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JAVIER BRACHO AND LUIS MONTEJANO

THE COMBINATORICS OF COLORED
TRIANGULATIONS OF MANIFOLDS

AnsTRACT. Foundations for the topic of crystallizations are proposed through the more general
concept of colored triangulations. Classic results and techniques of crystallizations are
reviewed from this point of view. A new set of combinatorial invariants of manifolds is defined,
and related to the fundamental group and other known invariants. A universal group
theoretic approach for this theory is introduced.

A new combinatorial approach to the topology of PL-manifolds has been
developing in recent years. It is based on the facts that a graph with colored
edges provides precise instructions to construct a space, and that any
manifold (i.e. PL-manifold) is obtained in this way. Thus, manifolds may be
studied through graph theory.

The idea of the construction, due to Pezzana ([18], [19]) and further
developed by Gagliardi, Ferri and their group (see the survey [7], and the
references), is to take for each vertex of the graph one copy of a standard
geometric simplex (whose faces correspond to the colors), and then, each
(colored) edge tells us to glue two simplexes along one of their faces (the
color says which). Clearly, the space so constructed comes with a rich
simplicial structure, which we call a colored complex. It is not a classic
simplicial complex for two simplexes may meet in more than a single
subsimplex (in this sense, it has the flexibility of a pseudocomplex [15] or of
a semisimplicial complex [17]). But, on the other hand, it is quite rigid, for
every simplex is canonically isomorphic to a standard one (another
resemblance to semisimplicial complexes). Thus, the study of manifolds
through colored graphs, via colored complexes, is qualitatively different
from the classic PL-combinatorial approach, and leads to results of a
different nature.

In Section 1 we start from a new general point of view, something like a
“Thinker’s Toy’ (as in [2]). A colored graph G (Subsection 1.1) is thought of
as an ‘instructions manual’ to build spaces: if we supply a colored space X
(a space with a fixed subspace of each color (Subsection 1.2) to act as a
‘building block’, we obtain a new space |G; X| (Subsection 1.3) by glueing
copies as G says. Of course, the main interest lies on |G| (obtained, as
above, when X is the standard simplex, (Example 1.4(i)), of which all
manifolds are examples (Example 1.4(ii)). But the spaces |G; X| have a lot to
do with |G]. To talk about links, regular neighborhoods, canonical
decompositions and other interesting subspaces of |G}, one only has to
analyze the basic ‘building blocks’ and the obvious functoriality of the
construction (Section 1-2) takes care of the rest.

Geometriae Dedicata 22 (1987), 303-328.
© 1987 by D. Reidel Publishing Company.



304 JAVIER BRACHO AND LUIS MONTEJANO

The development of this general point of view makes precise many of the
techniques in the ‘folklore’ of the subject, and leads naturally to the
restatement of some known results, throwing new light upon them and
placing them in a unified context (due credit is given within the text). In this
work, which is basically self-contained, we hope to make the basic
combinatorics of this approach clear to the topologist, and the basic
topology clear to the combinatorist. Some more geometric consequences of
this general point of view are explored in [1] and [2], and in a sequel to this
work.

In Section 2 colored complexes are defined and those associated to
colored graphs and to manifolds are briefly studied.

Since every manifold M has associated a family of colored graphs 4(M)
(its colored triangulations), one obtains invariants of the manifold from
graph invariants (see, e.g., [10]). A family of numeric invariants of this type
is presented in Section 3. The simplest of them, for example, is the minimum
number of vertices among the graphs in 9(M), we call it the complexity of
M. 1t classifies compact manifolds (of a fixed dimension) up to a finite
ambiguity (Theorem 3.12), and in dimension 2-it works just like the Euler
characteristic (Theorem 3.13).

In principle, one should be able to compute all the topological invariants
of a manifold |G| in terms of the colored graph G. But it is important to
have precise combinatorial algorithms to do so. Two descriptions of the
fundamental group have been proposed ([9] and [21]). In Section 4 we give
yet another one, which, in computational and combinatorial terms, is quite
simple and natural It was obtained independently by Donati [3] and
Grasselli {8]. It is a presentation with the edges of a fixed color as
generators and bicolored cycles as relations, and gives bounds for the rank
of the fundamental group in terms of the numeric invariants of Sec-
tion 3.

Finally, in Section 5 we observe that the study of n-manifolds can be
reduced to the study of subgroups of the free product of n + 1 copies of Z,
(the integers mod 2). This is because well-colored graphs of dimension n
correspond to conjugacy classes of subgroups of this fixed group.

The authors wish to thank the referee for his valuable comments.

1. PRELIMINARIES

Throughout this work 4 will be a color set, which is a finite set whose
elements are refered to as colors. Its dimension is its cardinality minus 1 and
will be denoted by n (n = dim(4) = #4 — 1).
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1-1. Basic Definitions

1.1. A 4-colored graph G (or %-graph for short) is a triplet G = (V(G), E(G),
y) where V(G) (or simply ¥ if no confusion arises) is the set of vertices; E(G)
{or E) is the set of edges, each of which is attached to (or joins) a pair of
vertices; and y; = y: E = € is an arbitrary but fixed coloring of the edges.
Multiple edges, i.c. several edges attached to the same pair of vertices, are
allowed. But no loops.

1.2. A b-colored space, or 6-space, is a topological space X together with a
collection of subspaces {X _},., indexed by the colors in 4.

1.3. Given a 4-graph G and $-space X, the realization of G with X, |G; X1,
is the space obtained by taking one copy of X for each vertex of G, and then
glueing two copies by the identity along the subspace X, whenever an edge
of color ¢ joins the corresponding vertices. Namely

IG: X| = V(G) x X/~,

where ~ is generated by the following: for each ee E(G), let u, ve V(G) be
the vertices to which e is attached, then

(u, x) ~ (v,x) for every x€ X .

Observe that |G; X| comes with a natural $-space structure: |G; X|, is the
image of V(G) x X, in |G; X|.

1.4. EXAMPLES. (i) The %-simplex. Let <4)> be the geometric simplex
spanned by 4, and for each c€ ¢ let (4>, be the opposite face to the vertex
¢. That is, if ¢ denotes the complement of {¢} in 4, then {4, = <{€).
This is the basic example of a 4-space (a simplex with its faces painted
with different colors), and thus we simplify notation in this case by putting

Gl = 1G:{6>I,

and calling |G| the realization of G.

