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ON THE COMPLEX BANACH CONJECTURE

JAVIER BRACHO AND LUIS MONTEJANO

Abstract. The complex conjecture of Stefan Banach states that if V is a Banach space
over the complex numbers where for some n, 1 < n < dim(V ), all of its subspaces of
dimension n are isometric, then V is a Hilbert space. Mikhail Gromov proved it for n

even. Here, we prove it for n ≡ 1 mod 4.

1. The main theorem

Stefan Banach [5] stated in 1932 the following general conjecture:

The Banach Conjecture. Let V be a Banach space, real or complex, finite or infinite
dimensional, all of whose n-dimensional subspaces are isometrically isomorphic to each other
for some fixed integer n, 2 ≤ n < dim(V ). Then, V is a Hilbert space.

In 1959, A. Dvoretzky [8] proved a theorem from which an affirmative answer to the
conjecture follows for V real and infinite dimensional. Dvoretzky’s theorem was extended
in 1971 to the complex case by V. Milman [13]; settling the Banach conjecture affirmatively
for the infinite dimensional case.

In 1935, Auerbach, Mazur and Ulam [4] gave a positive answer in case V is a real Banach
space and n = 2. In 1967, M. Gromov [10] gave an affirmative answer in the case V is finite
dimensional, real or complex, and n is even. Recently, in [6] the conjecture was proved for
V a real finite dimensional Banach space and n ≡ 1 mod 4, except possibly when n = 133.
Here, with an analogous approach, we give an affirmative answer in the case that V is a
finite dimensional complex Banach space and n ≡ 1 mod 4.

Additionally, in the same 1967 paper, [10], Gromov proved the real Banach conjecture
in codimension greater than 1 and the complex Banach conjecture in codimension greater
that 2n. Consequently, the conjecture remains unproved only when V is a complex Banach
space, n ≡ 3 mod 4 and n < dimV < 2n or when V is a real Banach space n ≡ 3 mod 4 or
n = 133, and dim V = n + 1. The history behind this conjecture can be seen in [16]. It is
also worthwhile to see [15] and the notes of Section 9 of [12].

A finite dimensional complex Banach space V is a Hilbert space if and only if its unit
ball is a complex ellipsoid; and also, it is a Hilbert space if and only if for some m > 1 all of
its m-dimensional subspaces are Hilbert spaces. Therefore, the complex Banach conjecture
can be reformulated in terms of the closed unit ball B = {x ∈ V | ‖x‖ ≤ 1} of V , as follows:

(•) Let B ⊂ Cn+1, n > 1, be a complex symmetric convex body, all of whose sections by
complex n-dimensional subspaces are complex linearly equivalent. Then, B is a complex
ellipsoid.

Indeed, if all the sections of B (the unit ball of V ) by complex n-dimensional subspaces
are isometric, (•) implies that all the (n+1)-dimensional subspaces are Hilbert spaces, and
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2 J. BRACHO AND L. MONTEJANO

thus that V is a Hilbert space. Therefore, to prove the isometric Banach conjecture over
the complex numbers, when n = 4k + 1, it is enough to prove the following.

Theorem 1.1. Let B ⊂ Cn+1, n ≡ 1 mod 4, n ≥ 5, be a complex symmetric convex body,
all of whose sections by n-dimensional complex subspaces are complex linearly equivalent.
Then, B is a complex ellipsoid.

The proof of this theorem incorporates two main ingredients: one based on algebraic
topology and the other on convex geometry. To state them, we need to make precise the
standard definitions involved.

A complex hyperplane of a vector space V over C is a complex codimension 1 linear
subspace of V . An affine complex hyperplane is the translation of a complex hyperplane
by some vector. A (affine) complex hyperplane section of a subset of a vector space is its
intersection with a (affine) complex hyperplane.

Let V1 and V2 be two vector spaces over the complex numbers C. We say that K1 ⊂ V1

is C-linearly equivalent to K2 ⊂ V2 if there is a linear isomorphism over C, f : V1 → V2 (if
V1 = V2 = Cn, we simply write f ∈ GLn(C)), such that f(K1) = K2.

