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Abstract

We generalise the famous Helly-Lovász theorem leading to a generalisation of the Bárány-
Carathéodory theorem for oriented matroids in dimension ≤ 3. We also provide a non-metric
proof of the later colourful theorem for arbitrary dimensions and explore some generalisations
in dimension 2.
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1 Introduction

In 1907 Constantin Carathéodory proved the following corner-stone of combinatorial convexity.

Theorem 1 (Carathéodory [8]) A point a ∈ IEd lies in the convex hull of a given subset B ⊂ IEd

of d-dimensional Euclidean space if and only if it is in the convex hull of d + 1 elements of B; in
symbols,

a †B ⇐⇒ ∃B′ ∈
(

B

d + 1

)
: a †B′.

We denote by A † B the fact that A is not separated from B, i.e., conv(A) ∩ conv(B) 6= ∅ (while
A ∩ B = ∅; cf. [16]). If we abbreviate [k] := {1, 2, . . . , k} and write simply b1b2 · · ·bd instead
of {b1,b2, · · · ,bd}, a beautiful and deep generalisation of Carathéodory’s theorem, due to Imre
Bárány (1982), can be written as follows.

Theorem 2 (Bárány [4, Theorem 2.1]) Let B1, B2, . . . , Bd+1 ⊂ IEd and a ∈ IEd. If for each
i ∈ [d + 1] we have that a † Bi, then there exist a choice bi ∈ Bi, for i ∈ [d + 1], such that
a † b1b2 · · ·bd+1.

∗The present work was done while the first author had a sabbatical position at the Instituto de Matemáticas,
Universidad Nacional Autónoma de México.
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Observe that if all Bi are equal, we are back at Carathéodory’s theorem. The sets Bi are referred
as colours and this result is also known as “colourful Carathéodory theorem”.

A stronger version was proved in the same paper of Bárány; namely, not all colours need to
capture the given point, it suffices that all but one capture the point:

Theorem 3 (Bárány [4, Theorem 2.3]) Let B1, B2, . . . , Bd ⊂ IEd and a,b ∈ IEd. If for each
i ∈ [d] we have that a †Bi, then there exists a choice bi ∈ Bi, for i ∈ [d], such that a †bb1b2 · · ·bd.

This strengthening can be rephrased as follows: if each heterochromatic simplex is separated from
the origin, then there are two colours which are separated from the origin. More recently, two
independent groups have observed that these hypotheses can be weakened a bit more; namely, it
suffices that the union of pairs of colours captures the point:

Theorem 4 (Arocha et al. [1], Holmsen et al. [11]) Let B1, B2, . . . , Bd+1 ⊂ IEd and a ∈ IEd.
If for each i, j ∈ [d + 1], i 6= j, we have that a † (Bi ∪ Bj), then there exist a choice bi ∈ Bi, for
i ∈ [d], such that a † b1b2 · · ·bd+1.

This further strengthening can be rephrased as follows: if each heterochromatic simplex is separated
from the origin, then there are two colours whose union is separated from the origin. A couple
of questions arise: How far can the hypothesis of Theorem 2 be weakened without changing the
conclusion? Is there a purely combinatorial Bárány-Carathéodory theorem?

In Section 2 we provide yet another proof of Theorem 3; this emphasises the non-metric aspects
of it and how the linear order of IR is playing the main role. In Section 3 we generalise Theorem 3
to the combinatorial settings of oriented matroids —even-though we had to restrict ourselves to
dimension 3. Finally, in Section 4 we explore two more directions, in dimension 2, where the
hypothesis can be weakened; namely, changing points to convex sets and relaxing the condition
on the colouring, to consider all colourings, while restricting “the position” of the points in the
configuration. In all cases, the conclusion is the same: there exists a heterochromatic simplex
“capturing” a point.