(i) Manifolds and regular graphs. Let M be an n-dimensional manifold.
(We shall work in the PL category; thus manifold will mean PL-manifold.)
For simplicity of the exposition, we shall assume that M has no boundary.
Let K be a simplicial complex triangulating M. Let K’ be its barycentric
subdivision, and denote by K, the set or r-simplexes of K’.

The ‘dimension function’ K{o) — A, = {0, 1,...,n} which assigns to each
barycenter the dimension of its corresponding simplex, induces a natural
coloring y:K{,-1)— A, since the vertices of each (n — 1)-simplex miss
exactly one color (element) of A,. Then we define a A,-colored graph G, by
putting V(G,) = K{,, E(Gy) =K{,—;, and y as above. (0M = @ implies
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that every edge is attached to exactly two vertices.) Clearly,
Gyl = |K'| = M.

Thus, every manifold is the realization of a colored graph.

The question arises of which graphs realized closed manifolds. An
obviously necessary condition is that it be regular — that is, that at each
vertex there is exactly one edge of each color, so that, in its realization, each
face of each simplex is glued with precisely another. But, of course, this is
not sufficient (see [7, §2]).

(iii) Spheres and projective spaces. Not all the graphs that realize
manifolds are of the type G as above. In fact, the interesting ones are those
which are not so ‘wasteful’. The simplest example of a regular graph, called
the é-dipole [6], consists of two vertices joined by n + 1 edges, one of each
color. It realizes the sphere S™ (Observe that it is not a classic simplicial
complex.) We give another two examples (for further examples, see [7] or
(21).

First, let Q(%), ‘the 6-colored cube’, be the 4-graph whose vertices are all
subsets of 4, and put an edge of color ¢ between vertices (subsets) that
differ only by the element ¢ (e.g. between @ and {¢}). Q(%) is clearly regular,
and it is easy to see by induction that {Q(€)] = S".

Now, we form a new graph P(%4) by adding to Q(), where c€ 4 is any
color and ¢ = 4 — {¢}, edges of color ¢ between all pairs {«,& —«} with
o <& It is a nice and easy exercise to prove that [P(4)] = RP", and that
P(%) does not depend on the choice of c€ 4 (see Example 1.5(i) below).

(Observe that Q(4) and P(4) correspond to the ‘ortant triangulations’ of
S™ and RP", respectively.)

1-2. Functoriality

There are obvious notions for morphisms between colored graphs and
between colored spaces. With them, the realization becomes functorial.

Given a color map p: 6 — @’ between color sets, a map over p between a
%-space X and a 4’-space X'isa map f: X — X' such that f(X,)c X' for
each c € 4; and a morphism over p between a 4-graph G and 4’-graph G is
a graph morphism g: G — G’ (vertices go to vertices and edges to edges,
preserving adjacency) such that y'(g(e)) = p(y(e)) for each ee E(G). With
these ingredients, one gets naturally a map over p

lg: £1:1G: X| — |G'; X'|.

Maps and morphisms over the identity of € will be simply denoted 4-
maps and 4-morphisms.
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1.5. EXAMPLES. (i) In Example 1.4(iii) above, one has a @%-morphism
a: Q(4) — Q(€) sending a vertex & = 4 to a{a) = & = 4 — «, which realizes
the antipodal map of S".

Clearly, @ induces a Z ,-action on the @-graph Q(%). Its ‘orbit @-graph’ is
precisely P{(4) (which was defined by choosing a representative in each
orbit).

(i) Regular surfaces. Given a cyclic permutation of 4, € say, let P, be the
@-space consisting of a regular plane polygon with n + 1 sides colored
according to &. If G is a regular @-graph, one easily sees that |G; P,| is a
closed surface. In order to embed |G; P,| in |G/, it is enough, by functoriality,
to embed P, in {¥)> in a colored manner. This is done by sending the
barycenter of the polygon to the barycenter of (€, b,; the barycenter of
the c-colored side of P, to the barycenter of {¢}, b;; and the vertex where
the sides of colors ¢ and d say, meet to b(;]). And then extending linearly.
Thus, we obtain |G; P,| = |G|, which is called a regular surface of {G|.

Regular surfaces were studied by Gagliardi and Ferri ([5], [6], [10] and
[11]). They give rise to an invariant of closed oriented manifolds, the
regular genus, by letting g(M) be the minimum genus among the regular
surfaces of M (to be given more precisely in Section 3). Regular genus is a
natural generalization of genus and Heegaard genus, and it characterizes
spheres; that is, g(M") = 0 iff M" = §" ([5], [6]).

(iii) The geometric graph. Let St(4), ‘the @-star’, consists of n 4 1
intervals (1-simplices) with one of their endpoints identified (to a center,
say), then color the ‘free’ endpoints with the colors in € (St
(4) = % x [0,1]/%6 x {0}, St (4), = {(c, D}). If G is a regular 4-graph then
|G; St(4)]| coincides with the geometric picture we have of the graph G. But

(e3>
Cy
Cy
[ T T
. Co 2} (e
Co l C
s - 2y
<2y
P,
Stig) &= (00,1,65,63) 6>

Fig. 1.
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we have obvious colored embeddings of St(4) into (4> and into P,: send
the center to the barycenter and each (¢, 1) to the barycenter of the
corresponding face. Thus, we may think goemetrically of the graph G as
embedded in |G| (or in |G; P,]).

2. COLORED COMPLEXES

Clearly, the space |G| (where G is a $-colored graph as usual) comes with
an underlying simplicial structure. It has been well used in the work of
Gagliardi and Ferri’s group, but it should be made explicit.

It is a good custom to differentiate a simplicial complex from its
realization. Thus, we define a psendocomplex AG that captures the simplicial
structure of [G|. (The only difference between a pseudocomplex and a
simplicial complex is that the intersection of two simplices may be a union
of common subsimplices instead of a single one; see [15].) However, in our
case there is some extra structure.

2.1. A %-colored complex is a pseudocomplex together with fixed and
compatible isomorphisms of each simplex with some face {ay &{E>
(« = 4). Equivalently, it is a pseudocomplex together with a fixed non-
degenerate (r-simplices go to r-simplices) simplicial map to A%, where A4 is
the obvious simplicial complex (A4 = {{a)|ac @, a# Q}) whose
realization is {4 ).

For example, the barycentric subdivision of any n-dimensional simplicial
complex (or pseudocomplex) is a A,-colored complex (see Example 1.4(ii)).

