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Abstract

Let F be a family of convex sets ilR" and letT,, (F) be the space of:-transversals taF
as subspace of the Grassmannian manifold. The purpose of this paper is to study the topology of
T (F) through the polyhedron of configurations @f+ 1) points inR”. This configuration space
has a natural polyhedral structure with faces corresponding to what has been called order types. In
particular, ifr =m + 1 andT,,_1(F) is nonempty, we prove that the homotopy typeTpf(F) is
ruled by the set of all possible order types achieved byitteansversals of’. We shall also prove
that the set of allz-transversals that intersegtwith a prescribed order type is a contractible space.
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1. Introduction

Let F ={A?, AL ..., A"} be afamily of convex sets iR". Thespace ofn-transversals
of F, denotedr,, (F), is the subspace of the Grassmanni&tin, m) of (free)m-planes in
R" that intersect all the members Bf

The purpose of this paper is to study the topolog¥,pfF) throughC,", the polyhedron
of configurations of(r 4+ 1) points in R™; where such a configuration is the affine
equivalence class @f + 1) ordered points ifR™ that affinely generate it. The configuration
space has a natural polyhedral structure with faces corresponding to what has been called
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order typeg(see Section 2 for details). In particularyi=m + 1 and7,,—1(F) = @, we
shall prove that the homotopy type B, (F) is ruled by the set of all possible order types
achieved by then-transversals of'. We shall also prove that the set of aditransversals
in T,,(F) that intersec¥ with a prescribed order type is a contractible space.

More precisely, ifx?, ..., x"*1 are points inR”, then, by the classic Radon Theorem,
there are subse® = {ig, ..., i,} C TandQ = {jo, ..., jy} C I,wherel ={0,...,m+1},
with PN Q =@, P £, Q # @, such that the convex hulls of the points corresponding
to P and Q intersect. But it is not hard to see from the proof that if we further assume
that {x?, ..., x 1} affinely generat&”, then P and Q can be uniquely chosen so that
they further satisfy thafx™, ..., x'7} generate g-simplex X,, {x/,...,x/} generate
ag-simplex ¥,, and ¥, N X, consists of a single point in the relative interior of both
simplices (where, recall that the interior of a 0-simplex is itself). If this is so, we say
that (x9, ..., x”*1), where the round brackets are now to emphasize a fixed ordering,
has theorder type{P, Q}. It is not difficult to see that, in this case, our definition
of order type coincides with the classic one given by Goodman and Pollack [2]. The
finite set of all possible order typegP, Q} | P,Q C I, P,Q #@ and P N Q = (}
has the structure of a simplicial compléXZ™ if we declare that a collection of vertices
{{Prgs Oso}s - - -+ { Py, Qi 1) is @ans-simplex of O7 if and only if P,, C --- C P,, and
Qo C --+ C Oy,. We shall see later thaD7 is the first barycentric subdivision of the
polyhedron of configurations @iz + 2) points inR™, introduced in Section 2, following
the spirit of Gelfand et al. in [1].

We are now in a position to state our main results.

Definition. Let F = {A?, AL, ..., A”*+1} be a family of(m + 2) convex sets ifR", n > m,
theorder types achievey F, O7 (F), is the finite collection of all order typd®, Q} for
which there exits am-planeH e T,,(F) and pointst; € H N AJ,j=0,...,m+1,with
the order type ofxo, ..., x;;+1) equal to{ P, O}.

Theorem 1. LetF = {AC, AL, ..., A"*+1} be afamily ofim + 2) convex sets ilR”, n > m,
such that?,,,_1(F) = @. ThenT,,(F) has the homotopy type @7 (F)|, the subcomplex
of OT induced by the vertices @7 (F).

Theorem 2. LetF ={AC, AL, ..., A"*+1} be afamily ofm + 2) convex sets iR, n > m,
such that7,,_1(F) = 9 and let{P, Q} be a fixed order type i©O7T (F). If Tip,0)(F)
is the space of alln-planesH € T,,(F) with the property that there are; € H N Al
j=0,....,m+ 1, with the order type ofxo, ..., xn+1) equal to{ P, O}, thenTip o}(F)
is a contractible space.

