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Abstract. The topological manifolds arising from configurations of points in the real and
complex projective lines are classified. Their topology and combinatorics are described
for the real case. A general setting for the study of the spaces of configurations of flats is
established and a projective duality among them is proved in its full generality.

1. Introduction

This is the first paper in a series concerned with the topology and combinatorics of the
spaces of configurations of flats in standard geometries. Configurations of vectors yield
Grassmannians with a combinatorial stratification governed by matroids or oriented ma-
troids [3]. Also, affine-configurations of points (i.e., k-tuples of points that affinely span
modulo the affine group) yield Grassmannians but with a finer stratification governed
by affine-oriented matroids. The motivation of this series is the fact that the topology of
the space of transversals to convex sets is governed by the strata of the space of affine
configurations of points (see [1] and [4]). The main question we raise is what happens
when one considers flats other than zero-dimensional: what are the spaces so obtained
and what are the combinatorics that govern their natural stratifications? The simplest
new example to consider is configurations of lines in the real affine planeA2. As we will
shortly see, the case of four lines is interesting enough to motivate the study of projective
configurations of points.

∗ All authors were partially supported by Grants CONACYT-U41340-F and DGAPA-IN111702-3.
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1.1. The First Example

Consider two 4-tuples of lines �1, �2, �3, �4 and �
′
1, �

′
2, �

′
3, �

′
4 in the affine planeA2 as the

same affine configuration, or to be affinely equivalent, if there is an affine isomorphism
f which maps one 4-tuple into the other, that is, f (�i ) = �

′
i . Since all contractions are

affinities, then any affine configuration of lines is infinitely close to one where all the lines
are concurrent; and then, furthermore, by contracting on another line, to the one where
all coincide. So, one must rule out these degenerate configurations to obtain a “decent”
topological space (for the case of vectors or points this was achieved by imposing the
spanning hypothesis). The natural way to detect degeneracy is by the group action. We
say that the 4-tuple of lines �1, �2, �3, �4 fixes the affine plane A2 if the only affine
isomorphism f which leaves the 4-tuple invariant, f (�i ) = �i , is the identity. So, for
example, if three of the four lines form a triangle, they fix; but if all are concurrent or
three of them are parallel, they do not. Observe that fixing is a property of the affine
configuration. So, the affine group acts freely in the set of 4-tuples of lines that fixes the
plane and the quotient map is a principal bundle.

Let L be the space of affine configurations of four lines inA2 that fixA2. The space L
is compact and locally homeomorphic toR2 but it is still not Hausdorff. Indeed, consider
the sequence of 4-tuples of lines in Fig. 1. It clearly converges to the configuration shown
in Fig. 1(a) (�2 = �4); but by appropriately expanding and contracting the two axis, it is
easy to see that it is equivalent to sequences that converge to the configurations shown
in Fig. 1(b) (�1 = �3) and Fig. 1(c) (two pairs of parallel lines: �1‖�3 and �2‖�4). So this
sequence of configurations has (at least) three limiting points in L , which is therefore
non-Hausdorff.

If we restrict, furthermore, to the configurations with four distinct lines, L �= say, that
is, if we assume �i �= �j for i �= j , then the sequence of Fig. 1 will “know” it converges
to Fig. 1(c), and this is enough to obtain a nice compact Hausdorff space: the projective
plane with four blow-ups, the surface of nonoriented genus 5 in Fig. 2 where the four
inside circles and the boundary are antipodally identified.

This can be argued by means of charts. Let U4 ⊂ L �= consist of those configurations
where �1, �2, �3 form a triangle; which can then be assumed to be the standard one, so
that U4 is parametrized by �4 and is therefore a projective plane with four punctures (in
Fig. 2, think of the four inside circles as punctures, making them correspond to the line at
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Fig. 1. A sequence of configurations of lines converging to three different configurations.
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Fig. 2. The polyhedral complex of five different lines in RP2.

infinity, labeled 0, and to the three other lines �i to which �4 is not allowed to be equal).
The six drawn projective lines (with two punctures) correspond to three parallel pencils
�4‖�i (concurrent at the center), and three other pencils (forming the triangle) where �4

is concurrent with two of the other lines. The three (dark) vertices that are covered by
U4 are then the three configurations: �4 is parallel to �i and passes through �j ∩ �k .