A convex set K ⊂ Cn is said to be C-symmetric if for every 1-dimensional complex
subspace L of Cn, L ∩K is a disk centred at the origin; observe that this is equivalent to
being invariant under the action of multiplication by the unitary complex numbers S1 ⊂ C.
For example, the unit ball of a Banach space over the complex numbers is a C-symmetric
convex body.

A complex ellipsoid, or a C-ellipsoid, is the C-linear image of a ball.
A complex body of revolution is a C-symmetric convex body K ⊂ Cn for which there

exists a 1-dimensional complex subspace L of Cn, called its axis of revolution, such that for
every affine complex hyperplane H orthogonal to L, we have that H ∩K is either empty, a
single point or a (2n− 2)-dimensional ball centred at H ∩ L. The associated hyperplane of
revolution is L⊥ (the orthogonal complement of the axis L).

Using topological methods of Lie groups, Section 2 is dedicated to prove the following.

Theorem 1.2. Let B ⊂ Cn+1, n ≡ 1 mod 4, n ≥ 5, be a C-symmetric convex body all of
whose complex hyperplane sections are C-linearly equivalent. Then, there exists a complex
body of revolution, K ⊂ Cn, with the property that every complex hyperplane section of B
is C-linearly equivalent to K.

In Section 3, we prove the following characterization of complex ellipsoids.

Theorem 1.3. A C-symmetric convex body B ⊂ Cn+1, n ≥ 4, all of whose complex hyper-
plane sections are C-linearly equivalent to a fixed complex body of revolution, is a C-ellipsoid.

Theorem 1.1 follows literally from Theorems 1.2 and 1.3.

2. Structure groups of the fibre bundle SU(n) →֒ SU(n+ 1) → S2n+1

Denote by GL′
n(C) the group of complex linear isomorphisms of Cn with determinant a

positive real number. Note that if K1 and K2 are C-symmetric convex bodies in Cn which
are C-linearly equivalent, then there is g ∈ GL′

n(C) such that g(K1) = K2.
Given a C-symmetric convex body K ⊂ Cn, let GK := {g ∈ GL′

n(C)|g(K) = K} be the
group of complex linear isomorphisms of K with positive real determinant. By Lemma 1 of
Gromov [10] there exists a unique C-ellipsoid of minimal volume containingK centred at the
origin. Suppose now that this minimal ellipsoid is a (2n− 1)-dimensional ball. Then, every
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g ∈ GK is actually an element of SU(n), because it fixes the unit ball and has determinant
1. From now on, denote by

G0
K := {g ∈ SU(n) | g(K) = K} .

The link between our geometric problem and the topology of classic Lie groups is via a
beautiful idea that traces back to the work of Gromov [10]. It yields the following lemma.

Lemma 2.1. Let B ⊂ Cn+1, n ≥ 2, be a C-symmetric convex body all of whose com-
plex hyperplane sections are C-linearly equivalent. Then there exists a C-symmetric con-
vex body K ⊂ Cn, with the property that every complex hyperplane section of B is C-
linearly equivalent to K and such that the structure group of the principal fibre bundle
SU(n) →֒ SU(n+ 1) → S2n+1 can be reduced to G0

K ⊂ SU(n).

Proof. For every x ∈ S2n+1, let ℓ(x) be the complex line of Cn+1 containing x and let ℓ⊥(x)
be the complex hyperplane of Cn+1 orthogonal to ℓ(x). Consider

ðn = {(x, y) ∈ S2n+1 × Cn+1 | y ∈ ℓ⊥(x)}

and let ℘ : ðn → S2n+1 be the projection. Then ℘ is a n-dimensional complex vector bundle
over S2n+1 with structure group GLn(C).

The hypothesis of the lemma imply that there is a field of the C-symmetric convex body
B ∩ Cn in the n-vector bundle ℘; namely, {(x, y) | y ∈ B ∩ ℓ⊥(x)} ⊂ ðn. Therefore, the
structure group of the complex n-vector bundle ℘ can be reduced to

GB∩Cn = {g ∈ GL′

n(C)|g(B ∩ Cn) = B ∩Cn} ⊂ GLn(C) .

A good reference for the notion of reduction of the group of a fiber bundle is [17] and for its
relation with the notion of field of convex bodies you may consult [14].