2.2. REMARK. If the colors are ordered (ie. if an isomorphism A, ~ € is
given) then a $-colored complex gives rise naturally to a semisimplicial
complex. (In fact, one could equivalently define colored complexes as
semisimplicial complexes satisfying some extra conditions.) Thus, classic
algebraic topology is nearby.

2-1. Residues

Let G be a ¢-graph. To define AG combinatorially we have to introduce the
notion of residues (see [217]).

o will always denote a subset of 4, and & its complement.

Let G, be the maximal a-colored subgraph of G, that is, V(G,) = V(G),
E(G,) = y o) and y,: E(G,) — « is the restriction of 7.

2.3. A residue of G is a connected component of G, for some proper
o< G(x# 4. It is also called an r-residue where r = #a(<n), or an a-
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residue. The notation H<d G stands for ‘H is a residue of G’. And let Res,(G)
(Res{G)) be the set of all a-residues (r-residues) of G. Thus, for example,
Res, (G) = Resy(G) =V(G) and G is regular iff E(G) = Res, (G).

Now, define AG to have for each a-residue H a copy of (&) called o, and
make o, the appropriate face of g, (0, < 0,,.) whenever H'<1 H.

Clearly, A, is a 4-colored complex.

2.4. PROPOSITION. The realization of AG |AG|, is canonically home-
omorphic to |G|; that is, |G| = [AG|.

Proof. First note that the simplices of type {4) in AG correspond to
V(G). Then observe, from Subsection 1.3 and from the definition of |G| that
given x € interior ({&)) = (%) and u, ve V(G) then (4, x) ~ (v,x) iff v and v
lie in the same a-residue. |

The barycentric subdivision of AG denoted A'G, which is a simplicial
complex in the usual sense, plays an important role. It has a O-simplex by
for each residue H<1G (b, is the barycenter of o,), and an r-simplex
<b“0’ coby D for each chain H,<tH,_,<1---<31H,.

The usual notion of link has to be slightly modified for pseudocomplexes
so that it captures the classic idea; see, for example, [8]. Given a simplex
of a pseudocomplex K, let link,(o) be the subcomplex of K’, the barycentric
subdivision of K, generated by all barycenters b, such that ¢ <t and o # 1.
Observe then that the classic link of b, in K’ is precisely the join
link (o) *(do)".

2.5. PROPOSITION. For any residue H of G:
link,4(0,) = AH < A'G.

Proof. The inclusion A’ H&A'G is given by: if Hy is a residue of H, it is
also a residue of G, thus send by, to by,. Now apply the given definition
of link. 0

(o) < <y

licay)

Fig. 2.
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This proposition can also be seen with the Tinker-Toy. Suppose H is an
a-residue. Let £: {a) = (4> be the colored map over the inclusion « ¢
defined simplicially on the barycentric subdivision by sending the barycenter
by = by, where f ca, to é)(b,;) = by, The image of { is the link of <& in
{6>.

Together with the inclusion ¢:H - G, 4 gives an embedding
|é;[|:IH|C>|G|, which realizes the link of o, More precisely, we have
commutative diagrams

2 ';[
H]| i 1G] H]| b el

fie
[itg

ANHle o LING] Hc G

where, in the first diagram, the vertical homeomorphisms are given by
Proposition 2.4 and the bottom inclusion by Proposition 2.5, and in the
second (assuming that G is regular and hence also H), the graphs are
thought of geometrically as in Example 1.5(iii). Thus, if H<a1 G, this is the
natural way to think of |[H| in |G|, which we simply write, from here on, as
|H|s Gl

2-2. Manifold Graphs

A @-graph G is a manifold graph if for every residue H, |H| is a sphere. That
is, if AG is a combinatorial manifold’. Recall that in general this is not
equivalent to {G| is a topological manifold’ [13].

If G is a manifold graph, we have a canonical cell decomposition of |G|,
dual to AG. It consists of an r-cell for every r-residue. If H is a residue, the
corresponding cell is the cone from by, the barycenter of o, to its link [H|.
This we write as

(2.6) byx|H| S |G,

where * denotes join. In particular, observe that the 1-skeleton of the dual
cell decomposition corresponds precisely to the geometric graph G & |G.
See also [16].

Observe that for any $-graph G we still have the inclusion of the cone
(2.6), but in general it will not be a cell.
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2-3. Colored Cores and their Regular Neighborhoods

A colored complex always comes with distinguished subcomplexes: those
spanned by a fixed subset of colors. Furthermore, in the case of the
realization of graph, |G|, one can also break it into canonical pieces which,
analyzed separately, give a powerful technique to study |G|. (Used, for
example, in [5], [6].) The precise definitions follow.

If X is any %-space, it seems natural to define, for any o< &,
Xo = My X, for o # @ and Xy = X. And then, if G is a @-graph, |G|, is the
subspace of |G| formed by all simplexes of type {(&) (for (%), = <{a)), we
call it the a-core of |G|. Clearly, |G|, is the realization of an &-colored
complex, but moreover, it is the realization of an &-graph. (Namely, take a
vertex for each o-residue and join two by a c-edge, c € &, iff there is a c-edge
between the corresponding residues.)

Now, if « is proper — that is, if ¢ # o # 4 — then |G| # |G|, # @, and to
describe the regular neighborhood of |G|, in |G|, which we denote
RN (IGl,), it is enough to analyze the standard pieces. Let R(&) be the
subspace of (4 spanned (in the barycentric subdivision) by all barycenters
by (of (B> & {(B))such that an f # @ (see Figure 3), and endow R(&) with
the obvious 4-space structure, as subspace of {4). (In general, if Y is a
subspace of a ¢-space X, put Y, =Y ~ X_.) Then, since R() is the standard
regular neighborhood of (&) & (4 ), we clearly obtain

(2.7) RNg(1Gla) = 1G; R@).

Let T(x) = T(@) = R(e) » R(&), considered naturally as a %-subspace of
{®>. (It is spanned by barycenters by such that anf # @ # an f, and
homeomorphic to {a) x {a).)
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And now, glueing the standard pieces, we have a canonical decomposition
of |G| into regular neighborhoods of complementary colored cores:

(2.8) 1G] = IG; R(e)] Y |G; R(@).
1G: T(a)]
Observe that if |G| is a manifold then |G; T()| is a submanifold of
codimension 1. In fact,

|G; T(e)l = |G, R(2)] = 0IG; R(@)| = |G; R(®)] M |G; R(&)].

3. NUMERIC INVARIANTS

In the first section, we establish some useful notation and terminology. And
at the same time, well-known and classic results are translated to our
setting. The new invariants are studied thereafter.

