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Abstract

A carousel is a dynamical system that describes the movement of an equi-
lateral linkage in which the midpoint of each rod travels parallel to it. They are
closely related to the floating body problem. We prove, using the work of Auerbach,
that any figure that floats in equilibrium in every position is drawn by a carousel.
Of special interest are such figures with rational perimetral density of the floating
chords, which are then drawn by carousels. In particular, we prove that for some
perimetral densities the only such figure is the circle, as the problem suggests.

1. Introduction

The floating body problem, number 19 of the Scottish Book [4], reads as
follows

Is a solid of uniform density which will float in water in every position, a
sphere?

It has only been proved true for density 0 by Montejano [5], and false for
dimension 2 and density 1/2 by Auerbach [1]. In this latter work some remarkable
properties about possible examples in dimension 2 were proved. Namely, that the
floating chords have constant length; that the curve of their midpoints has the
corresponding chords as tangents, and that these chords divide the perimeter in a
fixed ratio α (the perimetral density). Suppose that α is rational. Then, for every
point p in the boundary of the figure we have an inscribed equilateral n-gon which
moves, as p moves, in such a way that the midpoints of the sides move parallel to
them. This is the main motivation for the definition of carousels.

They will be formally defined in Section 2, and this paper may be thought
of as the starting point for their study in their own right. Some basic structural
properties are established, as well as their existence for n odd. Section 3 is devoted
to see how the Auerbach Theorems imply that all figures that float in equilibrium
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in any direction are drawn by special carousels. Also, the closely related notion
of Zindler curve is given. The basic properties of carousels are stated in Section 4
and in Section 5, explicit differential equations that rule carousels are derived, and
used to prove that for n odd a unique carousel is obtained from any equilateral n-
gon. Finally, following [2], we describe the main ideas towards the classification of
carousels with five chairs. Such understanding yields, together with previous results,
the non existence of figures, different from the circle, that float in equilibrium in
every direction with perimetral densities 1/3, 1/4, 1/5 and 2/5.

2. The carousel

Definition. A Carousel (with n chairs) is a system which consists of n
smooth curves {β1(t), β2(t), . . . , βn(t)} in R

2 satisfying the following properties, for
every t ∈ R and for all i = 1, . . . , n, where βi+n(t) = βi(t):

(1) The length of the interval with end points βi(t) and βi+1(t), |βi+1(t) −
βi(t)|, is the same non-zero constant for all i.

(2) The curve of midpoints, mi(t) = βi(t)+βi+1(t)
2 , of the segments from βi(t)

to βi+1(t), has tangent vector, m′
i(t), parallel to βi+1(t) − βi(t).

On this paper, a smooth curve φ : R → R
2 is a C1-differentiable function

with φ′(t) �= 0, for every t ∈ R. Furthermore, φ is a smooth closed curve if there is
t0 ∈ R such that φ(t + t0) = φ(t), for every t ∈ R. In addition, φ(t) = φ(s) if and
only if t = s + kt0 for some integer k ∈ Z, then φ is a simple closed curve. If this is
the case, the region of the plane bounded by φ(R) will by denoted by Φ(φ).

Lemma 1 (First Carousel Law). Let β1(t) and β2(t) be smooth curves.
Then the system {β1(t), β2(t)} is a carousel if and only if β′

2(t) is a reflection of
β′

1(t) across the line generated by β2(t) − β1(t), for every t ∈ R.

Proof. Observe that the condition (1) for a carousel is equivalent to: 〈β2(t)−
β1(t), β2(t) − β1(t)〉 is constant, where 〈 , 〉 is the interior product. Then, taking
derivatives, we obtain the equivalent equation

〈β′
2(t), β2(t) − β1(t)〉 = 〈β′

1(t), β2(t) − β1(t)〉.
The condition (2) for a carousel is that β′

2(t)+β′
1(t) is parallel to β2(t)−β1(t).

