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Abstract

We prove three theorems. A set of lines in RP™ has a transversal
line if and only if any six of them have a transversal line. The same
holds when any five of them have a transversal line, provided that
the set of lines is in general position and there are at least seven of
them. A finite set of intervals in R™ has a transversal line if and only if
any six of them have a transversal line compatible with a given linear
order.

1 Introduction

Helly’s Theorem reads: let C be a family of compact convex sets in R™; if
every n + 1 of the sets in C have a common point, then all the family has
a common point. Hadwiger showed that an extra hypothesis is needed to
prove an analogous theorem for “lines that cross” convex sets in the plane.
Hadwiger’s Theorem, [7], can be stated as follows. Let {C},Cs,...,C,} be a
finite collection of convez sets in the plane such that for any three, C;, C;, Cy,
1 < j < k, there is a line crossing them precisely in that order; then there
exists a line crossing all the sets in the collection.

A fruitful direction in which Hadwiger’s Theorem has been generalized
is for hyperplane transversals. It was opened by Goodman and Pollack in
[5], where they gave necessary and sufficient conditions for the existence of a
hyperplane transversal to convex sets in any dimension. That work has been
pushed further by them and other authors (see [1],[2] and the references
there).



However, until now, and as far as we know, no Hadwiger-type theorem
is known for transversal line in R™ for n > 2. Some work has been done
to obtain criteria for the existence of transversal lines to special classes of
convex sets. For example, there is an open conjecture due to Katchalski [9]:
if every m members of a collection of pairwise disjoint unit balls in R? have
a transversal line, then the entire collection has a transversal line. For more
information we refer the reader to the excellent surveys [3],[4],[6] and [10].

The goal of this paper is to study transversal lines to families of lines
and intervals in n'* dimensional space (n > 2); we prove a Helly-type theo-
rem for lines and a Hadwiger-type theorem for intervals. Consider lines first.
Note that when talking about two lines in R™ that intersect, there is always
a limiting case of “intersection at infinity” when they become parallel (and
remain coplanar). To avoid awkward argumentations, or changing the con-
cept of transversality for coplanarity, it is better to complete R to the real
projective n-dimensional space P, and simply define that two lines there are
transversal if they intersect, and that a line is transversal to a set of lines
if it is transversal to each of them. Then all our results will have obvious
translations to the affine case. Our opening Theorem is the following.

Theorem 1 Let L be a collection of lines in P". If every 6 of them have a
transversal line, then L has a transversal line.

It seems strange that no Hadwiger-type assumption is needed, so that by
adding the extra condition of partial transversal lines consistent with a given
linear or cyclic ordering, one might expect that the “magic number”, 6, can
be lowered to 5 in the theorem. This is not the case. There are examples of
6 lines with 5 to 5 transversal lines that meet them in a given linear or cyclic
ordering, but with no complete transversal. The study of such examples leads
to a refinement in a different direction. Namely, the “magic number” can be
lowered to 5 if £ contains enough lines (at least 7) and they are in general
position (Theorem 2 proved in Section 5).

The proof of Theorem 1 is remarkably easy for the general case (lines
in general position). It relies on simple properties of hyperboloids, that is,
quadratic surfaces with two line rulings. Most of these facts are well known
or straightforward, however, we feel the need to write them down in Section
2 for the benefit of the unaware reader and to establish notation.

In Section 3 we prove the degenerate case of Theorem 1. In Section 4 we
describe the examples of 6 lines with 5 to 5 transversals. Finally, in Section



6 we extend the results to the general case of intervals, rays or lines in R”
(n > 3), proving a Hadwiger-type theorem (Theorem 3).

2 Hyperboloids and their rulings

Given a family £ of lines in P”, we will denote by h (L) the set of all the
lines transversal to £, and by |k (£)| C P", called its support, the union of
all those lines. We will be working with these sets constantly, so that, even
if its obvious, it is important to bear in mind that

L' C L= h(L)C h(L)

Our main tool will be the understanding of h(L) for small sets of lines,
L = {ly,ly,--- 4} with k& < 6. For the remainder of this section, we will
consider such a set of lines £, for growing k, with the extra assumption that
they are in general position, that is, that no two of them intersect. Until the
next section we will address the degenerate case when some lines in £ may
meet.

Let us begin with k£ = 2. For any point py € {5, we have a plane passing
through ¢; and ps, which we denote ¢; Vps. Observe that any point p € £1Vps
different from p, is in a unique line through p, and transversal to ¢; (namely,
pV p2). As py € {5 varies, the planes ¢; V py span a 3-dimensional flat.
Therefore |h (¢1,0)] = P3, and every point there not in ¢; or £ is in a
unique transversal to them (in a unique line in A (¢1,¢2)). One can also
think of h ({1, ¢5) naturally parametrized by the torus ¢; x 5 (the projective
line is a circle); namely, for each p; € ¢4, p € {5, we have the transversal
p1V Py € h (61,62).