Changing the role of �4 by the other three lines, we get four charts Ui with the same
picture (which cover L �= minus the three configurations of two pairs of parallel lines).
In the new charts, we also see all the configurations in general position, but some of
the punctures of U4 appear as “nice” projective lines. The puncture 0 (when �4 goes
off to infinity) appears as the “nice” line where �1, �2, �3 are concurrent in U1,U2, and
U3—because a 4-tuple where �4 is far away (close to infinity) is the same configuration
as a 4-tuple where �4 is nearby and �1, �2, �3 are almost concurrent. Analogously, one
can see that, say, the puncture “�3 = �4”, labeled 3 in U4, appears as the nice line “�1‖�2”
in U1 and U2.

At this point, it should be clear that our description problem is easier to address in the
real projective plane P2, where a fifth line �5 has been previously fixed “at infinity”, and
overlooked (our condition �i �= �j allows us to let it join the game), so that parallelism
becomes just another case of three concurrent lines. Our charts can be redefined as “four
of the lines are in general position,” so that we get a new chart U5 where our three missing
vertices appear when �5 is one of the three diagonals of a projective quadrilateral. Now,
the symmetry of the combinatorial surface that arises from four different lines in the
plane can be seen to grow to the symmetric group on five letters, S5, and not only the
expected S4.

By classic duality (to which we refer as “polarity” in Section 4), we might as well
think of projective configurations of five different points in RP2. The 12 pentagonal
2-cells of Fig. 2 correspond to the dihedral orders (cyclic orders modulo orientation)
that the unique conic through five points in general position imposes on them; edges and
vertices correspond to degeneracies in the sense of colinearity.

Observe also that dihedral orders of five letters correspond to the general position cells
of configurations of five points in the projective lineRP1. In fact, Fig. 2 is also the space
of projective configurations of five points inRP1 with at least three of them different (the



114 J. L. Arocha, J. Bracho, and L. Montejano

“spanning” or “fixing” hypothesis) and with no three of them equal (the “rule,” which
we will denote 3̂). Combinatorially, it is obtained from 12 pentagons with their vertices
colored to match the 12 dihedral orders on five colors with two of them glued if they
differ by a transposition (its natural generalization to obtain regular polyhedra for n other
than 5 is studied in [7]).

1.2. Notation

Let KPn = (
KPn,PGL(Kn+1) = GL(Kn+1)/K∗) stand for the standard projective ge-

ometry over a field K (where we are mainly concerned with K ∈ {R,C}). We say that a
family of projective flats F1, F2, . . . , Fk ⊂ X fix if the unique f ∈ PGL(Kn) that leaves
them invariant ( f (Fi ) = Fi ) is the identity (the term arises because if we suppose they
are fixed as subsets, then the space is pointwise fixed). Let d = (d1, . . . , dk) be a vector
of natural numbers. Then denote

KPn
d = {(F1, F2, . . . , Fk) | {F1, F2, . . . , Fk} fix and dim Fi = di }/PGL(Kn),

where the action of PGL(Kn) is the natural free diagonal action g(F1, F2, . . . , Fk) =
(g(F1), g(F2), . . . , g(Fk)). A PGL(Kn)-equivalence class of a k-tuple of flats is a pro-
jective configuration.

For the affine geometry KAn = (
KAn,Aff(Kn)

)
the space of affine configurations

KAn
d is defined in the same way changing projective flats by affine flats and the group

PGL(Kn) by the affine group Aff(Kn).

We simplify our notation in three ways. First, we write Pn
d = RPn

d and An
d = RAn

d.

Second, if d = (d1, . . . , dk) is homogeneous, i.e., d1 = · · · = dk = d, then we denote
KPn

d = KPn
k,d . Third, if d = 0, i.e., if the flats are points, then we denote KPn

k,0 = KPn
k

Moreover, if R is a “rule” specifying some allowed configurations, we denote by
KPn

d(R) the subspace of configurations that satisfy that rule. So, for example,A2
4,1 stands

for L above, andA2
4,1(�=) for four different lines inA2 that fix, which we were previously

calling L �=. We can restate our previous considerations as A2
4,1(�=) = P2

5,1(�=) = P2
5(�=);

and we will further have P2
5(�=) ∼= P1

5(3̂) (where 3̂ stands for the rule “no three ele-
ments of the configuration are equal”), because of a general duality among projective
configurations which we establish in Section 4.