From here, the lemma follows easily. �

Observe from the previous lemma that |β′
2(t)| = |β′

1(t)|. Then, from now on,
if {β1(t), β2(t), . . . , βn(t)} is a carousel, we may assume that |β′

i(t)| = 1 so that all
the curves βi(t) are parameterized by arc length. Furthermore, we may also assume
that |βi+1(t) − βi(t)| = 2.

Let αi(t) denote the angle between the vectors β′
i(t) and βi+1(t) − βi(t) and

let θi(t) be the angle between the x-axes and the vector βi+1(t) − βi(t). We shall
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use angles either between [0, 2π) or between [−π, π) as the context requires. In any
case, the derivative is the same as we shall see next.

Lemma 2 (Second Carousel Law). Let {β1(t), . . . , βn(t)} be a system of
smooth curves with the property that |βi+1(t) − βi(t)| = 2. Then {β1(t), . . . , βn(t)}
is a carousel if and only if, for every t, θ′i(t) = sin(αi(t)).

Proof. If mi(t) is the midpoint of βi+1(t) − βi(t), we can write mi(t) =
βi(t) + u(θi(t)), where

u(θ) = (cos(θ), sin(θ)).

Thus, m′
i(t) = β′

i(t) + u′(θi(t))θ′i(t). Finally, observe that the condition (2), for a
carousel, is equivalent to 〈m′

i(t), u
′(θi(t))〉 = 0, which is equivalent to

θ′i(t) = −〈β′
i(t), u

′(θi(t))〉 = sin(αi(t)). �

Definition. A carousel with n chairs {β1(t), . . . , βn(t)} is a Zindler carousel
if all the curves βi(t) are parametrizations of the same smooth closed curve γ. If
this is so, the smooth closed curve γ will be called a Zindler curve. We shall see
that Zindler curves studied in [8] are essentially given by Zindler carousels with
two chairs which, according to [6], are in one to one correspondence with curves of
constant width.

Example. Consider β1(t) = (cos(t), sin(t)), for t ∈ R, and for i = 2, 3, . . . , n,
let βi(t) = β1(t + 2π

n (i − 1)). Then {β1(t), . . . , βn(t)} yields a Zindler carousel with
n chairs whose Zindler curve is a circle.

Figures 1 to 3 show examples of carousels with 5 chairs. All of them are
determined by their differential equations, as we will see in Section 5. Figure 3
shows the unique Zindler carousel with no auto-intersections with 5 chairs, different
from the circular carousel.

Remark. Let β2(t) be a smooth curve and let p �= β2(0) (in particular, we
may assume as usual that |p − β2(0)| = 2). Then, using arguments of ordinary
differential equations, it is possible to proof that there is a unique smooth curve
β1(t) such that β1(0) = p and {β1(t), β2(t)} is a carousel.

3. The floating body problem

Definition. Let φ : R → R
2 be a smooth simple closed curve. A chord of

the figure Φ(φ) bounded by φ(R) is a line segment whose extreme points lie in φ(R).
A chord system {C(t)} for Φ(φ) is a continuous selection of an oriented chord C(t)
of Φ(φ) starting at the point φ(t). If, except for its extreme points, the chords C(t)
lie in the interior of Φ(φ), we say that {C(t)} is a system of interior chords for
Φ(φ).
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Figure 1

There are three natural kinds of chord systems for a figure Φ(φ):
1) The system {CA(t)} of interior chords which divide the area of the figure

Φ(φ) in a fixed ratio �.
2) The system {CP(t)} of chords whose extreme points divide the perimeter

of the boundary of Φ(φ) in a fixed ratio α.
3) The system {CL(t)} of chords whose length is a positive real number τ .
Note that in general these chord systems do not necessarily exist.

Recall the floating body problem stated in the introduction. Now we make
its meaning precise.

Definition. Let Φ(φ) be a figure of area A and suppose that the system of
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interior chords, {CA(t)}, which divide the area of Φ in a fixed ratio �, exists. Let G
be the mass center of Φ(φ) and G(t) the curve of the mass centers of the regions of
Φ bounded by {CA(t)}, of area �A. Then, according to Archimedes Law, the figure
Φ(φ) of density � floats in equilibrium in a given position t, if the line through G
and G(t) is orthogonal to CA(t).

