is). We also proved
that any CC matroid different from a circuit has a strong phantom point. However,
its strong phantom points may belong toM or not. So, the situation heavily depends
on which CC submatroids of M do not have strong phantom points inside M . We
will say that the matroid M is full if any of its CC submatroids different from a
circuit has a strong phantom point inside M . For example, we know from Remark
23 that any projective space (over any field) is a full matroid and that the circuit
matroid of the complete graph is also full. The direct sum of full matroids is full.

Theorem 26 If M is a full matroid, then its partition lattice is b3 rk (M) /2c-Helly.

Proof. IfM is full, then all we have to do to find h (π (M)) is to solve a maximization
problem: how big can the number of points be in a submatroid ofM which is a direct
sum of circuits and points. Let N = N1 ⊕ · · · ⊕ Nn be such submatroid. Let s be
the number of Ni which are points. For j ≥ 3 let tj the number of Ni which are
j-circuits. We have #N = s+

P
jtj and the inequality

rk (M) ≥ rk (N) = s+
X

(j − 1) tj = #N −
X

tj = #N + s− n

must hold in any matroid M . From this, we conclude that we must make n− s as
big as possible. This can be achieved when tj = 0 (j ≥ 4), t3 = brk (M) /2c and s
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is the residue of the division rk (M) /2. In this case #N = s + 3t3 = b3 rk (M) /2c.
Thus h (π (M)) ≤ b3 rk (M) /2c and this implies the theorem.

Remark 27 Observe from the proof of the previous theorem that the equality h (π (M)) =
b3 rk (M) /2c holds for full matroids which contain as a submatroid a direct sum of
3-cycles (and a point when its rank is odd). This is the case of any projective space:
take some lines in it whose direct sum is the whole space (or perhaps is a hyperplane)
and choose three different points in each line (and perhaps a point outside the hyper-
plane). This is also the case of the complete graph: take a chain of triangles (and
perhaps an extra edge) each sharing a vertex with each (one or two) of its neighbors.

For the projective space, partitions are collections of projective subspaces such
that each of them do not intersect the join of the others and we will call them
linear partitions. For any family of linear partitions in Pd if each subfamily of
cardinality b3 (d+ 1) /2c has non-void intersection, then the whole family has non-
void intersection. The number b3 (d+ 1) /2c is the smallest such that this implication
holds. This result is used in [2] to obtain a theorem about flat transversals to flats
in the real projective space.
For complete graphs, partitions are graphs whose biconnected components are

complete and they are called cacti. Consider a family of cacti and let us color the
vertices of each cactus in the family with different colors. Suppose that the total
number of colors we used is n. If any subfamily of cardinality b3 (n− 1) /2c has
a pair of colors which occur as an edge in every one of its cacti, then the whole
family also has this property. The number b3 (n− 1) /2c is the smallest such that
this implication holds.

7 Projective pseudobases

A classic theorem in projective geometry is the following: If A and B are two pro-
jective spanning circuits, then for any bijection A ↔ B there exist exactly one
projectivity which extends it.
Any projectivity is a matroid isomorphism, i.e. it must preserve the rank of any

set of projective points. A projective matroid A will be called uniquely repre-
sentable if for any other set of points B and any matroid isomorphism A↔ B there
exist a projectivity which extends it. If moreover, A is a fixing set (see Section 1),
then any matroid isomorphism extends to a unique projectivity. We will call a set of
projective points A pseudobasis if it is uniquely representable and it is a minimal
fixing set (of the subspace it spans). For a circuit, any bijection is an isomorphism
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and therefore the theorem cited above may be formulated as: Any circuit is a pro-
jective pseudobasis. In this section we give a recursive characterization of projective
pseudobases.
The following proposition is straightforward and we will omit its proof.

Proposition 28 A set of points A + p is uniquely representable if and only if the
subdivision of p is uniquely representable.

Let A be a set of points in a projective space and let p be another projective
point. The envelope of p with respect to A is the intersection of all the projective
subspaces F containing p such that F = hIi for some independent set I ⊆ A. We
will say that the extension A+ p is anchored if the envelope of p with respect to A
is the point p.

Proposition 29 Let A be a uniquely representable set of real projective points A.
The extension A+ p is uniquely representable if and only if A+ p is anchored.

Proof. Let {Ci} be the family of all circuits of A+ p containing p. The envelope of
p is equal to

T
hCi − pi. If it has dimension cero, then there is a unique point in the

projective space which extends A to a matroid isomorphic toA+p (because a matroid
is defined by its circuits). If moreover, A is uniquely representable, then so is A+ p.
On the contrary, if the envelope T of p has dimension at least 1, then for almost all
points q ∈ T (all but a finite number) we have that A + q is isomorphic to A + p
(the isomorphism is the identity in A and maps p to q). If moreover A is uniquely
representable, then this matroid isomorphism does not extend to a projectivity.
FromTheorem 14 and the two previous propositions we easily obtain the following

characterization of projective pseudobases.

Theorem 30 The class of real projective pseudobases coincides with the class of sets
of projective points which can be obtained from 3-point lines by a series of subdivisions
and anchored phantom subdivisions.

Remark 31 Again, we stated our theorem for real projective spaces, however, all
proofs also work for any infinite field.

Since any graphic extension of a connected matroid is anchored (being defined by
a 2-cut of a circuit), then we obtain that a set of projective points whose matroid is the
matroid of a minimal block is a pseudobasis and that any graphic connected matroid
is uniquely representable. It is easy to see that a matroid is uniquely representable
if and only if each of its connected component is uniquely representable. Therefore,
we have the following:
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Corollary 32 The projective realization of any graphic matroid is unique up to a
projectivity.
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