Now, consider a new line. If /; and /5 have a common transversal with /3
(h (€1, 0a,03) # (), then {5 intersects the 3-flat |h (¢1,£2)|. But if, moreover,
¢1,¢5 and ¢3 have more than one transversal line (fh ({1, ¢s,¢3) > 1), then
?3 is contained in the 3-flat |k (¢, f2)| (because it has two points there) and
h (€4, 45, l3) grows to be a projective line: it can be naturally parametrized by
the points in /3 where the transversals intersect, because of the uniqueness
remark in the preceding paragraph. In this case, three lines in general posi-
tion in P3, h (¢4, £s, £3) is one ruling (naturally parametrized by —intersection
with— either of the three lines) of the hyperboloid |h ({1, 2, /3)|; the unique
one that contains the three lines as subsets. For a beautiful exposition of
this idea see the opening paragraphs of [8]. The main fact we need about
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hyperboloids is that |k (¢1, {2, ¢3)| has another ruling which we call the or-
thogonal ruling, and denote it h(fl,gg,ég)J_, in which the ¢; lie. Namely,
consider any three (different) lines (1, ¢3, {3 € h (€1, ¥s,/3), since they have
at least the transversal lines (1, £, and (3, then |h (¢f, (3, 43)| is also a hyper-
boloid, and it happens that |h (61,62, €3)] = |h (¢4, ¢3, (3 )|. Then we define
h(l1,bo, bs)" = h (04,05, 05) D {l1, €, 03} Summarizing, h (¢1, o, ;) is ei-
ther empty, a unique line or the ruling (parametrized by the projective line)
of a hyperboloid, which has another ruling containing the 3 lines.

The main property we will repeatedly use about hyperboloids is that if a
line meets one in more than 2 points, then it belongs to one of its two rulings.
This follows, of course, because they are given by quadratic equations, but
also from the simple facts we have gadered.

For k = 4, suppose that th (¢1, (s, l5,¢4) > 2, we want to prove that in
this case, /1, {5, 3 and ¢, belong to a ruling of a hyperboloid. By hypothesis
we can take three lines (1, 0y, 05 € h(l1, 0o, 03,04). Since h (€y, o, l3,44) C
h(¢y,05,03), we then have that h(¢y,¢s,¢3) is the ruling of a hyperboloid.
Then (1, b, U3, 04 € b (01,05, 05) = h (€1, €2, 03) "

This is enough to prove Theorem 1 for the general case of lines in general
position.

Proposition 1 Let L be any family of lines in P™ in general position such
that every 6 of them have a transversal line, then L has a transversal line.

Proof. The hypothesis is that for every £’ C £ with $£' < 6, h(L') # 0.
Consider three lines in L, ¢1, /5 and {3 say. They do have transversals, and
if they have only one, t say, then ¢ is transversal to every other ¢ € L. So,
we must assume they generate a hyperboloid. If £ C h (El,ég,ég)l, we are
done. So, assume there is a line £, € £ not in the ruling h (£1, £, £5)".
Then #h (¢1, 02, 03,¢4) < 2 (since it will appear repeatedly, let us address
the following as the “4-2 argument”). Let {t1,t3} = h (1,43, 03,¢,) and
assume there exists some /5 € £ that meets only one of them, ¢; say; so that
{t1} = h (€1, s, 05,04, 05). But then we still have a vacancy to fill, and every

other line in £ must meet ;. W

3 The degenerate case

The aim of this section is to extend the preceding proposition to the case
where two of the lines in our family £ meet, and thus, to complete the proof
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of Theorem 1.

Proposition 2 Let L be a family of lines in P™ such that two of them in-
tersect. If every 6 of them have a transversal line, then L has a transversal
line.

Proof. Let /1,¢5 € L be transversal. Denote by p their intersection point
and by P the plane they span (we shall write with its obvious generalizations,
p=1"{ Nlyand P = {; V {5). Observe that h(¢1,{s) consists of all the lines
in P and the lines through p in P". The proof brakes into three cases.

Case 1. There exists 3 € L such that ¢35 C P and p ¢ ¢3. Then
h (1,05, 03) is exactly the set of lines in P. We may clearly disregard all the
lines in £ that are contained in P (any line in h (¢4, {2, {5) is also transversal
to them). The remaining lines in £ intersect P at a point (because they have
transversals with ¢, 5 and ¢3). The hypothesis then gives us a set of points
in a plane, each three of which are colinear. Hence they are all colinear, and
the given line is transversal to L.