In 1938 Auerbach proved the following theorem:

Theorem 1 (cf. [1]). A figure Φ(φ) of density � floats in equilibrium in every
position if and only if the system of interior chords {CA(t)} which divides the area
of Φ(φ) in a fixed ratio � exists and it is also of the type {CL(t)} of constant length.

In this theorem, Φ(φ) is not necessarily convex. For the proof, Auerbach used
the following fact of local character that will be used later:

A) Let {C(t)} be a system of interior chords for a figure Φ(φ). Denote by
A(t), the area of the region of the figure Φ(φ) left to the right by the chord C(t),
then, A′(t) = 0 if and only if the chord C(t) is tangent to the curve described by
the midpoints of C(t).

Let Φ(φ) be a figure and suppose that the system of interior chords which
divide the area of Φ(φ) in a fixed ratio �, {CA(t)}, exists. Suppose also that the
figure Φ(φ) of density � floats in equilibrium in every position. Let us define, for
every t ∈ R, γ(t) = φ(t1), where φ(t1) is the other extreme point of CA(t). It is
known (see [1]), that γ is a smooth curve. By Theorem 1, |γ(t) − φ(t)| is constant.
Furthermore, by A), the system {φ(t), γ(t)} is a carousel and hence, by Lemma 1,
|γ′(t)| = |φ′(t)|. Therefore, the chords {CA(t)} divide the perimeter of the figure
Φ(φ) in a fixed ratio α. In this case, we say that Φ(φ) has perimetral density α,
with respect to {CA(t)}.
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In the following, we will classify the figures that float in equilibrium in every
position, according to their perimetral density.

The next Theorem establishes the main relation between carousels and the
floating body problem

Theorem 2. Let Φ(φ) be a figure. Suppose that the system of interior chords
which divide the area of Φ(φ) in a fixed ratio �, {CA(t)}, exists and that the figure
Φ(φ) of density � floats in equilibrium in every position with perimetral density α,
where α = q/n (irreducible fraction). Then there exist a Zindler carousel with n-
chairs {β1(t), . . . , βn(t)}, such that φ = β1. Conversely, if {β1(t), . . . , βn(t)} is a
Zindler carousel, with the property that βi is a simple closed curve and the chords
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with extreme points βi(t) and βi+1(t) are interior chords of Φ(βi), then Φ(βi) is a
figure that floats in equilibrium in every position.

Proof. The interior chords CA(t) divide the area and the perimeter of Φ(φ)
in a fixed ratio, and by Auerbach’s Theorem, all of them have the same length.
Let β1 = φ and, for every t ∈ R, let us define β2(t) = β1(t1), where β1(t1) is
the other extreme of the chord CA(t). Clearly β2 is a smooth simple closed curve.
Similarly, for i > 1, let βi(t) = βi−1(ti−1), where βi−1(ti−1) is the other extreme
of the chord CA(ti−2). So, since the perimetral density α = q/n, we finally obtain
that βn+1 = β1, where the curves βi are all parametrizations of φ. By construction
and by A), the two conditions asked from the system {β1(t), . . . , βn(t)} to obtain a
carousel are satisfied.

Conversely if {β1, . . . , βn} is a Zindler Carousel, then every curve βi deter-
mines the same figure. So the chords of Φ(β1) with extreme points β1(t) and β2(t)
give rise to a system of interior chords. By A) and condition (2) for carousels,
we have that these interior chords divide the area of Φ(β1) in a fixed ratio and
by condition (1) for carousels and Auerbach’s Theorem, the figure Φ(β1) floats in
equilibrium in every position. �

4. Some intrinsic properties of carousels

Let P be a polygon with cyclically oriented vertices {v1, v2, . . . , vn}. One can
define its (signed) area as

A (P ) =
1
2

n∑
i=1

|vi, vi+1| (1)

where |a, b| denotes the determinant of the vectors a, b – and is therefore twice the
area of the triangle they form with the origin. It is easy to see that the area does
not depend on where the origin is and that it coincides with the classic area for the
convex or non self-intersecting polygons, so that it is a natural extension to general
polygons such as carrousels.