3-1. The Euler Characteristic

Let " be the set of (PL) homeomorphism classes of connected and closed
(PL) manifolds of dimension n. A basic problem (or the basic problem) of
PL topology is to classify .4". It is only solved in dimension 2 in terms of
two invariants (orientability and the Euler characteristic).

Let 9" be the family of finite connected regular 4-colored graphs (recall
that n = #4¢ — 1), and let #%" be the subclass of manifold graphs. We say
that two graphs G, G'e 4" are equivalent if |G| is (PL) homeomorphic to
|G'l. And finally, given a manifold Me #" let 9(M) consist of those
manifold graphs that realize M (its colored triangulations):

Bl GM" = {Ged"]|G| = M).

Basic problems are to characterize in combinatorial terms the
equivalence relation in %", and the subclass #%". A good deal has been
done in the first direction, see [6]. Observe that the second one is equivalent
to characterizing 4(S"" '), for Ge %" is in M%" iff all its n-residues are in
G(s" 1.

Again, everything is solved in dimension 2: #%9?=%? (since
%(S') = %'), and equivalence is detected by two combinatorial invariants.

A graph is bipartite if its vertices can be partitioned into two disjoint
subsets such that every edge goes from one to the other, or, equivalently, if
it has no odd cycles [14]. It is easy to see that if Ge %" then |G| is orientable
iff G is bipartite.
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Given a 4-colored graph G, let
3.2) Bi(G) = #Res, -1 (G), 0<k<n,

Observe that we have chosen the geometric meaning for the subindices.
Br(G) is the number of k-simplices of AG, thus, it is somewhat like a ‘Betti
number’. Now, the Euler characteristic of G is defined as

n

(33) (G = ) (—=1)B(G),

k=0
which clearly is the topological Euler characteristic of |G].
The classic classification of compact surfaces gives:
3.4. THEOREM. For any G, G'€ 4%, we have:
(1) |Gl = |G} iff both G and G' are bipartite or not and x(G) = x(G').
(i1) x(G) <2 and equality holds iff Ge 4(S?). O
This characterization of 4(S?) yields the following one for #%3.

3.5. THEOREM. Given Ge€%>, then x(G) >0, and equality holds iff
Ge MG,

Proof. From (ii) of the preceding theorem, we clearly obtain
Y AH) <264(6),
HeRes4(G)

and equality holds iff Ge . #%*. Developing the left-hand side, and using
that every i-residue (i = 0, 1, 2) is contained in exactly 4 — i 3-residues, we
obtain that it equals 2f,(G) — 38,(G) + 483(G), which, together with the
immediate

3.6. LEMMA. If Ge%" then f,.,(G) = Yn + DB.(G) O
yields
—2x(G) < 0 and equality holds iff Ge #%>. O

Following this line of thought, the immediate problem is to characterize
%9(S?), the graphs that realize the 3-sphere. A work in reference [1] is
related to this problem.

3-2. Complexities

Although the Betti numbers are not topological invariants of graphs
(equivalent graphs may have them different), they produce invariants for
manifolds.
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Given Me /", the k-complexity of M, 0 < k < n, is
(3.7) k(M) = min{B,(G) | Ge 4(M)}.

In words, it is the minimum number of k-simplices a colored triangulation
of M must have.

Since one always has at least (§1}) k-simplices,! it will be useful to define
the reduced complexities as

n+1
k+1

’zn(M) = Kn(M) -2

(3.8) K (M) = k(M) — ( ) for O0s<k<n-—-1

The case k =n is special because any regular graph' has at least two
vertices.

39. THEOREM. Reduced complexities are subadditive. That is, if M,
M'e M", & (M # M) < R M) + R(M"), where M # M’ is the connected sum.

Proof. This is a consequence of the fact that connected sum can be
performed combinatorially (see [6]).

Given G, G'€ %", and ve V(G) and v € V(G’). The connected sum of G and
G’ along v and v', G, # ,-G', or G # G, is the following regular %-graph.
Consider the disjoint union of G —v and G’ — v’ (G — v is obtained by
deleting v and all edges incident to it); and then, for each color ce 4, put an
edge of color ¢ between v, and v;, where v,(v}) is the unique vertex of G(G') ¢-
adjacent to v (i.e. there is an edge of color ¢ from v to v,).

Geometrically, |G # G'| is obtained from |G| and |G| by deleting the
interior of a simplex from each one, and then identifying the (colored)
boundaries by the identity. Thus, if |G| and |G'| are manifolds then
|G # G'| =G| # |G'l.

Moreover:

1
,Bk(G#G’)=ﬁk(G)+5k(G')—-<Z:1) 0<k<n-1

Bu(G # G') = B.(G) + BG) — 2.
The theorem follows. O

Now, we give some results on particular complexities, starting with
dimension 0.

3.10. THEOREM. For any Me M", ko(M) = 0.

! Formally, we should convene that graphs and manifolds are non-void.
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This is just another way to write Pezzana’s crystallization theorem ([18],
[19]). A crystallization ([4], [18], [19]) is a manifold graph G, such that G,
is connected for all ce §; that is, such that AG has a unique vertex of type
(e for each ce ¥ (which happens iff §,(G) =n + 1).

3.10 THEOREM (Pezzana’s crystallization theorem). Every connected
closed manifold admits a crystallization.

Proof. 1t is enough to see that any Ge . #%" can be reduced to a
crystallization. Suppose G. is not connected. Since G is connected, there
exists a ¢-colored edge e attached to vertices v and v’ lying in different
components of G;, H and H’ say. Let G/e be the following 4-graph: in G;
change H 1L H' for H, # ,.H', then put back all ¢-colored edges but e. One
easily sees that G/ee #%" and that |G| = |G/e|. Then, through a finite
sequence of these crystallization moves, G can be reduced to a
crystallization G’ realizing the same manifold (|G| = |G')). [}

3.11. COROLLARY. Given Me M", and 0 <k <n. Then, if G realizes
Ki(M) (ie. if Ge 9(M) and k(M) = B(G)) then G is a crystallization.
Proof. In the preceding proof, B(G/e) < ,(G) for all 0 < k < n. ]

Observe that if k¢ is generalized to non-connected manifolds it measures
the number of components.

Finally, we turn our attention to x,, which deserves to be called simply
the complexity and to be denoted by k. It is the minimum number of
simplices one needs to build a manifold in a colored way.