Case 2. There exists {3 € £ such that /3NP = (). Then h ({1, {3, ¢3) is the
set of lines through p in the plane p V ¢3 (this is, h (¢1,02,03) = {pV p3 : p3 €
¢3}). Now every line in £ must meet the plane p VV 3. Suppose there exists
{4 € L such that p ¢ ¢4 and ¢4 € pV {5 (if not, we are clearly done), and let
ps = U4 (pV Lls). Then, h(ly,02,03,04) = {pV ps} and every other line in £
meets p V py. (Note that the magic number 6 could be lowered to 5 in this
case).

Case 3. Otherwise. In this case, for each line ¢; € L, we have a well
defined point p; € ¢; N P; namely p; ;== p if p € ¢; and p; := ¢; \ P otherwise.
We may assume that this points are not colinear. Then we can find p3 # pa,
and such that p ¢ ps V ps. Then, h ({1, 05, 03,0,) contains the line p3 V py
and at most one other line passing through p (either pV (¢35 A 44) if £3 and /4
intersect, or a unique one if p € |h(¢3,44)|). From here (fh (¢1, (2, ls, £4) < 2),
the 4-2 argument completes the proof. =

4 Examples

We will describe examples of 6 lines without a transversal line, but having
transversals 5 to 5. They will prove that Theorem 1 is best possible for such a
simple statement. However, they will also point out that it has a refinement
in an unexpected direction.



All our examples consist of 6 lines /1, £y, - - - , £ in P* (though described in
R?* C P3), and 6 “transversals” which we may denote /1, ¢5, - - - , {3 according
to the rule:

Example 1. Let /1, {5, {5 be three lines in a plane P meeting at different
points p;; = ¢; A{;. Consider three non colinear points in P, called pa, ps, ps,
and any point p not in the plane P. Define ¢; = p V p; for ¢« = 4,5,6.
The 5 to 5 transversals are then uniquely determined by ¢ = p V p;;. for
{i,75,k} = {1,2,3}, and £ = p; V py, for {i,7,k} = {4,5,6}. This example
may clearly grow for any k£ > 6 by taking new points p; € P, 7 <1 < k, and
defining ¢; = p V p;; they maintain 5 to 5 transversals but not all 6 to 6.

Example 2. We now avoid the concurrence of many lines in the example
above, by taking ¢4, {5, { in general position. Let C' = |h ({4, l5,4g)| N P for
some transversal plane P, and as before, let p;, = ¢; A P. Now, consider three
new points in C, and let ¢y, {s, 3 be the three lines through them (denote
again p;; = ¢; A¢;). For a subset of 5 containing {1, 2,3} the transversal is as
before (generated by the corresponding p;and py), and if it intersects in only
two elements, say 1 and 2, it is the rule in h (¢4, 05, () passing through ps.
Again, this example may grow by taking more lines in the ruling h (¢4, (s, Eg)L.
We are now using a little more about hyperboloids: that planes that do not
contain any of their rules (what we called transversal), intersect them in
conic curves which parametrize via intersection both of the rulings, and that
conics do not have three colinear points.

Our aim now is to give examples in general position.

Example 3. Consider two parallel copies of a circle in R3. To be precise,
let C° =S'x {0} and C' = S' x {1} (C R?) where S' C R? is the unit circle.
Let C = C°U (!, and let

R,.C—C

be the map that interchanges the two components (maintaining the first two
coordinates) and then rotates both by an angle a.. For i = 0,1, let

he ={pV Ralp) : p € C'}.

It is not hard to see that, for 0 < o < 7, hY and hl are the two rulings of a
hyperboloid @),.



Now, consider 5 # a such that 3(a+3) = 27 and let Q3 be the analogous
hyperboloid. Note that Q. N Qs = C. Our example will have three rules in
hY and three in h%. Let us construct the first three lines together with their
corresponding transversals.

Consider any point pi € C°. Let p; := R, (p?) and define ¢; := pd Vv p; €
hY; observe that p} € C'. Now, let p) := Rg(p}), and 43 = p} V pY € h};
we have gone up through a rule in A and come down again through one
in hb, so that p) is obtained by rotating p? an angle o + 3 in C°. Do this
two more times: py := R, (py), with l := p3 V pj € h2; p3 := R (p3), with
;== pVp§ € hjg; and then p; := R, (p3), with £3 := p§Vp3 € A, and finally,
P! = Rs(p3) (because of our choice of angles), with ¢35 := p} V p{. Observe
that, by definition, ;- € h(¢;,4) for {i,5,k} = {1,2,3}; and moreover,
¢ Nt; = () because ¢;-, being a rule of Qs # Q,, touches @, at most (and in
fact) twice, namely £ N Qo = {p}, pi} for (i j k) = (1 2 3), where they are
considered as cyclic orders.