Similarly, for polygons P with A(P ) �= 0 one can naturally generalize the
notion of center of mass by the formula

g (P ) =
1

6A (P )

n∑
i=1

|vi, vi+1| (vi + vi+1) . (2)

For the convex case with the origin inside, it is clearly the classical definition of
mass center by means of the natural triangulation. It is not too hard to see that in
general it does not depend on where the origin is.

Theorem 3. The area of a carrousel is constant and if it is not zero then its
center of mass is a fixed point.
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Proof. Let {β1, β2, . . . , βn} be a carrousel and denote by A(t) the area of
the polygon X(t) = {β1(t), β2(t), . . . , βn(t)}. By the properties of the determinant,
and omitting the variable t, we have

A′ =
1
2

n∑
i=1

d

dt
(|βi, βi+1|) =

1
2

n∑
i=1

|β′
i, βi+1| −

∣∣β′
i+1, βi

∣∣ . (3)

The first carrousel law can be written
∣∣β′

i + β′
i+1, βi+1 − βi

∣∣ = 0, which can clearly
be restated as

|β′
i, βi+1| −

∣∣β′
i+1, βi

∣∣ = |β′
i, βi| −

∣∣β′
i+1, βi+1

∣∣ .
Substituting in (3) we get that A′ = 0 and thus that the area is constant.

For the mass center, let f : R → R2 be

f(t) =
n∑

i=1

|βi(t), βi+1(t)| (βi(t) + βi+1(t)) .

Another way to write the first carrousel law is that there exist real valued functions
hi for which

β′
i + β′

i+1 = hi (βi+1 − βi) .

Then we have

f ′ =
n∑

i=1

[(|β′
i, βi| −

∣∣β′
i+1, βi+1

∣∣) (βi + βi+1) + hi |βi, βi+1| (βi+1 − βi)
]

=
∑

[2 |β′
i, βi|βi − 2

∣∣β′
i+1, βi+1

∣∣βi+1

+
(|β′

i, βi| +
∣∣β′

i+1, βi+1

∣∣ + hi |βi, βi+1|
)
(βi+1 − βi)]

=
∑ (|β′

i, βi| +
∣∣β′

i+1 + hiβi, βi+1

∣∣) (βi+1 − βi)

=
∑

(|β′
i, βi| − |β′

i, βi+1|) (βi+1 − βi)

= −
∑

|β′
i, βi+1 − βi| (βi+1 − βi) .

With our previous notation and conventions about the length of the chairs and
the velocity of the points in a carrousel, the second carrousel law can be written
θ′i = 1

2 |β′
i, βi+1 − βi| , because 2 sinαi = |β′

i, βi+1 − βi|. Therefore, recalling that
(βi+1 − βi) = 2u (θi), we obtain from our last equation that

f ′ = −4
∑

θ′iu (θi)

= 4
∑ d

dt

(
u

(
θi +

π

2

))

= 4
d

dt

(∑
u

(
θi +

π

2

))
.
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Since
∑

u
(
θi + π

2

)
is the constant function 0 because the carrousel is a closed poly-

gon, we conclude that f ′ = 0 and thus that f (t) is a fixed point. Finally, when
A (t) �= 0, from the equation 6A(t)g(t) = f(t), having the area constant we obtain
that the center of mass g (t) is also a fixed point. �

We must remark that the preceding proof should also have a geometrical
meaning for some carrousels of area zero. We have proved that f (t) is constant,
if it is also non-zero for an area zero carrousel then it determines a fixed direction
(point at infinity) which is the limit point of the mass centers of carrousels with
small area tending to it. Figure 2 is the unique such case for carrousels with 5
chairs, it moves in the perpendicular direction to its “center of mass” as the limit
of circles with a large radius.