3.12. THEOREM. «: #" — 2N is finite to one. And moreover, K(M") = 0 iff
M" = 8"

Proof. Every regular $-graph has an even number of vertices, and only
finitely many isomorphism classes have the same number of vertices, and
only one has two. I

3.13. THEOREM. For any closed surface M?, &(M) = 4 — 2y(M).

Proof. Let G realize x,(M). Then y(M) = fo(G) — f,(G) + B,(G), but
Bo(G) =3 by Corollary 3.11 and B,(G) = 38,(G) by Lemma 3.6. The
theorem follows. ]

Thus, we may regard the complexity as a generalization of the Euler
characteristic in dimension 2 (for classification purposes it serves just as
well) preserving its nice property of classifying manifolds up to finite
ambiguity.

A few remarks should be made to Theorem 3.12. It gives a function
(# Kk 1):2N - N. Is it bounded as it is in dimension 2? (Observe that the
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proof was quite rough and leaves ample room for improvement: among the
regular @-graphs with 2m vertices, say — whose number could be computed
combinatorially — only a ‘few’” will be manifold graphs; among these, there
are representatives of all manifolds with smaller complexities, and several of
the ‘new’ ones could be equivalent.) When is it non-zero? For example, with
four vertices one easily sees that, except for RP?, all manifold graphs give
spheres, then (#x, '(4)) = 0 for n > 3. Does this fit in a more general and
regular pattern?

The notion of complexity gives rise to an interesting family of colored
graphs: G e #9" is minimal if k(|G]) = B,(G). But very little is known about
them.

3-3. Colored Complexities

Since the k-simplices of colored complexes are differentiated by their colors
(their type), we can ‘refine’ the complexities as follows.
Given a $-graph G, let

(3.14)  B.G)= #Res,(G), a«c¥,a+# D,
14(G) = min{B(G)| #a = k + 1)
1 (G) = max{B,(G)| #a =k + 1}.

And then given Me /", define for each 0 < k <u:

(3.15) (M) = min{1(G) | Ge 4(M)},
wd (M) = min{ (G)| Ge (M)},

and Jyu =p, — 1 for 0 <k <n-—1, fi, = p, — 2 (likewise for ii;").

In words, every colored triangulation of a manifold M has at least p,(M)
k-simplices of each type, and there exists some type {a) (with « = @ and
#o = k + 1) with at least ;" (M) simplices.

3.16. THEOREM. Considering the invariants as functions M" — N, we have:

@) G hu < < GO, and equality holds for k=n, n-1;
Sfurthermore, if the first equality holds so does the second.

(i) O=poSpy <<y, and O0=puf <uf <--- <yt

(i) ju and fy are subadditive.

(ivy Fork=n,n~-1,and n—-2ifn =23 g(M")=0iff M" = S"

Proof. (i), (i) and (iii) (following the proof of Theorem 3.9) are simple
exercises. For k =n, n — 1, (iv) follows from (i) and Theorem 3.12. We are
then left to prove that f,_,(M") =0 iff M"=S§" for n > 3. But this is
clearly implied by the following theorem. O
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3.17. THEOREM. If Ge M%Y", n > 3, contains a Hamiltonian bicolored cycle
(ie. if for some « = @, #0o =2, G, is connected) then |G| = S".

Proof. This theorem is an easy consequence of the decomposition
technique developed in Section 2-3, with « as above. The hypothesis implies
that |G|, consists of a single (n— 2)-simplex, and thus, from (2.7),
|G; R(&@)] = B" and |G; T(o)| = S"~ L.

On the other hand, |G|, is a 1-dimensional complex and the boundary of
its regular neighborhood is $"~!, but this happens, for n >3, iff |Gl; is
collapsible and thus RN;(IGl,) = |G; R(w)] = B". By (2.8) |G| = S™. 0

The final result of this section relates p, with the regular genus of
Gagliardi [10] that we now state.

Recall Example 1.5(ii), and observe that if Ge 4", then the surface |G; P,|
is orientable iff G is bipartite. Then, we define the regular genus of a
bipartite G€ %" as g(M) = min{genus|G; P,| | ¢ is a cyclic permutation of @},
and of an orientable M e #" as g(M) = min{g(G)| Ge 4(M)}. Clearly, this
genus is the classic one in dimension 2, but, furthermore, it coincides with
Heegaard genus in dimension 3 (see [10]).

Observe that g(M) can be always realized by crystallizations. In fact, the
crystallization move does not change the regular surfaces at all.

3.18. THEOREM. For oriented manifolds:

4y (M3?) = g(M?) = Heegaard genus (M?)
and

11(M") < g(M") for n > 4.

Proof. For n =3, observe that P,& {4 > corresponds to T(x) where a
consists of two non-consecutive colors in & (see Figures 1 and 3). Thus, if
Ge M%? is bipartite, the decomposition (2.8) is a Heegaard splitting of |G
by the regular surface |G; P,] = |G; T(a)| (each side is a handlebody for they
are regular neighborhoods of 1-complexes, |G|; and |G, respectively). This
proves that g(M?) < Heegaard genus (M3). For the other inequality one
finds appropriate ‘triangulations’ of Heegaard decompositions [10].

If G, as above, is furthermore a crystallization, then |G|, consists of two 0-
simplices with f,(G) 1-simplices attached to them. And thus,
g(|G; P.l) = B(G) — 1. This implies that g(G) = [i;(G). And the first equality
follows since both invariants for manifolds are realized by crystallizations.

For n =>4, we prove that [i;(G) < g(G) for any bipartite crystallization
Ge MG"

Given a cyclic permutation of the colors ¢, let « = {c, d} be any pair of
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non-consecutive colors in &. It is sufficient to see that f,(G) — 1 < ¢(|G; P,)).

To obtain |G; P,| we first glue with colors not in a. |G P,} is a compact
surface with f,{G) connected components, say Sy, S,,...,S, where
k = B,(G). Since ¢ and d are not consecutive, each S; has two types of
boundary components: those colored with ¢ and those colored with d. One
can easily find a simple closed curve 7, — S; that breakes S; into two
connected surfaces S;(¢) and S,-(d), such that all ¢ (d) boundary components
lie in Si(¢) (Si(d)).

S,‘I

d-colored
boundaries

c-colored
boundaries

Fig. 4.