To define 44, 5, fs and their corresponding transversals, we do the same
procedure starting at a new point but going up by Rg and coming down
by R,. Namely, let p§ € C° be any point different from p{,pj and pj.
Then define p; := Rs(p}), p3 := Ra(p1), p5 = Rp(3), 1§ = Ra (p3),
ps = R (pg); and 6 := p) v pj, £ = p; V p for (i j k) = (4 56). We
must finally observe that for i = 1,2,3, ¢ € h({y, 5, 05) = hb (and likewise
Ej € h(fy,05,03) = hl for j = 4,5,6), because they belong to orthogonal
rulings of the same hyperboloid. So that our 12 lines satisfy the required
conditions. It is also clear that there is no transversal to the six lines, it
would have to be a rule of both ), and (g and there are no such lines
(a £ B).

It is not hard to see that the 5 to 5 transversals (1, ¢, , ¢z in this
example, do not intersect the lines /1, /5, - - - , {5 in a consistent linear or cyclic
order (which is the natural thing to ask in P?) —we avoid the technicalities
involved in the proof, because they will not be relevant for the results. Thus,
we were lead to believe that a Hadwiger-type theorem was at hand, lowering
the magic number to 5 but imposing a compatible order, to rule out this
example. But this turned out not to be the case as the following, and last,
example shows.

Example 4. Consider two hyperboloids ), and Q), and let C' be their
curve of intersection, that is, C' = Q, N Q,. Then C' is a curve of (algebraic)
degree 4. It may have many different topological types. In our previous



example it has two components each of which is (homologically) an essen-
tial cycle in both hyperboloids —and, believe us, this has to do with the
impossibility of giving them an order. But it may also happen that C' has
two components C° and C! which are topological circles, and each of which
bounds a disk in both hyperboloids —with the obvious notation, we can call
these disks D, D? D! and D}, so that dD: = C* and D! C Q,. For an
example, consider two ellipses centered at the origin in R? having 4 intersec-
tion points; let them be sections of hyperboloids (), and @), with central axis
on the z-axis but expanding, as hyperbolas, at different rates (see Figure 2).
This is the case we want to study.

We have two spheres S° = DO U DY) and S' = D! U D} with “equators”
C° and C*, respectively. Consider one of them, S = D, U D, dropping the
superindices for a moment. We visualize it as a baseball. The stitching is
the equator and the two patches are the hemispheres. So let us call this
topological type of intersection of two hyperboloids a double baseball inter-
section. Each hemisphere of S, say D, (but the same holds for Dy), is ruled
by intervals that start and end at the equator —the intersections of the rules
of Q, with D,. If, with these rules, we can form a cycle of length 6 that
goes alternatively from one hemisphere to the other, we can play the game
of the example above, obtaining three lines (on one hyperboloid) and the
corresponding transversals (on the other). The remaining three lines and
transversals will come from the other sphere using the appropriate rulings of
the hyperboloids to impose the needed intersections. The main point being
that a rule of (),, say, is transversal at most to two rules in a given ruling of
(Qy. Lets be more precise.

Denote by k] and h; the two rulings of Q,, and likewise h, and h, for
(» —our change in notation from Example 3 is because 0 and 1 have now a
different meaning. For any (), and @) (with no common rules) we have a
map

Rf:C—C

defined as follows. Given p € C = Q, N Qp, let Al (p) be the rule in A
through p; since b} (p) N Q, C C has at most one other point than p, define
it to be R (p) if there is such, or R} (p) = p if A} (p) N Q» = {p}. Similarly,
we have three other maps R, R, R, : C — C, which will be addressed
as the ruling involutions of C. Clearly, they are involutions, that is, e.g.,
(R})* = R} o Rf = id. In Example 3, R, and Rg are not globally the ruling



involutions, but they are so in each component, so that the example can be
constructed using them.

Now, suppose that (), and ), have double baseball intersection. Then,
each of the ruling involutions keeps the components of C fixed (as opposed
to Example 3 where they transpose them) because now they are inessen-
tial. Therefore, they act as (topological) reflections on C® and C*. Consider
one of the components, C° say. The composition of two ruling involutions
(corresponding to the two hyperboloids, say R, o R;) is then an orientation
preserving homeomorphism in C° = S!, with a rotation angle . Exam-
ples show, and the algebraic nature of the context makes plausible, that all
the orbits of this “rotation” have the same behavior depending on «. Our
examples arise when oo = 7/3.

More precisely, suppose @, and @ are such that for some pj € C° we
have that

(By o RY)” () =1 (1)

Then, as in Example 3, define p; := R} (pf),pg+ =R, (pf),p; =R} (p;),
py =R, (pQ_ ), p5 == R} (p§) (our condition then gives R; (pg) =p]); and
b= hi(p)) = hi(p7), G = Ny (p;) = by (py) for (i j k) = (123). If
we also have p; € C! such that (R; o R;r)3 (pzf) = py, then, using R;” and
then R, the lines 4,05,0s € h; and (¢}, (s (5 € h; can analogously be
defined giving an example of 6 lines without transversals, but with 5 to 5
transversals.