Of course, these theorems are false wiign; (F) # @ or if we considern-transversals
of a family of (r 4+ 1) convex sets with > m + 1. For more about Geometric Transversal
Theory see [3] and for topological aspects of this theory see [4].

To fix ideas, we end the introduction with a brief discussion of the simplest non trivial
example. Letd®, A1, A2 be the three sides of a trianglelif, and letF = {A°, AL, A%}. It
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is easy to see thdh (F) is topologically a circle. On the other hand, we have six order types
{P, Q}: three corresponding to singleton pai® £ {i}, O = {j} with i # j) achieved

by lines passing through a vertex!(N A/) and a point on the interior of the opposite
side, and there are three 1, 2-partitions (of the $oet {0}, O = {1, 2}, say) achieved

by the supporting lines of the sides and taking an interior poinifinsay) and the two
extremes (inA! andA?). SoOT (F) = OT which is clearly an hexagon and also realizes
a circle. Observe also thdip, o)(F) is a closed interval fofP = Q = 1 and a single
point otherwise.

2. The space of configurationsof (r + 1)-pointsin R™

We follow the basic ideas of what Gelfand et al. did in [1] for vector spaces, but now in
the context of affine geometry.

Given pointsx® x%, ..., x" in R”, let (x% x1,...,x") denote the affine subspace
spanned (generated) b, x1, ... x".

Let

C' = {(xo,xl,...,xr) | x/ e R™, (xo,xl,...,xr>:IRm}/~,
where(x®, x1, ..., x") ~ (% y1,...,y") if and only if there is an affine mag : R” —
R™ such that2 (x/) =y/, j=0,1,...,r.

If 0 x1,...,x")issuchthatx? x1, ..., x") =R™", we will denote byix?, x1, ..., x"]
the corresponding element@j”. The elements of”* will be calledthe configurations of
(r + 1) points inR™.

If V is am-plane ofR” and(x°, x1,...,x") is such thatx® x1, ..., x") = v, we will
denote by[x°, x1,...,x"] € C™, the elemen{2(x%), 2(xY),..., 2(x")] € C, where
£2:V — R™ is any affine isomorphism. Of course our notation is independent of the
chosen affine isomorphisma.

Now we see thatC)" is naturally homeomorphic to the Grassmannian manitald,

r —m) of (r —m)-dimensional linear subspacesif. Let A" be the standarg-simplex
of R”, whose vertices arep, e1, ..., e, Wheree; = (0,...,1,...,0) is the standard unit
vector ofR" andeg = 0.

Define

v:C"— G(r,r —m)

as follows. If, without loss of generality0, x*, ..., x"] € C™, let I' :R" — R™ be the
linear map defined by (¢;) = x’, and then let¥ ([0, x1,...,x"]) = ker(I"). It is not
difficult to check that¥ is indeed a homeomorphism. Compare with [1]. In particular,
C)..1, the space of configurations ¢f2 + 2) points in R™, is homeomorphic to the
projective spac®P™.

The space of configuratio§” has a natural “polyhedral structure”, in which the faces
correspond to the different “separation structures” or “order types” of the configurations;
they turn out to be intersections of Schubert cells of the GrassmannianGpaee— m)
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for the different flags that arise from the total orders of the index set0, 1, ..., r}. This
“polyhedral structure” is finer than the one given by Gelfand et al. in [1], but its analysis
follows that one almost verbatim. In this paper, we only need the polyhedral structure of
C).1 Which will be described completely.

3. Thepolyhedron C} ., of (m + 2) pointsin R™

Let/ ={0,1,...,m + 1} and letA’ c R”*1 be the standar@n + 1)-simplex whose
vertices are given by the origip = 0 and the standard unit vect@s .. ., e,,+1. For every
two nonempty subset = {io, i1, ...,ip} andQ = {jo, j1. ..., jq} Of I with PN Q =9,
let A” C A’ be thep-simplex generated bfg;,, ..., e;,} andA¢ C A’ be theg-simplex
generated bye;o, ..., e;, }.