By Lemma 1 of Gromov [10], there exists a unique C-ellipsoid of minimal volume, E ⊂ Cn,
centred at the origin and containing B ∩ Cn. Let g0 ∈ GL′

n(C) be such that g0(E) is the
unit (2n)-ball, and let K = g0(B ∩Cn). Then GB∩Cn ⊂ GL′

n(C) is conjugate to GK = G0
K

and therefore, the structural group of the complex n-vector bundle ℘ : ðn → S2n+1 can be
reduced to G0

K .
The complex n-vector bundle ℘ : ðn → S2n+1 can be reduced to SU(n), yielding as

associated principal bundle

SU(n) →֒ SU(n+ 1) → SU(n+ 1)/SU(n) = S2n+1 .

Let us denote by ξn this principal bundle. We have seen that ℘ can also be reduced to
G0

K ⊂ SU(n), therefore ξn can be reduced to G0
K , as we wished to prove. �.

Our main interest now turns naturally to study the structure groups of the principal
bundle ξn: SU(n) →֒ SU(n + 1) → S2n+1. In particular, if n ≡ 0 mod 2, ξn cannot be
reduced to a proper subgroup of SU(n− 1) [Theorem 1B of Leonard [11]]. Therefore, under
the hypothesis of Lemma 2.1, G0

K must be SU(n), and hence K must be a ball. This implies
that every section of B is a complex ellipsoid and, by Lemma 3.3 bellow, that B must be a
complex ellipsoid. This constitutes a proof of the complex Banach conjecture for n even.

A subgroup G ⊂ GLn(C) is reducible if the induced action on Cn leaves invariant a
complex k-dimensional linear subspace, 1 ≤ k < n and is irreducible if the induced action
on Cn does not leave invariant a complex k-dimensional linear subspace, 1 ≤ k < n.

Lemma 2.2. Let B ⊂ Cn+1, n ≡ 1 mod 4, n ≥ 5, be a C-symmetric convex body all of whose
complex hyperplane sections are C-linearly equivalent to a C-symmetric convex body K ⊂ Cn,
such that the structure group of the principal fibre bundle ξn: SU(n) →֒ SU(n+1) → S2n+1
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can be reduced to G0
K ⊂ SU(n). Suppose G0

K is reducible, then G0
K is conjugate to a subgroup

of SU(n− 1).

Proof. Suppose G0
K leaves invariant a complex m-subspace V of Cn; we may assume that

1 ≤ m ≤ n/2, because G0
K ⊂ SU(n) also leaves invariant the orthogonal complement of V .

The hypothesis about G0
K readily implies that the (real) tangent bundle TS2n+1 of the

sphere S2n+1 admits a field of real 2m-planes.
But moreover, we claim that this field of real 2m-planes projects nicely to the tangent

bundle TRP2n+1 of the (2n+1)-projective space RP2n+1. To see this, and using the notation
and notions of the previous lemma, observe that we have well defined for every x ∈ S2n+1 a
complex m-subspace Vx ⊂ ℓ⊥(x) invariant under GB∩ℓ⊥(x) which is conjugate to G0

K . But

ℓ⊥(x) = ℓ⊥(−x) so that this field of (real) 2m-planes is antipodally invariant and yields a
corresponding field of (real) 2m-planes over RP2n+1, as we claimed.

Since n ≡ 1 mod 4, by Theorem 1.1 (i) of [9], we know that the tangent bundle of the

(2n+ 1)-projective space, TRP2n+1, splits into 3 trivial real line bundles and a complemen-
tary bundle that does not split. Consequently m = 1. That is, V has to be a complex line
and therefore G0

K is conjugate to a subgroup of SU(n− 1). �

In the following lemma, we summarize the known facts about the structure groups of the
principal bundle SU(n) →֒ SU(n+ 1) → S2n+1 that will be needed in the sequel.

Lemma 2.3. Let ξn denote the principal bundle SU(n) →֒ SU(n+ 1) → S2n+1, then:

(1) If n ≡ 1 mod 4, n ≥ 5, the structure group of the principal bundle ξn reduces to
SU(n− 1) but not to SU(n− 2).

(2) If n ≡ 0 mod 2, the structure group of the principal bundle ξn does not reduce to
SU(n− 1).