To settle Theorem 3 for oriented matroids in dimension 3, we also generalise the colourful version
of Helly’s theorem for hemispaces in the language of rank 3 oriented matroids (see also [3]). We
will use the topological representation theorem due to Jon Folkman and Jim Lawrence [9]. For,
let r1, . . . , r4 ∈ IE3 be the vertices of a (red) tetrahedron that contains the origin 0 in its interior
(i.e., 0 † r1 . . . r4). Now, let ri = r⊥i ∩ S2 be the great circle in the unit sphere centered at 0
whose spanned plane is orthogonal to ri, for i ∈ [4], and let each such circle be oriented in such a
way that it “remembers” the side where the vector ri is pointing at —we call that side the positive
hemisphere related to ri. Observe that the fact that the origin is not separated from those 4 vectors
is equivalent to the fact that the intersection of their positive hemispheres is empty. It is easy to
see that these 4 oriented circles represent, in the sense of Folkman and Lawrence (see also [5]), the
unique rank 3 cyclic oriented matroid on 4 elements; we denote this oriented matroid by ∆4. If we
do the same with the other two tetrahedra (the green and the blue), we arrive at the hypothesis of
the strong version of Bárány’s theorem; however, if we now allow the great circles to “wiggle a little
bit” by a topological transformation —to become a configuration of pseudolines in the sphere— we
arrive at an oriented matroid (and, indeed, all oriented matroids of rank 3 can be represented in
such a way). In the language of oriented matroids, we prove the following:
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Main Theorem. Let M = (E, C) be a rank 3 oriented matroid with |E| = 12 elements, endowed
with a 3-colouring E = R∪G∪B such that each colour class consists of 4 elements. Furthermore,
suppose that the restriction of M to each colour class is isomorphic to ∆4 —the (unique) rank 3
cyclic oriented matroid on 4 elements. Then, for every single element extension E ∪ y, there exists
an element in each of the colour classes r ∈ R, g ∈ G, b ∈ B such that the restriction to the
elements {r, g, b, y} is isomorphic to ∆4.

Since there are some millions of non-stretchable rank 3 oriented matroids with 12 elements, this
is truly a generalisation (recall that the smallest example of a uniform non-stretchable oriented
matroid in rank 3, the so-called non-pappus configuration due to Gerhard Ringel, has 9 elements;
see [6]).

Indeed, we believe that the result should follow in arbitrary dimension, but the techniques we
develop here —as it will be noted in situs— do not seem to be sufficient to solve the problem. We
propose here the following

Conjecture. The Bárány-Carathéodory theorem is true for all oriented matroids.

2 A non-metric proof of the Bárány-Carathédory Theorem 3

In order to prove Theorem 3, let us reinterpret what does it means to “trap the origin” in terms
of “covering the sphere”. We restrict ourselves to the general position case (the general case is
just a bit more obscure and adds nothing to the context). Observe that if B ∪ {0} is in general
position, then 0 † B if and only if pos(B) = IRd, where pos(·) denotes the positive span closure
operator. Also, since we want to avoid metrical properties of Euclidian space, we will work in the
“topological” sphere.

Let IRd be the real d-dimensional vector space over the totally ordered field (IR, <), and let

Sd−1 := (IRd \ {0})/IR+

be “the sphere” centred at the origin (where IR+ = {x ∈ IR : 0 < x} denotes the set of positive
scalars). Now, let P =

⋃
i∈[d] Pi ⊂ Sd−1 be a coloured subset such that 0 †Pi. Finally, let y ∈ Sd−1

be any other point. In order to prove that there is a heterochromatic choice xi ∈ Pi such that
0 † x1 . . .xdy, it is enough to prove that

Sd−1 =
⋃

xi∈Pi

pos(x1, . . . ,xd),

where the union is taken over all heterochromatic choices —simply observe that 0 † x1 . . .xdy if
and only if −y ∈ pos(x1, . . . ,xd).