By sending an appropriate plane to infinity, and probably relabeling the
lines among the subsets {1,2,3} and {4,5,6}, it is clear that they look like
Figure 1. Thus the transversals are compatible with the natural ordering.

It remains to prove the existence of such @), and Q. For this, let them
be defined, for a,b > 0, by the following equations in R3.

2
Q. a2:c2—|—y—2
a

Qy : Pyt b =1

—22=1,

As we will shortly see, they do have double baseball intersection when
0 <a<1,and b > 1/a. So it will be convenient to define ¢ := 1/b, and
use parameters a and ¢ subject to the condition 0 < ¢ < a < 1. Indeed, if
we contract the z-axis by a factor ¢, (), becomes the canonical hyperboloid
(22 +y* — 22 =1) and Q, is given by the equation a?2? + a %y* — ¢?2? = 1.
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Figure 1:

These are the hyperboloids we will study, referring to them still as ), and
Qp. The projection of their intersection C' = @, N Q) to the yz-plane may be
derived by solving for 2 in the equation of @, and then substituting in that

of Q,, giving
1+a%\ , a?—c*\ ,
E:( " )y ~|—<1_a2 z2=1,

which is an ellipse, E, for 0 < ¢ < a. The two components of C' are then
obtained by lifting each point in this ellipse E (on the yz-plane) to the
appropriate z-coordinate (positive for C? say, and its negative in C*). So
that all the analysis can now be done in the yz-plane, whose hyperbolas of
intersection with @, and @y, are, lets say, H, and H, respectively, (see Figure
2). The rulings of @, (respectively, @), project to the pencil of tangent lines
to H, (resp., Hyp), so that the ruling involutions can be seen on E as the
transposition of the feet of the chords in £ belonging to the appropriate part
of those pencils. Let us call the ruling involutions R}, R, , R}, R, : E — F
as before. We are seeking for the appropriate a and ¢ such that (1) holds.
Observe, that by the symmetry of our example, it suffices to do this on F
and then lift it to the actual components C° and C*.

Though hard to write down explicitly, observe that R, o R, (where we
will drop the superindices by making an specific choice) is, by its algebraic
nature, an analytic function, which can be thought of as going from the circle
to the circle. It then has a topological rotation angle a. Which, by a well
known theorem in dynamical systems, makes Rjo R, topologically equivalent
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AAS

Figure 2:

to the rotation of angle a. This implies that if the angle is rational, then all
the orbits are finite and of the same length. But moreover, if it has a finite
orbit then all the others have that same length. We are looking for one orbit
of length 3. Our example tells us exactly where to look for it.

To fix ideas, let h, be the pencil of (), with negative slope and h,, the one
with positive slope. Observe that R, has exactly two fixed points, namely
the two points of E where lines of the pencil h, are tangent to it. Let p,
be one of them (with z > 0, say), and let ¢, be the line of h; that passes
through it. So that (Ry, o R,) (pa) is the other foot of ¢, say p. Observe that
the only possible way that (Rp o Ra) (pa) = pa, is then that the other foot
of the chord h,(p) is precisely a fixed point of R, (see Figure 3).

Figure 3:
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Therefore, we have a simple way of finding out if (R, o R,) has an orbit,
and hence all the orbits, of length three. Namely, calculate the fixed points
po and p, for R, and Ry respectively (chosen among the respective pairs
with obvious geometric arguments), and find the lines ¢, := hy(p,) and ¢, :=
ha(py). Then, (R, o Ra)3 = idg if and only if ¢, N ¢, € E. In principle, this
procedure can be carried on. An algebraic “tour de force”, involving the
“right” parametrizations and a miracoulous solution of the equations that
appear (with no further important contribution to the present paper), yields
that ¢, N ¢, € E if and only if

1+a*+ (a®* = 1)Vat +6a% +1
c = p(a) =

2(a+a®—a?)
where, of course, we are still assuming that 0 < ¢ < a < 1.

Observe that the denominator has roots at 0, the golden ratio ® :=
(1++/5)/2 and —®~'. Surprisingly, the numerator has roots at the inverse
golden ratio ®~!, and also at —®~! and a double one at 0. So that u has a
single pole at ® and zeros at 0 and ® ! (Figure 4). Curiously p(a)u(1/a) = 1.
In particular, u(® ') = 0; also important to us are the facts that p(1) = 1,
and that 0 < p(a) < a for @' < a < 1. Because then we have proved the
existence of our examples: for every a between ®~! and 1, take ¢ = u(a).
Then any point in E (or C° and C') different from the four points of tangency
to the rulings h, an h; serves to form the needed cycle of length 6 with lines
alternating on the rulings of (), and Q).