We may considen’ x A’ as a polyhedron whose faces are products of faces of et
T™ be the subpolyhedron af! x A’ whose faces are all prisms of the fom’ x A2,
for every two nonempty subses Q of I with P N Q =@. Let now

™ =T"/~,

where(x, y) ~ (v, x), for every(x, y) € AY x AC.

The face of the polyhedrdf” induced by the nonempty disjoint subs@tsQ c I, will
be denoted byP, Q}. Note that the simplicial comple®7, of all order types ofm + 2)
points inR™, defined in the introduction, is the first barycentric subdivisio 6t

We claim that the polyhedrdff” is naturally homeomorphict6)_ ,, and the basic idea
is that the configurations with Radon Partition of tyfg& Q} are naturally parametrized
by AP x A2. To see this, we define a map

viT" = Cp .

If z € {P, Q) a face of 7™, then it corresponds to a poilit, y) € A” x A2. For
j=0,1,....m+1,letx/ e Al x AT x AT defined as follows:

(ej,y,00 if jeP,
xj = (x,ej,O) |f ] c Q,
(0,0,e;) ifj¢PUQ.

Note that the sefx?, ..., x"*1} generates a-plane and in thisn-plane it has a Radon
partition of the typg P, Q}. Let

Y(z) =[x ..., xmF1.

The mapy : 7" — C,/, is a well defined continuous map. Furthermore, the inverse
of ¢ is given by Radon’s Theorem. More precisely, (if°, ..., x”*1) is such that
(x% ..., x™*ly = R™, then by Radon’s Theorem, there aPe= {io,...,i,} C I and
Q= {jo,---, jg} CI,with PN Q =0, andP, Q # ¢, such thafx’, ..., x'»} generate a
p-simplexXZ ¥ {x/o, ..., xJa} generate g-simplexx ¢, andX” N ¥ = {a} consists of a
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Fig. 1.

single point. Lety;,., . .., yi,} be the barycentric coordinatesoin P and{yj,, . .., Yip)
be the barycentric coordinatesmin £ €. Define

q
X = Z)/,:AeiA eA? and y= Zijejx eA?,
A=1 r=1
and letz € {P, Q} c T™ be the point that corresponds e, y) € A” x A2. Therefore,
¥~ 1([x0, ..., x™ 1)) = z. This concludes the proof that: 7™ — C_, is a homeomor-
phism.
If (Q,x3,..., ) and (xl,xl,.. ) are such tha(xe,xe,.. ,xi Ty = R
for9 =0, 1, then We say thatxo,xo, .. erl) and(xl,xl, el ) give rise to the
same order type, oriented matroid or separ0|d (see [2,4]) if and only if the corresponding
configuration$x8, xé, .. erl] and[xl, xl, .. erl] belong to the interior of the same
face{P, O} of the polyhedrorT’" =Cp.q Consequently, the faces Of)_ | are precisely
the order types ofm + 2) points in R".
For example, let us considéﬁ , the space of configurations of 4 pointsRA. It gives
a polyhedral structure to the projective plaR&? (see Fig. 1). Its 2-dimensional cells
are four triangles (corresponding to configurations where one point lies in the interior of
the convex hull of the other three, with order tyj@® Q} whereffP =1 andgQ = 3), and
three quadrilaterals (corresponding to configurations where the 4 points are in the boundary
of its convex hull and the order type is the partition in diagonals). The 1-dimensional
cells correspond to order typé®, O} wheregP =1 andgQ = 2, and the six vertices to
configurations where two of the points coincidé®(= 1 andgQ = 1). The 1-dimensional
cells group by triples to form 4 projective lines corresponding to configurations with three
colinear points and, in the Grassmannian, to lines that are parallel to one of the planes of
the standard simplex.

m+l m+1

4. The space of transver sals via the space of configurations

Now we turn our attention to the general case, and prove that the first dimension
where there are transversals to a family of convex sets can be studied topologically by
the configurations that arise.
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Let F = {A9 AL, ..., A"} be a family of convex sets iR". The purpose of this section
is the study ofT;, (F), the space of all:-planes transversal t6 through the space of all
possible configurations @f + 1) points that are achieved within-transversals t@ .