1.3. Quirurgical Manifolds

As should be clear from the example above, configuration spaces of flats can be non-
Hausdorff, because we are dividing by noncompact Lie groups. However, they seem to
have a beauty of their own. We will prove that P1

k has the structure of what can be called
a quirurgical manifold.

Classic surgery arises from the fact that if r+t = n−1, then the standard embeddings
Sr ↪→ Sn and St ↪→ Sn have trivial normal bundles and their regular neighborhoods can
be made to match their boundaries:

Sn = ∂(Br+1 × Bt+1) = Sr × Bt+1 ∪
Sr×St

Br+1 × St .
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So that a sphere Sr with a trivial normal bundle in a manifold Mn can be cut out and
replaced by a sphere of complementary dimension St . This procedure can be thought
of as taking out an open regular neighborhood of Sr and then sewing back the regular
neighborhood of St (in Sn), because the boundaries coincide. However, it can also be
thought of, and some authors do, as taking only the core Sr out and sewing in the alterna-
tive core St , because, furthermore, their regular neighborhoods (in Sn) without their zero
sections (we call them their punctured regular neighborhoods) are homeomorphic. If
we think of both cores simultaneously sewn in, we have a “quirurgical manifold.”

More precisely, we have a homeomorphism

h : Sr × Bt+1\Sr × {0} → Br+1 × St\{0} × St ,

h(x, y) =
(
|y|x, y

|y|
)
,

with inverse h−1(x, y) = (|x |−1x, |x |y). We define the quirurgical torus to be

Hr,t = Sr × Bt+1 ∪
h

Br+1 × St ,

that is, on the disjoint union identify (x, y) ∼ h(x, y) for all (x, y) ∈ Sr ×Bt+1\Sr ×{0},
and we call Sr × {0} and {0} × St the nearby cores, Sr and St , of Hr,t . At them, Hr,t

fails to be Hausdorff, but from any point of one core one can go to any point on the other
through two infinitesimal displacements in the appropriate directions.

Let
−→
P 1

k be the space of oriented projective configurations of k-points in P1 that fix

(we only mod out by orientation-preserving projectivities), so that
−→
P 1

k is a double cover
of P1

k . Since a set of points fixes P1 if and only if three of them are different, both spaces

are “non-Hausdorff manifolds” of dimension k − 3. We will prove that
−→
P 1

k is compact
and has a finite family of embedded full-dimensional quirurgical tori Hr,t (r + t = k−4)
such that the non-Hausdorff phenomena only occurs at their cores. More precisely, if x
and y are (non-Hausdorffly) attached (i.e., without disjoint neighborhoods), then they
belong to cores which are either complementary (nearby cores of the same quirurgical
torus) or such that their complementary cores intersect. Moreover, we will see that the
orientation involution acts on each of these quirurgical tori as the antipodal map on Sk−3.

would. So that in P1
k we have pairs of complementary projective flats Pr and Pt (with

r + t = k −4), the nearby cores, sharing punctured regular neighborhoods (i.e., without
the zero-section) homeomorphic to, and with the bundle structure of, their standard
regular neighborhoods in Pk−3.

To fix ideas, we can now complete the description of P1
5 (and P2

5,1): in Fig. 2, we are
only missing ten new points, P0, each of them associated as nearby cores to one of the
ten dark lines, P1, and therefore sharing their punctured regular neighborhoods. Observe
that, indeed, the ten dark lines of Fig. 2 have a Möbius band as the regular neighborhood,
which if punctured (the core taken out) are naturally homeomorphic to a disk minus a
point. So that, for example, thinking again in terms of five lines in P2, that is, in P2

5,1, the
unique configuration where two lines are the same, say �4 = �5, is the nearby core, P0, to
the line, P1, of configurations where the other three lines are concurrent, �1∩�2∩�3 �= ∅.
Then, e.g., for the rule F4 (“free 4”) where �4 can do whatever it pleases but three lines
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cannot meet at a point unless �4 is one of them, we have that P2
5,1(F4) ∼= P2, because

the four inside (circular) lines of Fig. 2 are replaced by surgery with their corresponding
P0 nearby cores.