(3) If the structure group of ξn reduces to a maximal closed, connected, C-irreducible
subgroup H ( SU(n), H is simple.

(4) If n ≥ 4, the structure group of ξn cannot be reduced to a C-irreducible proper
subgroup G ( SU(n) isomorphic to SO(k), SU(m) or Sp(m), with k ≥ 4,m ≥ 2.

Proof. Statements (1) and (2) follow from the work on the complex Stiefel manifolds of
Atiyah-Todd [3] and Adams-Walker [2]. Statement (3) is Theorem 3 of Leonard [11], when
Gn = SU(n). The proof of (4) follows from Corollary 2.2 of Cadec-Crabb [7]. �

Lemma 2.4. For all n ≡ 1 mod 4, n ≥ 5, if the structure group of SU(n) →֒ SU(n+1) →
S2n+1 can be reduced to G ⊂ SU(n), then dimG ≥ 2n− 3.

Proof. The proof follows closely that of Proposition 3.1 in [7]. First note that the homotopy
long exact sequence

· · · → π∗+1(S
2n−1) → π∗(SU(n− 1)) → π∗(SU(n)) → π∗(S

2n−1) → . . .

associated to the fiber bundle SU(n − 1) →֒ SU(n) → S2n−1 implies that the inclusion
SU(n − 1) →֒ SU(n) induces isomorphisms in π∗ for 0 ≤ ∗ ≤ 2n − 2. Consequently the
inclusion i : SU(n−2) →֒ SU(n) induces isomorphisms in π∗ for 0 ≤ ∗ ≤ 2n−4. Thus, from
a standard homotopy lifting argument: if dimG ≤ 2n−4, there is a map g : G → SU(n−2)
such that ig is homotopic to the inclusion j : G →֒ SU(n).

Suppose furthermore, that the structure group of SU(n − 1) →֒ SU(n) → S2n−1, which
we are calling ξn, can be reduced to G ⊂ SU(n). This implies that the characteristic map
χ : S2n−2 → SU(n) of the principal bundle ξn can be factorized through G. That is, there is
a continuous map F : S2n−2 → G such that jF is homotopic to χ. By the above paragraph,
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igF is homotopic to χ, which implies that the structure group of ξn can be reduced to
SU(n− 2), which is a contradiction to Lemma 2.3 (1). Therefore, dimG ≥ 2n− 3. �

Lemma 2.5. For all n ≡ 1 mod 4, n ≥ 5, if the structure group of SU(n) →֒ SU(n+1) →
S2n+1 can be reduced to G ⊂ SU(n− 1), then G acts transitively on S2n−3.

Proof. We follow the ideas of Corollary 3.2 of Cadek-Crabb in [7]. Consider the standard

fibration SU(n − 2) → SU(n − 1)
π
→ S2n−3. If G does not act transitively on S2n−3 it

means that the composition G
i
→֒ SU(n − 1)

π
→ S2n−3 is not surjective, and is therefore

null homotopic. Let F : G × I → S2n−3 be the homotopy. Then, by the homotopy lifting

property, there exists a map F̃ completing the diagram

G SU(n− 1)

G× I S2n−3

I×0

i

π
F̃

F

Commutativity of the diagram implies that F̃ (x, 1) ∈ SU(n − 2) ⊂ SU(n − 1) for every

x ∈ G. Let f : G → SU(n − 2) be defined by f(x) = F̃ (x, 1); then, up to homotopy, the
following diagram commutes

S2n G SU(n− 1)

SU(n− 2)

χn

f

i

j

But now, precomposing j ◦f with the characteristic map χn : S2n → G, yields a reduction of
the structure group of SU(n) →֒ SU(n+1) → S2n+1 to SU(n− 2), which is a contradiction
to Lemma 2.3 (1). �

Lemma 2.6. Let n ≡ 1 mod 4, n ≥ 5, and suppose that the structure group of the fiber
bundle SU(n) →֒ SU(n + 1) → S2n+1 can be reduced to a closed connected irreducible
subgroup G ⊂ SU(n). Then G = SU(n).