Let

Cn(F) = {[xo,xl,...,xr] eCy” | x/ e Aj,dim(xo,xl,...,xr>=m}.
Theorem 3. Let F = {A®?, A, ..., A"} be a family of convex sets iR" such that
Tn—1(F) =0. Then,T,,(F) has the homotopy type 6§, (F).
Proof. Let F C A9 x AL x .- x A” be defined as follows:

F= {(xo,xl,...,xr) eA%x Al x ... x A" dim(xo,xl,...,x’):m},
and letd : F — T,.(F) be

<1§(x0,x1,...,x’) :(xo,xl,...,xr>.
If He T,(F),and(x°,....x") e (A°NH) x --- x (A" N H) then(x°,....x")=H
becausd;,—1(F) = 0. Therefored is surjective and we clearly have that

o1 H)=(A°NH) x - x (A" NH).

This implies that® : F— T,(F)is a homotopy equivalence because it is surjective and
the fibers® ~1(H) are convex and hence contractible.
Define nowg : F — C,,(F) as follows:

qz’)(xo,xl, . ..,xr) = [xo,xl, . ..,xr].

Again, ¢ is a continuous surjective map. We shall prove that inverse imagesarke
convexinA® x --- x A”. Suppose that®, x1, ..., x") and(y°, y1, ..., y") € F are such
that[x% x1, ..., x"1=1[y% y1, ..., y"]. We must prove that the segmentRf¥", from one
point to the other is in the same fibre; that is, for evegy[0, 1], we have to verify that

(tx0~|-(1—t)y0,...,txr +@A—-0y")e F,
and
[0+ @ =0y + A=y ] =[% x].

If [x0,x2, ..., x"1=0y% y1,..., y'], then there is a set af + 1) pointsz®, z1, ..., 2"
that affinely generat&™ and affine embeddings g : R” — R”, such thatf (z/) = x/ and
gZH)=yl, j=0,...,r.

For everyr € [0,1], tf + (1 — t)g:R™ — R" is an affine map. Its imagesf +
(1-1g)(R™) is transversal t& because it contains

tf(2)+A-ng(z/)=tx! + A-0y/ e Al, j=0,...,r.

SinceT,,_1(F) = ¢, then dimzx® + (1 — 1)y°, ..., tx" + (1 —1)y") > m so thattf +
(1 — 1)g is an affine embedding and equality holds. This clearly implies theft +
A—0y° ..., tx"+(1—1)y") e F and
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[tx0+ A—0y° .. x" +(1— Ny"]
=[] =20 x ] =0y ]
The above proves that the inverse imageg afe contractible, which implies thatis a

homotopy equivalence. This, together with the fact thas also a homotopy equivalence,
concludes the proof of the theoremio

5. Thetechnical lemmas
The purpose of this section is to prove three lemmas.

Lemmal. Let F ={A9 Al ..., A"*1} be afamily ofim + 2) convex sets iiR”, n > m,
such thatr;,—1(F) = ¥. Let Ho, H1 € T,,(F) be two transversah-planes and fop =0, 1
andj=0,...,m+1,leta) € A/ N Hy be such that lies in them-simplex generated by

{a},...,a" ). Then, there are continuous maps

H:[0,1] = T,,(F),
a’:[0,11—> A/, j=0,1,....m+1,

such that
(@ for6 =0,1landj =0,1,...,m+1,

H@®)=Hs, and a’(6)=a),

(b) foreveryr € [0, 1], (a}(t), a®(t), ..., a" (1)) = H(t), anda®(t) = ta§ + (1 - t)a
lies in them-simplex generated biy:1(¢), a%(1), ..., a™t1(1)}.
Moreover, if{y1(1), ..., yms+1(t)} are the barycentric coordinates 0f () in them-simplex
generated byal(r), a%(r), ...,a" (1)}, then foreveryj =1, ...,m + 1,

yi(t) =ty;(0) + (1= 1)y;(1).
Proof. First observe that the simultaneous linear movementz(’pfto a{ does not
necessarily work (see Fig. 2 for a simple example); so we have to be much more cautious.
Let A be the(2m + 1)-simplex generated b1, ..., em+1, em+2, , - . -, €2m+2}. ThenA
can be thought of as the join 6# + 1) closed intervals. That is:

A =e1, emy2] * [e2, emi3] * - - - * [em+1, e2m+2].