Theorem 4. Let {β1(t), . . . , βn(t)} be a carousel with n chairs, and let xi(t) ∈
[0, 2π) be the angle between the sides βi+1(t)− βi(t) and βi−1(t)− βi(t). Then, if n
is even, there exists an integer k such that

n∑
i=1

(−1)ixi(t) = 2kπ.

Proof. Take a fixed time t ∈ R. By Lemma 1, we know that β′
i+1 is a

reflection Ωθi of β′
i on the line (through the origin) with angle θi, between βi+1 −βi

and the x-axis. Then, if n is even we have that

β′
1 = Ωθn ◦ Ωθn−1 ◦ · · · ◦ Ωθ1(β

′
1)

= R2((θ1+θ3+...θn−1)−(θ2+θ4+...θn))(β′
1),

where Rσ is the rotation of an angle σ.
But this equality happens only if for some integer ko(t),

2
(
(θ1(t) + θ3(t) + · · · + θn−1(t)) − (θ2(t) + θ4(t) + · · · + θn(t))

)
= 2ko(t)π.

Using now the fact that for an n-gon there exists an integer ki(t) such that θi+1(t)−
θi(t) − π + xi+1(t) = 2ki(t)π, for i = 1, . . . , n, we conclude that

∑n
i=1(−1)ixi(t) =

2k(t)π.

Assume that xi(t0) = 0 then βi−1(t0) = βi+1(t0). Consider {βi−1(t), βi(t)}
and {βi+1(t), βi(t)} as carousels of two chairs, then by the remark at the end of
Section 2, we have that βi−1(t) = βi+1(t) for every t. Therefore, xi(t) = 0 for
every t.

Hence, xi : R → [0, 2π) is continuous (never passes discontinuously between
0 and 2π) therefore

∑n
i=1(−1)ixi(t) is a continuous map and hence k(t) must be

constant. The proof of the theorem follows from this. �
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Remark. If n is odd, the composition of the n reflections is again a reflection,
then there exists a unique vector w, up to scalar factor, such that Ωθn ◦ Ωθn−1 ◦
· · · ◦ Ωθ1(w) = ΩΨ(w), for some suitable angle Ψ. Consequently, w should be the
velocity vector β′

1.

In contrast to the fact that there are non circular figures that float in equi-
librium in every position with perimetral density 1/2 ([1]), we have the following
theorem.

Theorem 5. Except from the circle, there are no figures that float in equilib-
rium in every position with perimetral density 1

3 and 1
4 .

Proof. Recall that if a figure floats in equilibrium in every position with
perimetral density ρ, then the system of chords that divide the area in the corre-
sponding ratio are all interior. Let us start with the case of perimetral density 1

3 .
The equilateral triangle is the only possible n-gon with 3 sides of equal length. By
Theorem 3, the mass center of the equilateral triangles determined by a Zindler
carousel with 3 chairs is a fixed point. So, the circular carousel is the only non
trivial Zindler carousel with 3 chairs and therefore, by Theorem 2, except from the
circle, there are no figures that float in equilibrium in every position with perimetral
density 1

3 .

Let Φ(φ) be a figure that floats in equilibrium in every position with perimetral
density 1

4 . Clearly, the 4-gons that arise from Φ(φ) can not have area zero otherwise
density 1

4 never achieve. Thus, these 4-gons are convex parallelograms with positive
area and by Theorem 4, they should be squares. By Theorem 3, their mass centers
are a single point. Then, except from the circle, there are no figures that float in
equilibrium in every position with perimetral density 1

4 . �

When n is even the existence carousels in which βi = βn−i+2 gives rise to a
type of carousels that can be studied in their own right and will not be considered
in this paper. For this reason, from now on, we shall consider only carousels with
an odd number of chairs.