) (2)

C

1

Figure 4:

Summarizing, there exist examples of 6 lines in R? with 5 to 5 transversals
compatible with a linear order, but without transversals. For the last Section,
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it will be interesting to note now that the lines in these examples can be
reduced to closed intervals.

5 The improvement

Examples 3 and 4 outlined above, and their obvious generalization to other
kinds of topological intersection of hyperboloids, turn out to be the only ones
that make it impossible to lower the magic number 6 of Proposition 1 to 5.
However, they cannot grow as Examples 1 and 2 did.

Theorem 2 Let L be a family of lines in general position in P". If 4£ > 7
and every 5 lines in L have a transversal line, then L has a transversal line.

Proof. Suppose that there are 6 lines in L, say ¢1,4s,--- ,{g with no
common transversal. By hypothesis they have 5 to 5 transversals, which we
denote ¢, {3, -+ , {3, labelled so that

Observe that then ¢ # Kj for ¢ # 7. Our first goal is to prove that there
are no more transversals than the obvious ones for all subsets of 4 and 5
elements.

We claim that for all 7, j (indices understood between 1 and 6), we have
that

h({lei#k#5}) = {66} (3)
h({le:k#1}) = {6}

We will refer to these equalities as “uniqueness” of transversals because the
sets on the right hand side are, by definition, contained in the correspond-
ing left hand sides. To ease notation, we may take ¢ = 6 and 7 = 5. So
consider /1,5, ¢3,¢,. By the general position hypothesis, and the fact that
th(ly,la,03) > 1, we have that h(¢, (s, (3) is the ruling of a hyperboloid. If
¢, is an element of its orthogonal ruling h(¢;,#s,¢3)", then every transver-
sal to /1,0, 03 is also transversal to f4, but then ¢; is transversal to /4,
which does not happen. Therefore gh(¢, s, l3,¢,) < 2, and the first equa-
tion is proved. Since h({y,0s,03,04,05) C h(l1,0o,l3,0,) = {3, 05}, but
(3 & h(ly, o, U3, £y, l5) by definition, the second uniqueness equation follows.
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Now, consider any other line ¢ € L. Since
0 h(lr, b, b, 4, £) C h(ly, b, b5, L) = {5, (g },

then £ is transversal to 3 or to £5. This clearly holds for any subset of two.

Namely, for each i and j, we have that £ is transversal to one of /- or Ej.
If we assume that £ is not transversal to one of the “transversals” (-, say

to /¢, then, using all the sets of 2 elements containing 6, we conclude that

(€ h(ty, by, b5, 0y, 5). (4)

Observe that this is also the case if ¢ meets all of the ¢;-. To conclude from
here that ¢ = /s, we need the equivalent version of (3) with the “transversals”
playing the role of the “original” lines and viceversa. Observe that all of
the conditions on them are symmetric except for the general position of
the “original” lines. But the general position of the “transversals” follows
because every pair of them are in a ruling, e.g., f3, fg € h(fy,{,¢3). Thus,
we have the corresponding uniqueness equations (3) for the “transversals”,
which imply, from (4), that ¢ = 4.

We have proved that any line ¢ € L is equal to one of ¢1,0s, -, lg.
Therefore §£ = 6. The condition §£ > 7 then implies that every 6 lines have
a transversal line and the Theorem follows from Proposition 1. m

Remark 1. The general lines considered thoroughly in the preceding
proof belong to the family outlined in Examples 3 and 4. Indeed, if we let
Qa = |h(£1,£2,£3)| and Qb = |h(£4,£5,£6)|, then gi‘,ﬁ%‘,ﬁg{ S h(€4,€5,€6) and
i, Uy, by € h(l1,0y,03). The intersection points ¢; A ¢; for {7, j} C {1,2,3}
or {i,7} C {4,5,6} are then in C' = Q, N Q. They form two cycles of length
6 (joined by the corresponding lines) and are related by the corresponding
ruling involutions just as in Example 4. They also have the property of
behaving like this for any other subset of 3 to start with.

Remark 2. The “grown up” Examples 1 and 2 show that some hypothesis
like “general position” is needed. It could possibly be weakened, but hardly
stated more simply.

6 Intervals

The purpose of this last section is to obtain a criterion for the existence of
transversals to a set of intervals in R”. By an interval we mean any connected
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subset of a line, so that they may also be open, rays or complete lines. A
line being transversal to a set of intervals means that it does intersect all of
them. We denote, as before, by h(ly, I, -, I}) the set of lines transversal
to the intervals Iy, I, - - - , I.

The extension of Theorem 1 to intervals, requires the Hadwiger hypothesis
of partial transversals compatible with a given linear order. Because we have
been working in projective space, where the general problem really lies, one
other natural Hadwiger-type hypothesis to consider is compatibility with a
given cyclic order. So, before going into the main theorem, let us give an
example which will also come handy for the proof.