To complete our description of four lines in A2, observe that A2
4,1 is obtained by

deleting from P2
5,1, four of the ten special points, corresponding to configurations where

a line (the one chosen to be at infinity) is equal to one of the other four. In our original
description of Fig. 2 as U4, and �5 at infinity, they correspond to the P0 nearby cores of
the (circular) line at the center and the three (nondiameter) lines forming a triangle; but
in U5, the deleted four points (�5 = �i ) would correspond to the inside circles.

1.4. The Program

After the motivating examples which should increase the intuition of the reader, we finish
the Introduction with a brief description of the paper.

Section 2 is the core of the paper. There, we characterize the rules for whichKP1
k(R)

is a compact Hausdorff manifold (K ∈ {R,C}). Moreover, it is proved that all such
manifolds of “full” dimension contained in KP1

k arise in this way and that there are a
finite number of them.

Although some of these results can be generalized to dimensions higher than 1, the
dimension 1 case is specially interesting because the simplicity of the object of study
makes it possible to reveal facts which are not true in higher dimensions. Therefore,
in Section 3 we describe the stratification of RP1

k governed by dihedral partitions, in
particular, it gives the structure of a polyhedral complex to the manifolds RP1

k(R).
Moreover, all manifolds RP1

k(R) can be obtained from each other by projective surgery
and this shows that RP1

k is a “quirurgical manifold” in the sense above.
In Section 4 we show the existence of a natural homeomorphism KPn

d � KPm
d for

any fieldK. It is a generalization for configurations of projective flats of the well-known
(see [6]) duality between configurations of projective points. This allow us to reveal the
structure of many other spaces of projective configurations and, in particular, to formalize
the homeomorphism P1

5 � P2
5 used above.

2. The Topology of KP1
k

In this section K ∈ {R,C}, in particular, it is a metric field of characteristic 0 such that
KPn is a compact manifold. We do not use the complex number i, so we will use this
letter for general purposes. By ∞ we denote the point added to R (or C) to obtain RP1

(orCP1). We use ‖p‖ to denote the distance to 0 of the projective point p.We emphasize
that all dimensions are computed overK. So, a complex projective line has dimension 1.

2.1. Blocks and Rules

Let p = (p1, . . . , pk) be a k-tuple of points in the projective space KPn , i.e., p ∈
(KPn)k . We denote by [p] = [p1, . . . , pk] its equivalence class modulo the projective
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group PGL(Kn+1) = GL(Kn+1)/K∗, and call it a projective configuration, or simply
a configuration, when p1, . . . , pk fix KPn; otherwise we may call it a degenerate
configuration. The space of configurations of k points in KPn , which we have called
KPn

k , is then the quotient of an open subspace of (KPn)k (the fixing k-tuples) over
PGL(Kn).

Let A be a subset of indices. We denote pA := {pi : i ∈ A}. Let α ∈ {0, ..., n − 1},
we say that [p], or p, has block Aα if dim 〈pA〉 ≤ α, this is, if the dimension of the
projective subspace spanned by pA is not greater than α. Observe that p has block Aα
for every α ≥ 
A − 1, but having block Aα for small α detects some “dimensional”
degeneracy of the configuration.

A rule R is a subset of all possible blocks, called the permitted ones so that its
complement consists of the prohibited blocks. Denote by KPn

k (R) the space of all
configurations such that all its blocks are permitted (are inR).

For the projective line, n = 1, the subindex α is always zero and the fact that a
configuration [p] = [p1, . . . , pk] has block A0 means that pi = pj , ∀i, j ∈ A, so we
may simplify our notation to say that “[p], or p, has block A.” For a block A we denote
the complement of A by Ā.

Since our main interest are the spaces KP1
k(R), we further assume that a rule R

satisfies:

R1. The blocks {i} are permitted and the blocks {i} are prohibited.
R2. If B ∈ R and A ⊆ B, then A ∈ R (subsets of permitted blocks are permitted).

Because a permitted block with a prohibited subblock would have no occurrence, we
might as well declare it prohibited; a block {i} cannot appear in a fixing configuration
so we can also declare it prohibited; and if {i} is prohibited, then KP1

k(R) is void. So
for any ruleR we now have thatKP1

k(R) contains all configurations in general position
whose only blocks are the singletons {i}.