Proof. Assume that the structure group of SU(n) →֒ SU(n + 1) → S2n+1 reduces to
G ⊂ SU(n) and that G acts C-irreducibly on Cn but is not all of SU(n). Without loss of
generality, assume that G is a maximal connected, closed subgroup with this property. By
Lemma 2.3 (3), G is simple. By Lemma 2.3 (4) and Lemma 2.4, G is a non-classical group,
i.e., it is isomorphic to either Spinm, or one of the 5 exceptional simple Lie groups: G2, F4,
E6, E7 or E8. Note that if G is a spin group, then its action does not factor through SO(m),
therefore, by Lemma 3.6 in [6], G is not a spin group. Finally, by Lemma 2.4, dimG ≥ 2n−3,
hence to rule out the exceptional groups, one can simply check (e.g., in Wikipedia) the
following table in which we list the smallest complex irreducible representations for them,
with the smallest complex irreducible representation congruent to 1 mod 4 in boldface,
verifying that in all cases, dimG ≤ 2n− 4. �
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Group G2 F4 E6 E7 E8

dimG 14 52 78 133 248
Irreps 7 26 27 56 248

14 52 78 133 3875

27 273 351
...

...

64
... 2925

... 1763125

77
...

...
...

...

As a corollary of Lemmas 2.2 and 2.6, we have Theorem 1.2.

Proof of Theorem 1.2. By Lemma 2.1, there exists K ⊂ Cn, a C-symmetric convex body
with the property that every complex hyperplane section of B is C-linearly equivalent to K
and such that the structure group of the principal fibre bundle SU(n) →֒ SU(n+1) → S2n+1

can be reduced to G0
K ⊂ SU(n). If G0

K ⊂ SU(n) is irreducible, then we may assume
without loss of generality that G0

K is a maximal connected, irreducible subgroup of SU(n)
and therefore, by Lemma 2.6, G0

K = SU(n). Consequently, K is a ball.
If, on the contrary, G0

K leaves invariant a nontrivial subspace, then G0
K ⊂ SU(n− 1) by

Lemma 2.2, and hence by Lemma 2.5, G0
K acts transitively on S2n−3. This immediately

implies that K is a complex body of revolution, as we wished. �

3. Complex bodies of revolution

We will call K ⊂ Cn a C-linear body of revolution, if it is the image of a complex body
of revolution under a C-linear isomorphism. Thus, it is a C-symmetric convex body that
comes equipped with an axis of revolution, L, which is a complex line, and a hyperplane
of revolution, H , which is a complementary hyperplane (but not necessarily orthogonal) to
L, and it satisfies that all its sections with affine hyperplanes H ′ parallel to H are either
empty, a point or a C-ellipsoid centred at L and homothetic to the C-ellipsoid H ∩K.

The main ingredient for the proof of Theorem 1.3 is the following.

Theorem 3.1. Let B ⊂ Cn+1 be a C-symmetric convex body, n ≥ 4, all of whose complex
hyperplane sections are C-linear bodies of revolution. Then, one of the complex hyperplane
sections of B is a C-ellipsoid.

The main bulk of this section is devoted to prove Theorem 3.1. For that purpose, we
need six lemmas concerning C-linear bodies of revolution and C-ellipsoids. We start with
the latter.

Lemma 3.2. A C-symmetric ellipsoid is a C-ellipsoid.

Proof. We need to recall some well known facts about ellipsoids, by which we mean real
ellipsoids thought as convex bodies.

Let E ⊂ Rn be a n-dimensional ellipsoid centred at the origin. For every k-dimensional
subspace, H ⊂ Rn with 1 ≤ k < n, there exists a complementary (n − k)-dimensional
subspace, L of Rn, called its polar subspace with respect to E, such that

∂E ∩ L = {x ∈ Rn | H + x is a k-dimensional plane tangent to ∂E at x}

(this set is called the shadow boundary of E in the direction H). Moreover, H is the polar
subspace of L with respect to E, and the section L ∩ E is a (n − k)-dimensional ellipsoid
with the following property: for every (n − k)-plane L′, parallel to L, the corresponding



ON THE COMPLEX BANACH CONJECTURE 7

section L′ ∩E is either the empty set, a point in H or an ellipsoid homothetic to L∩E and
centred at H . For more about shadow boundaries see Section 1.12 of [12].