Example 5. Consider the hyperboloid ), of Example 3 for any angle
a, 0 < a < 7w But now with the circle C° at height z = —1 (C° =
S' x {—1}), so that Q, becomes symmetric with respect to the zy-plane,
where it intersects at its smallest horizontal circle, which we call S. Consider
k points p1,pa, - - - , pr that form an equilateral k-gon in S, observe they have
a natural cyclic order. Choose one of the rulings of Q,, say h2. And then
for any ¢ > 0, let I;(t) be the interval of the corresponding rule h%(p;) that
satisfies —t < z < ¢. Line transversals to three or more of our intervals must
lie in the orthogonal ruling k. The best way to detect them is by projecting
to S by the ruling hl. Formally, this projection is defined by

I : Q.—=S
I(q) = hi(g)NnS5.

So that, for any subset A C {1,--- ,k}, with A > 3, we have that

h{Li(t) i€ A}Y) #0 < [(I(L() #0.

€A

Moreover, the transversals correspond one-to-one to the intersection points;
the former are precisely the rules of k! passing through the latter.

By symmetry, the projections II (1;(¢)) are arcs in S centered at p;. Their
angle grows monotonously with ¢, so that it is better to change the meaning
of ¢ for half of that angle. Now, ¢ goes from 0 to 7 (never reaching it). For
small values of ¢ there are no transversals to the intervals I;(¢) in the ruling
h!, but they will gradually appear as t grows. For t = m/k we have the
first (rule) transversals for consecutive intervals. For t = 2(7/k), the first
three-way transversals appear, but only for three consecutive intervals. This
goes on, so that for t = (k — 2) (w/k), every subset of k — 1 intervals (which
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is necessarily consecutive) has a unique common transversal; but there is no
transversal to them all.

This example ({I;(t)}, t = (k — 2) (7/k)) shows that for any k, there are
intervals such that every k—1 of them have transversal lines compatible with
a given cyclic order, but with no total transversals; thus, that an extension
of Theorem 1 to intervals, requires an extra hypothesis which cannot be
compatibility with a cyclic order. It also shows, by the way, the impossibility
of a simple Helly-type theorem for connected subsets of the circle.

The existence of transversals to all the intervals, I;(t), first happens when
t = (k—1)(n/k); where exactly k transversals to the k intervals appear.
Each transversal intersects the intervals in one of the k compatible linear
orders of their natural cyclic order.

The example just developed is, in many ways, not as particular as it seems;
because all hyperboloids are projectively equivalent, so that @), serves as a
good model to think about any of them. Let us remark some of these general
facts. First, for any set £ of k intervals along one ruling, h°, of a hyperboloid
@, they naturally acquire a cyclic order such that all the orthogonal rules hit
them (or their supporting lines) in that order. Second, once an orientation is
given to a rule, it spreads uniquely to all the lines in its ruling (in Example
5 this is implicitly given according to the z-axis); cyclic orders implicitly use
this fact. Third, thinking of the hyperboloid in affine space, as a rule of h'
moves, the intersection points with the distinguished lines (in £) move, in
the positive direction say; the “largest” goes to infinity and reappears on
the other side so that all compatible linear orders are shown, each of them
in a connected interval of rules. Finally, observe that the projection by a
ruling, can also be made to any orthogonal rule, and they are topologically
equivalent. We have now enough information to prove our last result.

Theorem 3 Suppose L = {Iy,I5,--- , I} is a family of intervals in R™. If
for every 6 of them there is a transversal line that intersects them compatibly
with their linear order, then they have a transversal line.

Proof. First of all, note that if for some subset of 4 intervals, say
L, I, I3, I,, we have that §h(I, I>, I3, I1) < 2, the 4-2 argument goes through,
taking intervals instead of lines, without any use of the order assumption.
So we will assume henceforth that every four of our intervals have at least 3
transversals, addressing it as the “4-3 assumption”.
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Let ¢; be the line in which I; lies, considered as a line in P". The proof
falls into cases, corresponding to Propositions 1 and 2.

Case 1. Suppose ¢1,0s,--- ,l; are in general position. By the 4-3 as-
sumption, each four of these lines, and hence all, lie in the ruling h° of a
hyperboloid @). Furthermore, all of their (at least 3-way) transversals lie in
the other ruling A' of @), which may then be oriented to keep the cyclic or-
dering (12--- k) —there are enough partial transversals to assure this is the
cyclic order. We must find a rule in ! that intersects all the intervals.