Let S(¢) (and S(J)) be the surface obtained from the Sie)’s (Si(d)’s) by
performing the glueings that G indicates on the ¢ ((l) -colored edges of their
boundaries. Then, |G; P, is obtained by identifying the k boundary
components of S(¢), (the t/’s), with the corresponding ones in S(cl). And,
from this description, it is clear that g(|G; P,|) 2 k — 1 = B{G) — 1 if both
S(e) and S(J) are connected. But this follows from the crystallization
hypotesis. O

4. THE FUNDAMENTAL GROUP

First, we give a simple combinatorial way to obtain the fundamental group
of a manifold from a crystallization of it. After a couple of examples, a
bound for the rank of 7, (M) is obtained in terms of complexities. In Section
4-2 another presentation, equivalent to that of Vince [21], is described. It
gives, together with the first one, another bound for the rank, which
suggests a generalization of the Poincaré conjecture.

4-1. (G, ¢)

Let G be a regular 4-graph. For any color ce 4, define a group =n(G,¢) as
follows:
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Let {e;,es,...,e} =7 !(¢) be the e-colored edges of G, and fix an
orientation for each of them. n(G,¢) will be the group generated by the e;’s
with one relation for each 2-residue H with color ¢, obtained as follows. H is
a bicolored cycle with edges colored alternatively by ¢ and d, say; at any
vertex and with any direction, start ‘reading out’ the c-colored edges with
their orientation. This gives a word of the form w,(H) = eff'el! -+ eif! with
all e;’s different. We may write

4.1) (G, c) =Key,...,e | w(H);, H is an a-residue, ¢€o and
#o=2),

where {<——| -+ stands for the group generated by —— with relations

Note that the choices made to ‘read’ w,(H) do not alter (G, ¢), and that
the choice of orientation of the edges changes it by canonical isomorphism.
In particular, if G is bipartite there are obvious choices for the orientations.

42. EXAMPLES. (i) Recall the construction of Q(4) and P(4), (Example
1.4(iii)). First let us compute n(Q(%),¢). Q(¥) has 2" e-colored edges which
can be oriented naturally: if ¢ ¢« < 4, orient the c-edge at a to all{c}. Now,
if d # c, de 4, all the {c, J}-residues are of the form

allfe) oife, d}

o wll{d}

and thus, their corresponding relation (e;e; ') implies an equality of two
generators. One easily sees that there are enough 2-residues to imply that all
generators are equal. Thus, 7(Q(%4),c) = Z.

Now, to_compute n(P(%),c), choose any d # ¢, and observe that
P(@); = Q(d). Thus, we may proceed as-in the preceding paragraph. But at
the end, we have to add the relations corresponding to the {c, (l}—residues,
and they are all of the form

al{e} all{e}

I><I&JL{0, d}

4

which implies that n(P(¥4),¢) = Z,.
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(ii) Lens spaces. A graph for the lens space L{p,q) is the following
G = G(p, q) with four colors {¢g,¢y,¢,,¢5} (see [2] or directly Rolfsen [20 p.
237]).

Take two cycles of length 2p, and let uy,...,u,;, and vy,...,v,, be their
vertices ordered cyclically and with indices in Z,,. Color the edges
alternatively with ¢y and ¢y, such that the indices correspond. Then, put
edges of color ¢, between u; and v;, and of color ¢; between u; and v;4 »,.

To compute 7(G, ¢,) orient the ¢,-edges from u; to v;. The {¢g,¢,} and the
{e,,c,}-residues clearly imply that all the generators are equal, to e say.
And finally, since p and ¢ are relatively prime, there are exactly two {¢,,¢3}-
residues, and both of them give the relation e”. Then n(G,¢;) = Z,. The
reader may check that for any other choice of color, one gets the same
answer although the presentations may be different.

The following theorem was obtained independently by Donati [3] and .
Grasselli [8].

4.3. THEOREM. If G is a manifold graph and G; is connected, then
(G, ¢) =,y (|Gl).

Proof. There is only one O-simplex of type (¢} in |G|, which we call {¢)
without fear of confusion. We will prove that n(G,¢) = n,(|G|, {¢)).

The regular neighborhood of (¢} in |G|, RN(<¢>), is the cone centered
at {¢) and based on its link |G;| (RN;((e)) = {e)*|G,| = B"). Clearly,
(|G|, {e>) = m (|G|, RN(<e))), where we are now using the notion of
‘relative homotopy groups’. Recall that to compute such a first homotopy
group, it is enough to have a relative CW-complex decomposition and then
take the 1-cells modulo the 2-cells.

Consider the dual cell decomposition of |G| (Section 2-2). Observe that
the cell corresponding to an «-residue H such that céoa, is entirely
contained in RNy(<¢)), because H < G;. Thus, a (;W-complex
decomposition of |G| relative to RNy, ({¢ >) consists of one r-cell for each o-
residue with eea and #a = r. Then the 1-cells are the generators of n(G,¢c)
and the 2-cells correspond to the relations. The theorem follows. O

Geometrically, a ¢-colored edge e represents the following loop based at
{e). Let u, veV(G) be the vertices such that e, with its chosen orientation,
goes from u to v. Think of the graph geometrically embedded in |G|. The
vertices u and v lie on the link of {¢},|G;|, thus we can go from {¢> to u
radially, then travel through e up to v and come back to {¢) radially. If we
denote by {e¢)*u the radial path from {(e¢) to u, we have that the
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isomorphism of the theorem is given by

4.4) eS (Kepxu)-e-(vx{c)).
(See Figure 5.)

4.5. REMARK. It is not hard to see that if the hypothesis of the theorem
are loosened in either way, similar results are obtained. If G, is not
connected, one has to add as relations a minimal set of c-edges that connect
G; to obtain the fundamental group (see Example 4.2(i) above). And if G is
not a manifold graph, n(G,¢) is the fundamental group of the complement
of (singular locus |[G|,).

Let rk(m,(M)) = minimum number of generators of n,(M). From
Theorem 4.3 we obtain an obvious bound.

4.6. COROLLARY. For any Me A", tk(n,(M)) < p,— (M) = 4i(M). [

But we can do better. For if we fix another color d then the d-relations of
n(G,e) — that is, those coming from {e,d}-residues — involve different
generators, and each of them allows us to express one generator in terms of
others. Thus

4.7. COROLLARY. If, for a given M e A", u,f_ (M) is realized by a minimal
graph, then

rk(7, (M) < $x(M) — p,” o(M).
In any case,
rk(my (M) < min{, - 1(G) — u,-2(G)| Ge 4 (M)}

Proof. Given a crystallization G of M, choose colors that maximize the
number of 2-residues, then, from the observation above, obtain a
presentation with p,- (G) — u.- ,(G) generators. )

4.2. Paths in G

Let G be any connected 4-graph. We need to stablish some terminology:

A walk in G is a finite sequence of oriented edges 7 = (ey,...,€), such
that the endpoint of ¢; is the starting point of ¢, ; if, furthermore, ¢; # ¢€;+,
for each i=1,..., k — 1, we call it a path. Observe that any walk can be
canonically reduced to a path. The notion of closed walk or path is the
obvious one. And finally, a cycle will be a closed path with no repetition of
the vertices (and thus of the edges) involved.