We shall prove the following theorem, where, as usual, a manifold is assumed to be
Hausdorff.

Theorem 2.1. A subspace T ⊂ KP1
k is a compact closed manifold of full dimen-

sion (dim T = dimKP1
k = k − 3) if and only if T = KP1

k(R) for a rule R that
satisfies:

R3. A ∈R⇔ Ā /∈ R,

where Ā denotes the complement of A.

We remark, before we go into the technicalities, thatKP1
k is locally homeomorphic to

Kk−3. Observe that a k-tuple p = (p1, . . . , pk) ∈ (KP1)k fixes KP1 if and only if it has
at least three different points. Then a small neighborhood of a configuration [p] in KP1

k
can be obtained by keeping three different points in p constant and moving its remaining
k − 3 points in small neighborhoods (locally homeomorphic to K) around them. The
problem that makes Theorem 2.1 interesting is that compactness is not obvious and that
KP1

k is not Hausdorff.
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2.2. The Compactification of PGL(K2)

We say that a sequence of projectivities f i ∈ PGL(K2) converges point to point if for
any x ∈ KP1, the sequence f i (x) has a limit in KP1; if this is the case, the sequence f i

has a limit function lim f i : x  → lim f i (x). Since the group PGL(K2) is not compact,
there are sequences of projectivities that converge point to point but do not converge in
PGL(K2), in others words, the function lim f i need not be a projectivity. Let PGL(K2)

be the set of all limits of sequences of projectivities that converge point to point. We
clearly have that if f ∈ PGL(K2) and g ∈ PGL(K2), then f ◦ g, g ◦ f ∈ PGL(K2).

For an example of a function in PGL(K2)\PGL(K2) consider the sequence f i (x) = i x
whose limit is the function

π0,∞ : x  →
{

0 if x = 0,

∞ if x �= 0,

which is called the projection from 0 to ∞. Another example is the sequence f i (x) =
i(x + i) whose limit maps any point to ∞; it is the constant function π∞.

These two examples are universal in the following sense. Two functions f, g ∈
PGL(K2) are said to be projectively equivalent if there exist projectivities h, h′ ∈
PGL(K2) such that f ◦ h = h′ ◦ g.

Proposition 2.2. Any function in PGL(K2) is projectively equivalent either to the iden-
tity map, to π∞, or to π0,∞.

Proof. Let f = lim f i with f i ∈ PGL(K2). Projectivities are 2 × 2 nonsingular
matrices modulo nonzero elements of K. Therefore PGL(K2) is contained in the space
of 2 × 2 nonzero matrices modulo K∗, that is PGL(K2) ⊂ KP4. Since KP4 is compact,
there must exist a 2 × 2 nonzero matrix A with entries in K such that

∀x /∈ Ker A, f (x) = Ax modK∗.

If A has rank 2, then f is a projectivity and is projectively equivalent to the identity
map

If rank A = 1, then the subspaces q = Im A and p = Ker A are lines inK2, i.e., points
inKP1. If f (p) = q, then f is a constant function to q and is projectively equivalent to
π∞.

Suppose f (p) �= q . Let g be any projectivity that maps 0 to p and let h be any
projectivity that maps f (p) to 0 and q to ∞. The function h ◦ f ◦ g is equal to π0,∞.

Remark 2.1. Any sequence f i in PGL(K2) has a point to point converging subse-
quence. Suppose f = lim f i is not given in the preceding proof. The sequence of
“matrices” in KP4 can still be constructed, and a converging subsequence, to A, ex-
tracted. Then, in the final step for a projection, a subsequence such that f i (p) converges
can be obtained because KP1 is compact.

Remark 2.2. Let f i be a point to point converging sequence of projectivities and let
xi be a converging sequence of points in KP1; denote f = lim f i and x = lim xi . Then
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we have that lim f i (xi ) = f (x) unless f is the projection from p to q, f = πp,q , and
x = p, because, otherwise, f is continuous at x . In the noncontinuous case, f = πp,q

and x = p, we have that lim f i (xi ) depends on the “speeds” of convergence of f i and
xi , and lim f i (xi ) can be anything (consider the sequence xi = y/ i in our definition
of π0,∞).