That is, we want to prove that if the union of simplices of each colour cover the sphere, then
the union of heterochromatic simplices also cover the sphere. For this purpose, suppose this is not
true and let

b ∈ B := ∂
⋃

xi∈Pi

pos(x1, . . . ,xd)

be a point in the boundary of such a union. Clearly, such a point is in the positive cone of some
heterochromatic subset of (at most) d − 1 elements, say b ∈ pos(x1, . . . ,xd−1), where xi ∈ Pi for
each i ∈ [d − 1]. Then the hypersphere H := span(x1, . . . ,xd−1) leaves all points of Pd, the last
colour, in one of the hemispheres it defines; this contradicts the hypothesis 0 † Pd. •
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3 Proof of Main Theorem

An oriented matroid can be defined as a Radon-Steinitz separoid (see e.g. [16]). In order to prove
our main theorem, we first reduce the problem —just as we will do in Proposition 8— using the
so-called Steinitz exchange axiom (see Figure 4); namely, for each minimal Radon partition A †B,
if c 6∈ (A∪B) then there exists d ∈ (A∪B) such that (A \d) † (B \d∪ c). So, instead of considering
4 red oriented pseudolines, 4 blue and 4 green, each set with the property that their hemiplanes
have empty intersection (they are isomorphic to ∆4), we add the 13th element in yellow (which
plays the role of c above) and drop a red, a blue and a green element by using, three times, Steinitz
exchange property (see Figure 1). That reduces the problem of examining all configurations with
13 pseudolines to those with only 10 of them.

Figure 1: A 4-coloured rank 3 oriented matroid with 10 elements

3.1 Three guards instead of nine suffice; a guard problem.

We consider an island in form of a circular disc.

We consider three times three different pairs of antipodal points on the shore of this island.
These pairs of antipodal points are connected by one-sided defence walls. Say, we have three red,
three green, and three blue such defence walls, each set of three such walls with equal colours
belonging to a group of red, green, and blue people, respectively.

A triangle formed by three defence walls will be called a defendable triangle, when the defence
walls are all directed towards the outside of this triangle. We assume that the three sets of three
walls each, one set for each given colour, each form defendable triangles. In other words, each group
of a given color can hide a treasure inside a corresponding defendable triangle formed by defence
walls of the corresponding colour.
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Given any such system of nine defence walls on a circular island, can we find a defendable
rainbow triangle, i.e., one defendable triangle that consist of a red, a green, and a blue side?

This would mean that the three groups can move their treasures to this rainbow triangle and
instead of using all nine defence walls, they can use only three of them, one of each group.

We are going to answer our question in the affirmative.

Theorem 5 The existence of a defendable triangle for each tripel of defence walls with equal colors
implies the existence of a defendable rainbow triangle. •

For the stretchable case, the theorem is simply colored Helly for hemispaces: Given three families
of convex sets, say the reds, the blues and the greens, if, whenever we take a colorful triple, they
have a common point, then there is a color and a point in common to all convex sets of that color.
Conversely, if no monochromatic family has a common point, there is a colorful triple without a
point in common. We generalise this to pseudohemispaces of an oriented matroid in rank 3 using
the following result, due to Friedrich Wilhelm Levi [12], published in the first paper on pseudoline
arrangements (see also [10]).

Lemma 6 (Levi’s enlargement lemma) For every two non-colinear points in an arrangement
of pseudolines, there is a one element extension that goes through these points. •

A direct consequence of Levi’s enlargement lemma is the following lemma.

Lemma 7 It suffices to prove our theorem for those arrangements of pseudolines for which the
three defendable triangles with a given color are not intersected by any other pseudoline.