Let K ⊂ Cn be a C-symmetric ellipsoid. We will prove that there is a linear isomorphism
g ∈ GL(n,C) such that g(K) is a ball, by induction on the dimension n. Clearly, the
statement is true for n = 1. Suppose it is true for dimension n − 1, we shall prove it for
dimension n.

Assume the diameter of K is h, and let [−u, u] be a diameter of K; let L be the unique
complex line containing the vector u. By hypothesis D = L ∩ K is a disk centred at the
origin all of whose diameters are also diameters of K. This implies that the polar to L with
respect to E is the complex hyperplane, H , orthogonal to L. Then, for every affine complex
line L′ orthogonal to H and touching int(K), the section L′ ∩K is a disk with centre at H .

By induction we have thatH∩K is a C-ellipsoid. Therefore, using a C-linear isomorphism,
we may assume that H ∩K is a (2n− 2)-dimensional ball of diameter h. To conclude the
proof of the lemma, we prove that K is a ball.

Let λ be a real line subspace contained in H and let ∆ be the 3-dimensional real subspace
generated by λ and L. Since (L+x)∩K is a disk with centre at λ for every x ∈ λ∩ int(K),
∆ ∩ K is a real ellipsoid of revolution with axis the line λ. Since the three axis of this
ellipsoid are equal, this implies, that ∆∩K is a 3-dimensional ball with centre at the origin.
Since this holds for every real 3-dimensional subspace containing L, we have that K is a
ball, as we wished. �

Lemma 3.3. Let B ⊂ Cn+1, n ≥ 2, be a C-symmetric convex body, all of whose complex
hyperplane sections are C-ellipsoids. Then B is a C-ellipsoid.

Proof. We prove that B is an ellipsoid. Then, by Lemma 3.2, B is a C-ellipsoid.
Consider that Cn = R2n. By Theorem 2.12.2 of [12], it is enough to prove that every

real two dimensional subspace intersects B in an ellipse. Let Π be a two dimensional real
plane generated by {v1, v2}. If Π is a complex line, Π∩B is a ball, so assume it is not. Let
Li be the complex line containing vi, i = 1, 2. Consequently, Π is contained in the complex
plane P generated by {L1, L2}. By hypothesis, P ∩B is a section of an ellipsoid and hence
is itself an ellipsoid. This implies that Π ∩B is an elipse. Therefore, B is an ellipsoid. �

Note that every complex line through the origin is an axis of revolution of a ball centred
at the origin and consequently, every complex hyperplane is a hyperplane of revolution of
an ellipsoid centred at the origin.

Lemma 3.4. A C-linear body of revolution K ⊂ Cn, n ≥ 3, admitting two different hyper-
planes of revolution, is a C-ellipsoid.

Proof. By Lemma 1 of Gromov [10], let E be the unique C-ellipsoid of minimal volume
centred at the origin containing K and we may suppose, without loss of generality, that E
is the unit ball. Since every symmetry of K is a symmetry of the unit ball, our hypothesis
now imply that K is a complex body of revolution with two different axis of revolution. Let
L1 and L2 be two different complex lines and let G1 and G2 be the complex rotation groups
around the axis L1 and L2, respectively; they are both conjugate to SU(n − 1). Suppose
G is a compact subgroup of SU(n) that contains both G1 and G2. We shall prove that the
action of G in S2n−1 is transitive. If this is so, and both L1 and L2 are axis of revolution of
K, then G0

K = {g ∈ SU(n) | g(K) = K}, which is compact because K is a compact convex
body, would act transitively on ∂K and K would be a ball.

Let P be the complex plane generated by L1 and L2 and let π1, π2 and π0 be the orthog-
onal projections onto L1, L2 and P , respectively. Furthermore, let D = P ∩ int(B), where B
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is the unit ball of Cn. Consider the set

U = π−1
0 (D) ∩ S2n−1 .

Note that U is an open connected dense subset of S2n−1 because S2n−1 \ U = P ∩ S2n−1 is
a 3-sphere contained in S2n−1, and since n ≥ 3, its (topological) codimension is at least 2.