Therefore, for every € (A — U’f:ll[ej, ej+m+1]), there is a unique:-simplex generated

by {y1(2),..., ym+1(2)} With y;(z) € [ej,ej4m+1], j=1,....,m + 1, andz € A(z).
Furthermore, this is a continuous association.



100 J. Bracho et al. / Topology and its Applications 120 (2002) 93-103

Let [':R%"+2 R" be the linear map such that, fgr=1,...,m + 1, I'(¢;) = a}
andI'(ejim41) = al Let,a |n them-simplex generated b{sel, ey lmet) andd? in the
m-simplex generated b@emH, ..., e2m42} be such thal (aQ) = a andI" (@9) = af.

Forj=1,...,m+1,letal: [0, 1] — A’ be defined as

al(t) = (y;(tad + (1—0ay)),
for everyr € [0, 1], and let

H() =(a'®),...,a" (1)
SinceT,,—1(F) = ¥ we have that din# (+) = m, and thusH : [0, 1] — T,,,(F) is well
defined. By constructiony®(t) = tad + (1 — 1)a? lies in them-simplex generated by
{al),...,a"™ (1)}, 1 € [0, 1], hence proving (a) and the first part of (b).

If {y1(r), ..., yms1(t)} are the barycentric coordinates af(r) = mg + (1 - t)af
in the m-simplex generated byal(r),a?(t),...,a"™t1(r)}, then, by linearity ofI',
{y1(t), ..., yms1(1)} are the barycentric coordinates@f + (1 — t)a$ in the m-simplex
generated byy1(tad + (1 — 1)ad), ..., ymp1(tad + (L — n)ad)}.

Let I :R?"+1 — R™+1 pe the linear map such that, fgr=1,...,m + 1, I'(e;) =
I'i(ej1m+1) =ej. Then, forr € [0, 1],

T(tag + (1= 0ag) = (v, ..., ym41(0).
By the linearity of Iy, I'(tad + (1 — 1)ad) = tI(@d) + (1 — n @), thus obtaining,
coordinate by coordinate, our desired conclusion:

yi@) =ty;(0)+ A -1)y;D).
This finishes the proof of Lemma 1.0

Lemma?2. Let F ={A° AL ..., A"*1} be a family ofim + 2) convex sets ilR", n > m,
such that,—1(F) = . Then, for every face of the polyhedror€,’

o N Cy(F) is convex

Proof. Asin Section 3, let = {P, 0}, wherel ={0,1,...,m+1}, P ={ig,i1,...,ip} C
1,0="{jo,j1,---»jg} CI,PNQ =0, P, Q #0.Let xg,xg,.. m+l]and[x1,x%,...,
’"+1] be two pomts ofo N Cy, (F). Therefore {xe ,x0 Y .,xe "} generate gr-simplex
sP and{x[°, x]', ..., "} generate a-simplex 2 where =/ N £¢ = {ay} consists
of a single point. Let{yéo,...,)/el"} be the barycentric coordinates of in EQP and
{y{° ..., 7)) be the barycentric coordinates @f in £Z. Furthermore, et} be the
p-plane that containg/” andHeQ be theg-plane that containsjeQ, 6=0,1.
By Lemma 1, there are continuous functions:
P:10,11— G, p),
:10,11— G(n,9),
xj:[O,l]—>Aj, j=1....m+1,
a:[0,1] - [a% a%],
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suchthatfob =0,1andj =0,1,...,m+ 1,
HPO)=H, H2O)=HZ,  x6)=x],
and fori ¢ P U Q andr € [0, 1], x' () = tx) + (1 — t)x} anda(t) = tap + (1 — t)az.
Moreover, for every € [0, 1], we have thatx0(r), ..., x» (1)) = HF (¢), (x/0(¢), ...,
xla(t))y = HC(r), HY (t) N H2(t) = {a(r)} and thata(z) lies in the p-simplex generated
by {x/(¢), ..., x'r(¢)} and in theg-simplex generated bix/0(z), ..., x/a(t)}.
Furthermore, if{y;,(?), ..., y:, ()} are the barycentric coordinates @ft) in the p-
simplex generated byx(¢), ..., x'r(t)} and {Vio@®),...,v), ()} are the barycentric
coordinates ofz(r) in the g-simplex generated byx/0(z), ..., x/a(r)} then, for every
iePUQ,