Proof. Assume w.l.o.g. that in the given arrangement a non-red pseudoline intersects the red
triangle. We are going to use Levi’s enlargement lemma. We pick the first point as the intersection of
one arbitrary red pseudoline r with the line at infinity. We pick the second point as the intersection
of the two remaining red pseudolines. The resulting pseudoline ` by Levi’s enlargement lemma
does not intersect the chosen red pseudoline r in an additional point (different from the first point).
We replace the chosen red pseudoline r with the new pseudoline `, however, we use a small local
change at the intersection point of all three red pseudolines so that a defendable triangle occurs.
It is clear how the new pseudoline has to be oriented. When we have proved our theorem for the
arrangement with the resulting pseudoline arrangement, we see that it also implies the existence
of a defendable rainbow triangle for the original arrangement. This rainbow triangle will be even
greater than the one for which we prove the theorem. •

Figure 2 shows the situation after applying the above lemma (cf. with Figure 1).

The absence of an enlargement lemma for higher dimensions is an obstruction to prove the
conjecture.
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Figure 2: No pseudoline intersects a defendable triangle.

3.2 Case distinction and main part of the proof.

We consider, say with a yellow element at infinity, a red triangle that does not touch the line at
infinity as well as a blue triangle that does not touch the line at infinity either.

The three supporting pseudolines of these two topological triangles each define together with
the line at infinity either triangular regions or topological 4-gons along the line at infinity. In one
of these regions (triangle or 4-gon) the corresponding other triangle has to lie.

Thus we have three possible cases.

1. A triangular region versus a triangular region,

2. A 4-gon versus a 4-gon,

3. A triangular region versus a 4-gon.

In the first case, we do not have to deal with a case distinction. We can argue that we obtain
the assumption for the final arguments in all cases.

For the other two cases we look at all possible corresponding pseudoline arrangements. A
long and tedious but straight-forward argument shows that we have all cases, up to symmetry, in
Figure 3 (we double-checked this fact with the aid of a computer and the Haskell code available at
http://dino.math.unam.mx/public/code/Haskell/OMBaranyCaratheodory.hs). We have ten types
that represent Case 2 and we have eight types that represent Case 3. The lack of such a classification
in higher dimensions is another obstruction to have the conjecture proved.

We now go for the main argument: pick a mutation (triangle) along the line at infinity with a
red (A) and a blue (B) element for which the orientations of these elements point to the interior of
that triangle.
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Figure 3: The 10+8 cases.

From the corresponding figure you see, this is possible in 8 + 6 cases.

We look now at the green element (C) with the orientation such that the former red/blue (A/B)
cocircuit lies on the negative side of C. We have to consider 4 intersection cases of C with the other
pseudolines A (red) and B (blue), depending on how C intersects A and B with respect to the
cocircuit A/B.

One case is trivial. The opposite case is the one that is most involved and we look at it at the
end.

The other two cases can be treated in the same way because of a symmetry argument. Let us
look at such a case. We pick on the red pseudoline (A) a blue element (D) that makes the cocircuit
(A/B) negative and on the blue pseudoline (B) a red element (E) that makes the cocircuit (A/B)
negative and we see the rainbow triangles in those cases immediately, either cocircuit A/D is a
vertex or cocircuit B/E .

In the last case (of the 4 cases) the argument uses also those two additional pseudolines (D) and
(E) and its corresponding rainbow triangles with either vertex A/D or B/E but in addition (when
these two cases do not work!), we look at the cocircuit (D/E) that together with the green element
shows us, we have a rainbow triangle in all cases.

Now observe that we did not use certain pseudolines in the above argument. For a pair of
pseudolines (A,B), i.e., a (red,blue) pair, we can discard those pseudolines that have the cocircuit
A/B on the positive side.

It suffices to have a mutation along the line at infinity after deleting those pseudolines and, in
the remaining cases, we can use the same argument. •
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4 Remarks and open problems

If instead of points we want to consider convex sets, we may use the framework of separoids [15]. A
separoid is, essentially, a family of convex sets S in some high dimensional Euclidian space endowed

with the relation |⊂
(
2S

2

)
defined by the (strict) separations by hyperplanes of its subfamilies (cf. [7]);

they generalise also well known combinatorial structures like hypergraphs and oriented matroids
(cf [14]).