Let x ∈ U . Our purpose is to construct an open neighborhood W of x in U such that W
is contained in the orbit G · x of x under the action of G in S2n−1. This will be enough to
prove the lemma because U is a connected open dense subset of S2n−1.

Let H1 = π−1
1 (π1(x)). It is the complex affine hyperplane orthogonal to L1 and passing

through x, so that G1 · x = H1 ∩ S2n−1. Let W1 = H1 ∩D. It is an open disk in an affine
line parallel to the line L⊥

1 ∩ P , and observe that restricted to this affine line (H1 ∩ P ), the
map π2 is a complex affine isomorphism onto L2 because L1 6= L2. So that W2 = π2(W1) is
an open subset of L2 ∩D that contains π2(x).

Let W = π−1
2 (W2) ∩ U . It is an open neighborhood of x in U . We are left to prove that

W is contained in the orbit G · x.
Given y ∈ W , let H2 = π−1

2 (π2(y)), so that G2 · y = H2 ∩ S2n−1. Consider the affine
subspace Γ = H1∩H2 of dimension n−2 > 0. By construction, H2 intersects W1 in a point,
so that Γ touches the interior of the unit ball B. Therefore, Γ ∩ S2n−1 = (G1 · x) ∩ (G2 · y)
is not empty. This implies that G · x = G · y, so that y ∈ G · x, and hence W ⊂ G · x. �

Lemma 3.5. Every complex hyperplane section Γ ∩ K of a C-linear body of revolution
K ⊂ Cn, n ≥ 3, is a C-linear body of revolution. Furthermore, if H is the complex hy-
perplane of revolution of K, then either Γ = H or Γ ∩ H is a hyperplane of revolution of
Γ ∩K.

Proof. Without loss of generality, we may assume that K is a complex body of revolution;
that is, if its axis of revolution is the complex line L, then H = L⊥ is the corresponding
hyperplane of revolution and we have that H ∩K is a ball centred at the origin.

The cases Γ = H or L ⊂ Γ follow immediately from the definition.
Assume Γ 6= H and L 6⊂ Γ. We will prove that K1 = Γ ∩ K is a complex body of

revolution in Γ with hyperplane of revolution H1 = Γ ∩ H . Let L1 be the complex line
orthogonal to H1 in Γ; it will be the axis of K1.

Given H ′
1 ⊂ Γ parallel to H1, we have to consider the intersection H ′

1 ∩K1 = H ′
1 ∩K.

Let H ′ be the affine hyperplane of Cn parallel to H that contains H ′
1. By hypothesis,

we have that H ′ ∩K is either empty, a point or a ball (in H ′) centred at L. Therefore, its
intersection with H ′

1 (a hyperplane ofH ′) is either empty, a point or a ball. By construction,
in the two last cases, the point or the centre of the ball lies in L1; indeed, the plane generated
by L and L1 is orthogonal to H1. Therefore, K1 ⊂ Γ is a complex body of revolution as we
wished. �

Lemma 3.6. Let K ⊂ Cn be a C-linear body of revolution with axis of revolution L, n ≥ 3.
Suppose Γ ⊂ Cn is a complex hyperplane containing L for which Γ ∩ K is a C-ellipsoid.
Then K is a C-ellipsoid

Proof. First, we may assume that K is a complex body of revolution with axis of revolution
L, hyperplane of revolution H = L⊥ and such that H ∩ K is the unit ball in H . By
hypothesis and Lemma 3.5, Γ ∩K is a C-ellipsoid and a complex body of revolution with
axis of revolution L. Using a C-linear map which is the identity on H and a dilatation on
L, we may assume Γ ∩K is a unit ball centred at the origin; so that Γ ∩K = Γ ∩ B, where
B ⊂ Cn is the unit ball. Our purpose is to prove that K = B to conclude the proof.
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For every affine hyperplane H ′ parallel to H that touches the interior of K, we have
that both H ′ ∩K and H ′ ∩ B are concentric balls. Furthermore, they have the same radius
because their boundaries have non empty intersection (in Γ). Consequently, H ′∩K = H ′∩B
and hence K = B, as we wished. �

Finally, we aim to prove Theorem 3.1. It leads naturally to the following setting and
notation that rise from assuming it false.