To get the idea of the general argument and to establish notation on
the way, suppose there exists a rule ¢t € h' that misses all the intervals
I, I5,--- ,I,. Then, the projection, II, of @ by the ruling h! unto any rule
of hY, say to fg, gives us k intervals in the real line (¢o\{t A £p}), with 6
to 6 intersections. More than enough (“4 too generous”) to apply Helly’s
Theorem on the line and obtain a common point of the projections, and thus
a transversal to the intervals.

For the general argument we use the linear order. Consider the two rules
(1,0, € h®. By the remarks above, we have that £, breaks into two intervals
such that the rules in h' that pass through one of them, say I, hit ¢; and
/. in the order 1 < k, and the rules through the complement hit them in the
order k < 1. Consider now the set of intervals [; := I(L)N 1y, i=1,... k,
as convex sets in the real line (sending to infinity any point outside Ij).
Our hypothesis of transversals compatible with the order 1,2,---  k, gives
us that each 4 of the f, intersect. Because if we add I; and I, to the four
corresponding [;, by hypothesis we get a transversal line with 1 and k as
extremes, and such a rule intersects Iy. Classical Helly in the line (now with
“generosity 27) gives us the total transversal.

The remaining cases correspond precisely to those of Proposition 2. They
follow them step by step making the convenient, or necessary adjustments
for intervals. So suppose ¢; and ¢, meet at the point p and span the plane
P. Observe that now the prescribed linear order of the Theorem need not
correspond to the indices, but it will be much simpler to follow the notation
of Proposition 2, keeping this in mind.

Case 2. We assume ¢,/ and /3 lie in the plane P but now we can
generalize to Iy, I, I3 not concurrent. In this case, h([y, I3, I3) need not
be all the set of lines in P, but it is certainly contained there, and that’s
enough. We must now consider, for every other interval, its intersection
with P. They are all intervals or points. So that the case follows from the
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classical Hadwiger’s Theorem (with “generosity 0”). Indeed, for each three
of the intersections, I; N P, adding Iy, I5, I3 to them we get a compatibly
ordered transversal on the plane. Observe that the argument extends to the
case p ¢ I; N Iy, because then h([y, I5) is contained in the lines of the plane
P and we can apply Hadwiger (with “generosity 17).

Case 3. We can assume that p = [; N I5, and the case extends to the
existence of I3 such that I3 N P = (. Since h(Iy, I, I3) = {pV p3 : p3 € I3}
which is contained in the lines of the plane p V ¢3. This case follows from
Hadwiger’s Theorem as the previous one, now arguing in the plane p V /.

Case 4. Now, we have that every interval contained in P passes through
p, and the remaining ones intersect it at a point. Assigning points as in the
corresponding Case, we obtain that they are either colinear or a contradiction
to the 4-3 assumption. m

A final remark about the notion of “compatibility” is in order because
of the degenerate cases. We understand that a transversal line is compatible
with the given order if the map of the indices to the intersection points is
monotonous (in the transversal), and not necessarily strictly monotonous.
Hadwiger’s Theorem clearly holds in this case.

References

[1] Anderson, L. and Wenger, R. Oriented matroids and hyperplane
transversals, Adv. Math. 119 (1996), 117-125.

[2] Arocha, J.L. , Bracho, J., Montejano, L., Oliveros, D. and Strausz, R.
Separoids, their category and a Hadwiger type theorem for transversals.
Submitted to Discrete and Computational Geometry.

[3] Dantzer, L. , Griinbaum, B. and Klee, V. Helly’s theorem and its rela-
tives, Convexity, vol. 7, Proc. Sympos. Pure Math., Amer. Math. Soc.,
Providence, RI, (1963), pp. 101-180.

[4] Eckhoff, J. Helly, Radon and Carathéodory type theorems, Handbook
of Convex Geometry (P. Gruber and J.M. Wills, eds.), North-Holland,
Amsterdam, (1993), pp. 389-448.

[5] Goodman, J. E. and Pollack, R. Hadwiger’s transversal theorem in
higher dimensions. J. Amer. Math. Soc. 1 (1988), 301-309.

18



[6]

[7]

Goodman, J. E., Pollack, R. and Wenger R. Geometric transversal the-
ory, New Trends in Discrete and Computational Geometry (J. Pach,
ed.), Springer-Verlag, Berlin, (1993), 163-198.

Hadwiger,H. Uber Eibereiche mit gemeinsamer Treffgeraden, Portugal.
Math. 16 (1957), 23-29.

Hilbert, D. and Cohn-Vossen, S. Geometry and the imagination, Chelsea
Publ. Comp., New York, (1952).

Katchalski, M. A conjecture of Grimbaum on common transversals.
Math. Scand. 59 (1986), 192-198.

Wenger R., Helly-type theorems and geometric transversals, Handbook of
Discrete and Computational Geometry (J. E. Goodman and J. ORourke,
eds.), CRC Press, Boca Raton, FL, (1997), 63-82.

19