5. The differential equations

The purpose of this section is to exhibit the differential equations of carousels.
Recall, that given a carousel {β1(t), . . . , βn(t)}, we assume, that |β′

i(t)| = 1
and |βi+1(t) − βi(t)| = 2 and remember that αi(t) denotes the angle between the
vectors β′

i(t) and βi+1(t) − βi(t) and θi(t) denotes the angle between the x-axes
and the vector βi+1(t) − βi(t). Let xi(t) ∈ [0, 2π) be the angle between the vectors
βi+1(t) − βi(t) and βi−1(t) − βi(t).
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Theorem 6. Let {β1(t), . . . , βn(t)} be a carousel with n-chairs. Then, the
interior angles xi(t), i = 1, . . . , n, satisfy the following system of differential equa-
tions

(1) x′
i(t) = sin(αi−1(t)) − sin(αi(t)),

If n is odd then

(2) αi(t) = xi+2(t) + xi+4(t) + · · · + xi+(n−1)(t) −
(

k − 1
2

)
π,

where k is the integer number such that
∑n

i=1 xi(0) = kπ.
Conversely, if n is odd and we have functions xi(t), i = 1, . . . , n, satisfy-

ing the system of differential equations (1), (2); and such that the initial condi-
tions (x1(0), . . . , xn(0)) are the interior angles of an equilateral n-gon with sides
of length 2. Then, there exists a carousel of n chairs {β1(t), . . . , βn(t)}, with the
property that xi(t) is the angle between βi+1(t) − βi(t) and βi−1(t) − βi(t).

Proof. As we know, xi(t) = ki(t)π + θi−1(t) − θi(t), where ki(t) is a step
function. By Lemma 2, we have that θ′i(t) = sin(αi(t)), so

x′
i(t) = sin(αi−1(t)) − sin(αi(t)).

On the other hand, by Lemma 1, αi−1(t) + xi(t) + αi(t) = π. Taking the
alternating sum of these equations, if n is odd, it is possible to conclude that

αi(t) = xi+2(t) + xi+4(t) + · · · + xi+(n−1)(t) −
(

k(t) − 1
2

)
π,

where k(t) is the integer number such that
∑n

i=1 xi(t) = k(t)π. As we already noted
in the proof of Theorem 4, the functions xi : R → [0, 2π) are continuous (never pass
discontinuously between 0 and 2π). Therefore k(t) = k(0) = k.

Suppose that we have functions xi(t), i = 1, . . . , n, n odd, satisfying the sys-
tem of differential equations (1), (2); and such that the initial conditions (x1(0), . . . ,
xn(0)) are the interior angles of an equilateral n-gon with sides of length 2. That
is,

∑n
i=1 xi(0) = kπ and

u(0) + u(π − x2(0)) + · · · + u
(
(n − 1)π − (x2(0) + · · · + xn(0))

)
= 0.

For i = 1, . . . , n, define θi(t) and βi(t) so that

θ′i(t) = sin(αi(t)),

where

αi(t) = xi+2(t) + xi+4(t) + · · · + xi+(n−1)(t) −
(

k − 1
2

)
π,

and
β′

i(t) = (cos(θi(t) − αi(t)), sin(θi(t) − αi(t))),

with initial conditions, (β1(0), . . . , βn(0)), the vertices of an equilateral n-gon with
sides of length 2, and θi(0) the angle between the corresponding side βi+1(0)−βi(0)
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and the x-axes. That is, θi(0) = θ1(0)+(i−1)π−(x2(0)+· · ·+xi(0)) for i = 1, . . . , n,
and |βi+1(0) − βi(0)| = 2.

By uniqueness of solutions, θi(t) = θ1(t)+(i−1)π−(x2(t)+· · ·+xi(t)), because
for t = 0 the condition is true and θ′1(t) − (x′

2(t) + · · · + x′
i(t)) = sin(αi(t)) = θ′i(t).

Define γ2(t) := β1(t) + 2u(θ1(t)). Then, by Lemma 2, {β1(t), γ2(t)} is a
carousel, because |γ2(t) − β1(t)| = 2 and θ′1(t) = sin(α1(t)), where by construction,
α1(t) is the angle between γ2(t) − β1(t) and β′

1(t).
Using trigonometric identities and after some simplifications

γ′
2(t) = (cos(θ1(t) + α1(t)), sin(θ1(t) + α1(t))).