The set of closed paths based at a vertex vy € V(G), C(G, vo), forms a group
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under juxtaposition followed by canonical reduction. (We shall multiply on
the right, i.e. -7’ means follow t and then 7".) It is the fundamental group of
the graph G thought as a l-complex, and it is free on #E — #V + 1
generators.

Given a path 7 in G, let y(1) < @ be the set of colors used by 1. Then, let
C G, vo) be the subgroup of C(G, vy) generated by all elements of the form
101”1, where ¢ is a cycle (not necessarily based at v,) such that #y(c) < r.
Observe that the same group is obtained if we ask o to be a closed path,
and that it is normal.

The following theorem is a consequence of Vince's work [21]. We sketch
a proof to emphasize the basic points.

4.8. THEOREM. For any connected ¢-graph G, and voeV(G):

C(G, vo)

(|G, vo) = CG.oo)’

Proof. Even if G is not regular, one has a map of G as a l-complex into
|G, and thus we are thinking of vy as a point in |G| (the barycenter of its
corresponding simplex). Then one proves

4.9. LEMMA. Every topological loop in |G| based at vy is homotopic (rel. vy)
to a path in G.

Now, let To1 ™! be a generator of C,{G, v,), then ¢ lies entirely in a y{o)-
residue, H say, because y(o) # €. And |H| is the link of a simplex, so that
using the cone b, */H| < |G| we may homotope o to its basepoint, and then
77! back to vo. Thus tot ™! is nullhomotopic in |Gl.

It remains to prove that if te C(G,v,) is nullhomotopic in |G|, then
1€ C,(G, vg). This is left to the reader. 0

Now let us return to our main interest, manifolds. (The following two
corollaries also appear in [8].)

4.10. COROLLARY. If G is a manifold graph, then C,(G, vy) = C,{(G, vo).
Proof. In the dual cell decomposition of |G|, the 1-skeleton is G and the 2-
cells correspond to the cycles o, such that #y(s) = 2. Then

C(G, vo)

4.11 ,(Gl, vo) = ——,

@i w6l = g
and the corollary follows. ]

Let G be a crystallization. How does this presentation of n,(|G]) relate to
the one of the preceding section?
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Given any path 7 in G, let w, (1) be the word on the (previously oriented)
e-colored edges obtained by ‘reading’ them as they appear in 7.

4.12.  PROPOSITION. The homeomorphism w,: C(G,ve) = €y 1) D
induces an isomorphism

C(G, vo)

TS T G,O),
oGy ooy >

which, in terms of fundamental groups (4.10) and (4.3), corresponding to
topological conjugation with the radial path from {¢) to v,.

Proof. In fact, we prove the last statement and the first follows. Consider
1€ C(G, 1), and let T =19 ey T1y7€5 " ey Ty, where w,(1) = e,e, " g (we
are omitting exponents =+ 1 for simplicity), and thus, each t; is a path in G,.
The isomorphism 7, (|G}, vo) =3 7, (|G|, {¢)>) given by conjugation with the
radial path {¢>*vy, sends [] to

[(Kedrvo)roe;Tie, - e ti(vo*{eD)].

But, since 1; < G;, the cone structure of {¢)x|G,| = |G| allows us to
homotope 1; to (v;x{e)) ({e>*u;,,), where 1, goes from v, to
;41 (U +, = vo). Then, the image of [t] is homotopic to

(Kerxuy)-eg-(0yxCeD) - (Kerxu) e (vx(e))
and the proposition follows from (4.4). O

1G] = thgl<ed) = |

ey

Fig. 5.

4.13. COROLLARY. If 1 is a closed path such that #vy(t) < n, then w,(1) is
trivial in 7(G,¢).

Proof. Let 1, be a path in G, from v, to the basepoint of 7. Then apply
Corollary 4.10 and Proposition 4.12 to 10175 . O
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Now, we are in a position to give another bound to the rank.

4.14. THEOREM. rk(n(M)) < i,(M).

Proof. Let G be a crystallization of Me . #" realizing u,(M) with
o = {o,d} = 4, that is, £,(G) = iy(G) = p,(M).

Gz has f8,(G) connected components, and since G, is connected, we can
find a minimal set of c-colored edges that connect G,. Let {e,¢e,...,e,} be
such a set. Clearly k = B,(G) — 1 = [i,(M). We prove that e,, ..., e, generate
n(G,c):

Let e be any e-colored edge. Since G, {ey,..., e} is connected, there
exists a path in it, T say, going from the starting point of e to its endpoint.
Since Je_f y(e ™ '1), Corollary 4.13 implies that e = w,(7) in 7(G, ¢), and w, (1) is
a word in ey,...,e. The theorem follows. |

4.15. CONJECTURE. M is l-connected iff fi,(M) = 0.

One implication is a consequence of the preceding theorem. The other
one, which is true in dimension 2, is a restatement of the Poincaré
conjecture in dimension 3. For we have proved (Theorem 3.16(iv)) that
By (M3) =0 iff M3 =83

This conjecture can also be seen as a generalization of the crystallization
theorem (Theorem 3.10°) which could be stated as: M is O-connected iff
fio(M) = g (M) = 0.

A stronger version of the conjecture is obtained if we change j; for the 1-
complexity x;. In dimension 3 they are equivalent. But it would be
interesting to find examples of manifolds M", n > 4, with J;;(M) =0 and
ic; (M) > 0. Recent progress with simply connected 4-manifolds makes this
seem plausible.