From now on, let B ⊂ Cn+1, with n ≥ 4, be a C-symmetric convex body, all of whose
complex hyperplane sections are non C-elliptical, C-linear bodies of revolution. For every
complex line ℓ ⊂ Cn+1, denote by ℓ⊥ the complex hyperplane of Cn+1 orthogonal to ℓ.
Furthermore, by Lemma 3.4 applied to ℓ⊥ ∩ B, we have a well defined axis of revolution,
Lℓ ⊂ ℓ⊥, and a complementary complex (n − 1)-dimensional subspace, Hℓ ⊂ ℓ⊥, which is
the hyperplane (in ℓ⊥) of revolution of ℓ⊥ ∩B.

Lemma 3.7. Suppose ℓ1 and ℓ2 are two different complex lines with the property that
Lℓ2 ⊂ ℓ⊥1 . Then,

ℓ⊥1 ∩Hℓ2 = ℓ⊥2 ∩Hℓ1 = Hℓ1 ∩Hℓ2 .

Proof. By hypothesis, for i = 1, 2, ℓ⊥i ∩ B is a non C-elliptical, C-linear body of revolution
with axis of revolution Lℓi and hyperplane of revolution Hℓi ⊂ ℓ⊥i .

Let Γ = ℓ⊥1 ∩ ℓ⊥2 . We first consider it as a complex hyperplane of ℓ⊥2 . Lemma 3.5 and its
proof imply that Γ∩B = Γ∩(ℓ⊥2 ∩B) is a C-linear body of revolution with axis of revolution
Lℓ2 , because Lℓ2 ⊂ Γ by hypothesis. Moreover, Γ∩B is not a C-ellipsoid by Lemma 3.6, so
that it has a unique hyperplane of revolution by Lemma 3.4, which, again by Lemma 3.5,
is Γ ∩Hℓ2 = ℓ⊥1 ∩Hℓ2 .

On the other hand, Γ is a complex hyperplane of ℓ⊥1 . Note that Γ 6= Hℓ1 , otherwise Γ∩B
would be an ellipsoid and we have proved that it is not. By Lemma 3.5, Γ∩B has hyperplane
of revolution Γ ∩Hℓ1 = ℓ⊥2 ∩Hℓ1 . Therefore, ℓ

⊥
1 ∩Hℓ2 = ℓ⊥2 ∩Hℓ1 = Hℓ1 ∩Hℓ2 . �

Proof of Theorem 3.1. The assignment ℓ 7→ Lℓ ⊂ ℓ⊥ is continuous; the proof is analogous
to that of Lemma 2.7 of [6]. Therefore, it yields a field of complex lines inside the canonical
complex n-vector bundle ℘ : ðn → S2n+1, defined in Lemma 2.1. This implies that the
structure group of its associated principal bundle ξn: SU(n) →֒ SU(n+1) → S2n+1 reduces
to SU(n − 1). By Lemma 2.3 (2), this does not happen when n is even, completing the
proof for that case. So, assume that n is odd.

Now, we prove that the assignment ℓ 7→ Lℓ ⊂ ℓ⊥ hits every line of Cn+1. Suppose not:
that there is a complex line L0 which is different from Lℓ for every ℓ. Let π0 : Cn+1 → L⊥

0 be
the orthogonal projection. Then, π0(Lℓ) is always a line in the hyperplane L⊥

0 , so that the
assignment ℓ 7→ π0(Lℓ) ⊂ (ℓ⊥ ∩ L⊥

0 ) for ℓ ∈ L⊥
0 , again contradicts Lemma 2.3 (2), because

the dimension of L⊥
0 is even.

So, given a complex line ℓ1 in Cn+1, there exists another line ℓ2, such that Lℓ2 ⊂ Hℓ1 ⊂ ℓ⊥1 .
Then, Lemma 3.7 implies that

Lℓ2 ⊂ Hℓ1 ∩ ℓ⊥2 = ℓ⊥1 ∩Hℓ2 ⊂ Hℓ2

which is impossible, and thus completes the proof. �

Finally, from Theorem 3.1 and Lemma 3.3, Theorem 1.3 follows immediately; which, in
turn, completes the proof of Theorem 1.1.
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