But θi+1(t) = θi(t) + π − xi(t) and π − x2(t) − α1(t) = α2(t), thus θ1(t) +
α1(t) = θ2(t) − α2(t). Then β′

2(t) = γ′
2(t) and, by hypothesis, β2(0) = γ2(0). By

uniqueness of solutions, β2(t) = γ2(t). Finally, if we define inductively γi+1(t) :=
βi(t) + 2u(θi(t)), we conclude the proof of the theorem. �

The following two corollaries which follow from our previous results, will be
used in the next section.

Corollary 1. Let X(0) be a regular n-gon with interior angles (x1(0), . . . ,
xn(0)), n odd. Then, there exists a unique carousel {β1(t), . . . , βn(t)} up to orien-
tation, with initial condition X(0).

Corollary 2. Let {β1(t), . . . , βn(t)} be a carousel with n-chairs, n odd.
If there exists t0 ∈ R such that xi(t0) = xi+1(0) (i = 1, . . . , n), then the curves
β1(t),. . . ,βn(t) are congruent.

Proof. Since xi(t0) = xi+1(0), there is a congruence ∆ such that ∆(βi(t0)) =
βi+1(0). Let γi+1(t) = ∆(βi(t + t0)). Clearly the system {γ1(t), . . . , γn(t)} is a
carousel with initial conditions X(0) = {x1(0), . . . , xn(0)}, because γi(0) = βi(0).
By Corollary 1, {γ1(t), . . . , γn(t)} = {β1(t), . . . , βn(t)}. Then, ∆(βi(t + t0)) =
βi+1(t). This concludes the proof of the corollary. Note that if the area of the n-gon
{β1(0), . . . , βn(0)} is not zero, by Theorem 3, ∆ is a rotation. �

6. An outline towards the classification
of carousels with five chairs

In this section we describe the main ideas leading to the classification of
carousels with five chairs. Such a complete understanding yields, again, the non
existence of figures, different from the circle, that float in equilibrium in every
direction with perimetral densities 1/5 and 2/5. The detailed proofs, which become
quite technical, can be seen in [2] and [6].

Carousels are systems of curves, but they can also be thought of as a linkage
with rigid rods moving in time. If we consider the space of regular plane polygons,
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then, by Corollary 1, carousels are simply a flow there. But there is another interest-
ing, and simpler, associated flow in the compact space of regular polygons modulo
congruence. This flow simply describes how the “shape” of the polygon moves as
the carousel goes.

More precisely, and restricting ourselves from now on to the case n = 5,
let P5 be the space of all equilateral pentagons in the plane, one of whose sides
is the distinguished interval [(−1, 0), (1, 0)], and all the other sides have length
two. We will call it the phase space of equilateral pentagons. Corollary 1 implies
that given P (0) ∈ P5 we have a carousel {β1(t), . . . , β5(t)} with initial conditions
X(0) = P (0) and therefore we can define P (t) to be the image of the regular
pentagon X(t) = (β1(t), . . . , β5(t)) under the unique orientation preserving isometry
that sends its edge [β1(t), β2(t)] to the distinguished interval [(−1, 0), (1, 0)]. This
defines a flow in P5, which may be rightly called the carousel flow on the phase space
of equilateral pentagons, and its orbits correspond to carousels (modulo orientation
preserving isometries, which are the natural thing to consider).

It can be seen in [7], that P5 is a genus 4 oriented surface which is most
conveniently described as an analytic smooth sub variety of the 5 dimensional torus
(S1)5 when we take as parameters the 5 internal angles (x1, . . . , x5) of the pentagons.
By Theorem 3 we know that carousels preserve area, therefore the carousel flow turns
out to be an integral flow of the area function f : P5 → R, that is, the orbits stay
on the same area pentagons of a fixed area.