5. THE UNIVERSAL ¥ -GRAPH

The universal cover of a connected regular ¢-graph Ge %", thought of as a
I-complex, depends only on the color set 4 and not on the particular
graph. It clearly has the structure of a regular $-colored graph, which we
call the universal 4-graph, U", because any Ge %" is a quotient of it. But
moreover, the vertex set of U" has a natural group structure which can be
identified with the @-automorphisms of U", so that the covering
transformations for any Ge %" become a subgroup. Thus, regular 4-graphs,
and therefore manifolds, correspond to certain subgroups of a fixed group.
This opens a possibility of studying (PL) manifolds through concrete group
theory.
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5.1. DEFINITIONS (Recall that € is a fixed color set of dimension n). (i)
Let W" = W(4) = K€ |e?; ce @ ). That is, W" is the group of words with
the colors in 4 as letters and no exponents (or repetitions). The product is
right juxtaposition followed by reduction (all repetitions of a letter,...cc ...,
are cancelled). In fact, W" is isomorphic to the free product of n + 1 copies
of Z,, one for each color:

W = Z %2 % 1,

n+1

(i) Let U" be the regular 4-colored graph with vertex set V(U") = W"
and with an edge of color ¢ attached to each pair {w, wel, we W U" is the
Cayley graph of the given presentation of W" (see [22]).

5.2. REMARK. The group W” can be identified with the group of é-graph
automorphisms of U” Indeed, given weW”, left multiplication
t: W= W u(w) = ww', extends naturally to a $-graph isomorphism
W U"— U" And it is easy to see that any @4-graph morphism of U” to
itself is of this form.

Now, let G be any regular 4-graph.

There is natural 1-1 correspondence between the set of paths in G and
V(G) x W". Given (v, w)eV(G) x W", with w =¢,¢, "¢, let (v, w) be the
path in G which starts at v, then leaves by the (unique) edge of color ¢, at v,
then takes the edge of color ¢,, and so on. The relations ¢? =1 correspond
to the definition of path given in Section 4-2. And conversely, given a path,
take its starting point and the word of the colors used by it.

With this identification, the endpoint map t: ¥(G) x W" - V(G) is a right
action of the group W" on the set V(G). And many of the notions introduced
above can be stated in terms of this action; for example, the a-residues of G
are the orbits of the subgroup W(x) ¢ W(4) = W". In general, this action
does not extend to a 4-graph action on G. In fact, this happens iff every 2-
residue has at most four vertices, and iff the action is ‘abelian’ (i.e. for all w,
w' e W" and veV(G), v-(ww) = t(v, ww') = t{v, w'w) = v+ (W'w)).

Now, given a basepoint v€V(G), the evaluation t,: W" — V(G) extends to
a ¢-graph morphism p,: U" — G, which, if G is connected (if the action is
transitive), is the universal cover of G. The isotropy group of v, t, '(v) = W"
(which is isomorphic to closed paths at », C(G,v), see Section 4-2),
corresponds to the covering transformations, see Remark 5.2. Thus, we
have:

5.3. THEOREM. For any connected regular 4-graph G, there exists a sub-
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group I of W”, unigue up to conjugation, for which
G=TITN\U" a

Observe that the left action of I on U” induces, by functoriality, a left
action on |U"[; and that ['\NU" = I'\JU"|. So that:

5.4. COROLLARY. For any closed connected n-manifold M there exists a
subgroup I of W" for which M = I'\JU". O

As examples, we give the subgroups corresponding to the three graphs
defined in Example 1.4(iii), and thus to S" (twice) and to RP" respectively:

The subgroup of W" corresponding to the 4-dipole consists of all words
of even length. To the %-cube, Q(%), corresponds the commutator
[W", W"]. And to obtain the subgroup corresponding to P(4), add the
generator ¢o¢;*'-¢, (a word with each color appearing once) to the
commutator.

The obvious question to ask after Theorem 5.3 is if all subgroups of W”
give regular graphs. This is not so. But first, the general notion of ‘quotient’
needs to be stated clearly.

Given any subgroup I'< W” I' acts on the left of U" by %-graph
morphisms, see Remark 5.2. We define '\\U” to be the 4-graph with vertex
set the right cosets of I" in W”, V(I'\U") = {I'w} = I'\N\W", and then put an
edge of color ¢ between I'w and 'we whenever I'w # I'we (remember that
we allowed no loops; see Subsection 1.1).

Thus, in general, a quotient of U" is not regular. It is only a well-colored
graph (ie. no two edges of the same color are incident). And to have a
‘quotient map’ U" - I'\U", we must extend our notion of %-graph
morphism to virtual ¢-morphism, in which an edge may be collapsed to a
vertex.

5.5. THEOREM. There is a one-to-one correspondence between conjugacy
classes of subgroups of W" and %-isomorphism classes of connected well-
colored G-graphs.

Proof. For any well-colored graph G, we still have a right action of W" on
V(G). 1t is best defined on the generators: given ce 4 and ve V(G), let v-¢ be
the other vertex on the c-edge at v if such an edge exists and v if it does not.
Clearly (v-¢):¢ = v for all veV(G), so that this extends to an action of W™
Now, if I' is the isotropy group of some ve V(G), and G is connected, one
easily sees that I'\NU" = G. O

To characterize those subgroups that give regular graphs, we introduce a
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natural filtration. (Compare with the definition of C/(G, v) given in Section
4-2)

Given any subgroup I' of W™, let I',, 0 < r < n + 1, be the subgroup of '
generated by all its elements of the form w-wgy-w ™! where wq is a word, of
any length, that uses at most r different characters (letters). We then have a
filtration of normal subgroups

ﬂ:rocrx C”'Crncrrwl :r’
which has, at least, the following properties:
5.6. PROPOSITION.

(1) IN\U" is regular iff I'y = T'y.
(i) CAT\U"T)=T,/T',.
(i) Ty \U" is the universal cover of I\ U"
@iv) n(ION\NU",T) =T'/T,.
(v) If TN\U" is a manifold graph then T, = T,

Proof. (i) By definition, I\ U" is regular iff I'w # I'we for all choices of w
and ¢. But this happens iff I' has no elements of the form wew ™.

(i) A word we W" produces (as before) a walk in I'N\NU" from I" to I'w.
This gives epimorphisms I, = C{I'\NU",T") for 0 <r <n+1. A generator
of I'y, wew ' eT, produces the walk also defined by ww ™! and is therefore
reduced to the trivial path. On the other hand, the reduction step for paths
can be easily interpreted as deleting a generator of I'; from the defining
word. Thus, I'y is the kernel of the epimorphism.

(iti) From (i), I’y \U" is simply connected, and it is clearly a covering of
mu

(iv) follows from (ii) and Theorem 4.8, and (v) follows from (i), (ii) and
Corollary 4.10. O

To conclude, we observe the obvious. The results in this section are far from
being exhaustive. They seem to be only the prelude to a possible fruitful
interplay between group theory, combinatorics and topology.
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