Proposition 8 The Bárány-Carathédory theorem is true for Steinitz separoids of dimension 2.

Proof. Let S = R∪G∪ {0} be a Steinitz separoid in general position in the Euclidian plane with
minimal Radon partitions 0 †R and 0 †G, and let y ∈ IE2 be a point. Since S is Steinitz, we have
that there exists an ry ∈ R such that 0 † R′, where R′ = R \ {ry} ∪ {y}. Again, by the Steinitz
property, for each g ∈ G there exists an rg such that 0 †R′′g , where R′′g = R′ \ {rg} ∪ {g}. It is easy
to see that, if for each g ∈ G we have that rg = y, then 0 | G which contradicts the hypothesis (see
Figure 4). Therefore, there should exists a g ∈ G such that R′′g is a heterochromatic triple that is
not separated from 0. •

Figure 4: Steinitz exchange property for Radon partitions

This simple argument cannot be extended to higher dimensions. Indeed, it may not be true at
all, as suggested by the fact that Tverberg’s number for separoids is bigger than expected (cf. [13])
—more colours may be needed to guarantee the same conclusion. We pose this in the following

Problem. Determine the Bárány-Carathéodory number for separoids.

A similar phenomenon occurs if the restriction is not put in the colouring of the points, but in
the “position” they have. That is, if we look for all colourings of a point configuration to have,
as in Theorem 2, a heterochromatic simplex capturing the origin, the planar case is different than
that in higher dimensions.

Proposition 9 Let P ⊂ IE2 be a subset in general position of the Euclidian plane. Then, for each
{a,b} ∈

(
P
2

)
there exists a c ∈ P \ {a,b} such that 0 † abc if and only if for every 3-colouring of

P there exists a heterochromatic triple {x,y, z} ∈
(
P
3

)
such that 0 † xyz.

We rephrase this result by saying: the uniform hypergraph (of rank 3) consisting of those triples
{x,y, z} ∈

(
P
3

)
such that 0 † xyz is tight —its heterochromatic number equals its rank— if and

only if its 2-skeleton is complete (cf. [2]).
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Proof. One side is clear. For the other, let ς:P → {r, g, b} be an (effective) 3-colouring of the
point separoid P , and denote by R = ς−1(r), G = ς−1(g) and B = ς−1(b) its colour classes —we
speak of red, green and blue points. Further, let a ∈ R and b ∈ G be a red and a green point. By
the hypothesis, there exists a c ∈ P such that 0 † abc; we may suppose that c ∈ R is also a red
point. Since ς is onto, there must be a blue point d ∈ B and we may suppose that it is in the cone
pos(−a,b); otherwise we have that either abd or bcd has to be a heterochromatic triangle that is
not separated from the origin. By the hypothesis, there exists a fifth point e ∈ P , which we may
suppose is not red, such that 0 † bde. Observe that e must lie in the cone pos(a, c). Then, either
ade or bce is a heterochromatic triangle not separated from the origin, depending on the colour
of e (green or blue, respectively). •

Observe that any odd regular polygon centred at the origin is an example of such a tight configu-
ration. On the other hand, in higher dimensions Proposition 9 takes the following “counterintuitive”
form, which was first proved by Andreas Holmsen, János Pach and Helge Tverberg (2008) in the
same paper were they proved Theorem 4:

Theorem [11]. Let P ⊂ IEd be a finite set of points in general position, in dimension d > 2.
If 0 † P , then the uniform hypergraph consisting of the subsets X ∈

(
P

d+1

)
such that 0 †X is tight

if and only if |P | = d + 1.

It is not clear yet what the correct setting is for studding all colourings of a point configuration;
so far, the theorem above says that the condition on the points cannot be finite which really
contrasts the content and spirit of Carathéodory’s theorem. Let us pose this in the following

Problem. Characterise those —necessarily infinite— tight configurations in IEd, for d > 2.
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