The Morse Theory of the area function f : P5 → R reads as follows. It has six
critical values −a < −b < −c < c < b < a and 14 critical points: 2 maxima (which
are the positively oriented regular convex pentagon, of area a, and the negatively
oriented regular pentagram); 2 minima (which are the negatively oriented regular
convex pentagon and the positively oriented regular pentagram, of area c), and 10
saddle points (corresponding to pentagons which look like regular triangles of area b,
or −b, but where one side is used three times). Of course, the complete topological
description of P5 can be carried out in detail, and the analysis of the carousel flow
should be made on each of the regular pieces.

Let us concentrate on the “top” piece P5
0 := f−1((b, a]) which corresponds to

pentagons whose sides do not intersect and are positively oriented. Topologically
this is an open disc where the regular equilateral pentagon lies in the center and all
of the remaining orbits are closed; they are f−1(A) for some area A ∈ (b, a). Then,
we have a period ηA, which is the minimum number for which P (0) = P (ηA) for
any P (0) ∈ f−1(A).

Observe that if a pentagon P ∈ P5
0 is parametrized by the angles (x1, x2, . . . ,

x5) then the other four pentagons obtained by cyclic permutations of its angles
have the same area. Thus, they lie in the same orbit. It happens that the first
of these pentagons that P (0) = P ∈ f−1(A) encounters as it flows is P (εA) =
(x4, x5, x1, x2, x3) where 5εA = ηA.

Turning our attention from the pentagons (modulo congruence) back to their
carousels. If P ∈ f−1(A) ⊂ P5

0 is considered as the initial conditions of a carousel
{β1(t), . . . , β5(t)}, then there is an angle σA, called the basic angle of A, for which
βi(t+εA) = RσAβi+3(t), where RσA is the rotation of σA around the center of mass,
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because the pentagon has come back to itself but in a different cyclic order and
rotated. If we ask the curve β1(t) to “match up” at some time with the curve β2(t)
(that is, that β1(t+mεA) = β2(t) for some m) to obtain a Zindler carousel, then this
imposes some rationality conditions on the basic angle. A complete classification
of Zindler carousels may be derived in these lines, but we are mainly interested in
those of index 1, that is, those whose closed curve winds once around the center.

Theorem 7. Any 1
5 -Zindler carousel of index 1 has basic angle of the form

4s+2
5s+2π, for s > 0, a natural number and conversely, if a carousel with area A ∈ (a, b)
has basic angle σA = 4s+2

5s+2π, for s > 0 a natural number, then it is a 1
5 -Zindler

carousel.

Next, using the fact that f−1(a) is an isolated singular point of the vector
field and a non-degenerate center, that is, the linear part of the vector field has
eigenvalues ±iω, ω > 0, we may prove, using the Classical Poincaré–Lyapunov
Center Theorem [3], that the limit of the period function η : (b, a) → R, when A→ a,
is 2π/ω which, after the corresponding calculations, gives η(a) = 2π/ω ∼ 2.4002.
Furthermore, there is clear evidence, that the period function η : (b, a) → R is a
decreasing function. In fact, η(A) ≥ η(m), for every A ∈ (b, a). But it can be shown
[2] that σA < 2.9132 and ηA > 2.4002, for every A ∈ (b, a).

This, together with the fact that a 1
5 -Zindler carousel of index 1 must have a

period smaller than 2π/ω ∼ 2.4002 shows that a 1
5 -Zindler carousel of index 1 never

gives rise to a figure that floats in equilibrium. The same ideas can be analogously
applied to study 1

5 -Zindler carousels of index −1 and 2
5 -Zindler carousels.

In Section 4, it was proved that there are no figures that float in equilibrium
in every position with perimetral density 1

3 and 1
4 , although we know from [1]

that there are with perimetral density 1
2 . The previous discussion gives a complete

understanding of carousels with 5 chairs that yields, again, the non existence of
figures, different from the circle, that float in equilibrium in every position with
perimetral densities 1

5 and 2
5 .
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