Yi)=tyi(O)+ L -0)y: (D).
Define the continuous map
H:[0,1] = T, (F)
as follows: for every € [0, 1], let
H(@) ={x°0),....x" ).
Then,

{[x°@),....x" )] eo N Cw(F) | 1 €10, 11}

is the closed interval inoc = {P, 0} with extreme points(x$,x3,...,xg*!] and

[x, x}, ..., x#"™1]. This concludes the proof of Lemma 20

Lemma 3. Let K be a polyhedronK’ its barycentric subdivision and let be a closed
subset ofK with the property that N X is convex for every face of K. Let |X| be the
subpolyhedron ok’ induced by the set of verticés’ € K’ | o is a face ofk and ¢ N X #
@}. Then,| X| has the same homotopy typeXof

Proof. Let L be the set of all faces of K such thato N X = ¢ and let|L| be the
subpolyhedron oK’ induced by the vertices af. Then, there is a strong deformation
retractionr: K’ — |L| — |X| which takes place through the linear structure of every
simplex ofK’, because, for every simplexof K’, 7 is the join of{c’ € 7 | oNX # ()} and

{o' e oNX = @}. By convexity, the restriction of to X C K’ — |L| is also a strong
deformation retraction. This concludes the proof of Lemmai3.

6. Themain results

The purpose of this section is to prove our main results.

Proof of Theorem 1. Remember that the simplicial compléX7” of all order types of
(m + 1) points inR™ is the first barycentric subdivision of the polyhedr6fj, ;. Then,
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by Lemmas 2 and 37, (F) has the homotopy type ¢©7 (F)|. To finish the proof just
remember that by Theorem 8,, (F)) has the homotopy type @f, (F).

Theorem 4. LetF ={AC, AL, ..., A"+l be afamily ofm + 2) convex sets ilR"”, n > m,
such that},—1(F) = ¢ and leto be a face of the polyhedrad, ;. Then,

{(ao,al,...,am+l)eA0xAlx~~~xA’"+1 | [ao,al,...,amH]GUO}

is contractible.

Proof. As in the proof of Theorem 3, let
F= {(xo,...,xm+1) e A% x ... x A" xT e AT ,dim(xo,...,xm+1):m}
andg: F — C,u(F) C C™"_; be defined ag (<0, ..., x"*+1) = [x0,..., x"+1]. Then,
p N o NCu(F) =1{(a%...,a") e AOx ... x A"+ [aO,...,a" ] e o)

and furthermore, the inverse imagespadire convexirA® x - - - x A”*1, Since, by Lemma
2,6 NC,y(F) is convex, therf(@®, ...,a™ 1 e A0x ... x Am+1 140, ... am*eo}is
contractible. O

Theorem 2 can be restated as follows:

Theorem5. LetF ={AC, AL, ..., A"*+1} be afamily ofm + 2) convex sets ilR”, n > m,
such thatl;,—1(F) = 0. Leto be aface o)}, and let7, (F) C T,,(F) be the set of all
m-transversals that intersect the membersFo€onsistently with the order type. Then
T, (F) is contractible.

Proof. Letus consider, by Theorem 4, the contractible sgac? ..., a" 1) e A%x ... x
AL 60, .. a1 e o). And let
@:{(ao,...,am+1) €A% x ... x AL [ao,...,am+1] eao} — Ty (F)

be @, ...,a" Y = (O ..., a"t1). Clearly @ is a continuous surjective map. More-
over, if H € T;,(F), we have that ~1(H) is precisely the set

{(@...,a"") e (A°NH) x ---x (A"t nH) | [d% ..., a" ] e o).

Therefore, by Theorem 4, when=m, ®~1(H) is contractible for everyf e T, (F) and
hence® is a homotopy equivalence. This implies tHgt(F) is contractible. With this we
conclude the proofs of Theorems 2 and &
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