2.3. Attached Configurations

Two configurations [p], [q] ∈ KP1
k are said to be (non-Hausdorffly) attached if they are

different and there are two projectively equivalent sequences of fixing k-tuples pi ,qi

such that limi→∞ pi = p and limi→∞ qi = q. We say that [p] has a maximal block A if
it has block A but does not have block A′ for any superset A′ ⊃ A.

Proposition 2.3. The configurations [p] and [q] inKP1
k are attached if and only if there

exists a subset A of indices, such that [p] has maximal block A and [q] has block Ā.

Proof. Let pi and qi be the projectively equivalent sequences of fixing k-tuples whose
limits are p and q, respectively. Let f i be the projectivity such that f i (pi ) = qi . By
Remark 2.1, we may assume f i converges point to point, so let f = lim f i ∈ PGL(K2).
If f is a projectivity, then [p] = [q], and if it is a constant function, then q does not
fix by Remark 2.2; so it has to be a projection and we may assume that f = π0,∞ by
Proposition 2.2. Let A{ j : pj = 0}, so that [p] has maximal block A. If j /∈ A, then, by
Remark 2.2,

qj = lim f i (pi
j ) = π0,∞(pj ) = ∞.

This proves that q has block Ā.
Conversely, suppose [p] = [p1, . . . , pk], [q] = [q1, . . . , qk] ∈ KP1

k are configura-
tions such that for the subset A of indices, [p] has maximal block A and [q] has block
Ā. They must be different configurations because each has at least three different points.
Let B be the maximal block of [q] containing Ā. We may assume that pA = {0} and
qB = {∞}. Let pi = (pi

1, . . . , pi
k) be the sequence

pi
j =




pj , j ∈ Ā,

1/ i, j ∈ A ∩ B,

(1/ i2)qj , j ∈ B̄,

and let f i (x) = i2x . Observe that all (but at most one) of the pi fix. Clearly, p = lim pi

and q = lim f i (pi ), proving that [p] and [q] are attached.

2.4. The Submanifolds of KP1
k

We are now in a position to prove Theorem 2.1. First, we prove the part that classifies
the rules that yield compact manifolds.
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Proposition 2.4. Let R be a rule (satisfying R1 and R2). Then KP1
k(R) is a compact

closed manifold if and only ifR satisfies:

R3. A ∈ R⇔ Ā /∈ R.

Proof. Let [p] ∈ KP1
k(R). Let ε be a neighborhood of [p] in KP1

k . If pi �= pj and ε is
small enough, then pi �= pj also holds for any configuration in ε. Hence, ε ⊂ KP1

k(R)
and therefore KP1

k(R) is locally homeomorphic to Kk−3.

If KP1
k(R) is not Hausdorff, then it contains two attached configurations and, by

Proposition 2.3, there is A such that A, Ā ∈ R. Reciprocally, suppose there is A such
that A, Ā ∈ R. Let {x1, . . . , xk} be a set of k different projective points not intersecting
{0,∞}. Let pi (pi

1, . . . , pi
k) be the sequence

pi
j =

{
xj , j ∈ A,
i xj , j ∈ Ā,

where all but a finite number of the pi are in general position. By R1, # Ā < k − 1
and therefore p = lim pi fixes. Since p has one maximal nontrivial block Ā, we have
[p] ∈ KP1

k(R). The same arguments give that [q] = [
lim pi/ i

]
belongs to KP1

k(R).
Since [p] �= [q] we conclude that KP1

k(R) is not Hausdorff.
We proved that KP1

k(R) is Hausdorff iff A ∈ R⇒ Ā /∈ R. So that we are only left
to worry about the proof that KP1

k(R) is compact iff A ∈ R⇐ Ā /∈ R.
Suppose there is an A such that A, Ā /∈ R. It is easy to construct a sequence [pi ] → [p]

such that all pi are in general position and p has maximal block A. By Proposition 2.3
all configurations attached to [p] have the block Ā. Therefore [pi ] does not converge in
KP1

k(R) and it is not compact
Reciprocally, suppose that A ∈ R⇐ Ā /∈ R and let [pi ] ∈ KP1

k(R) be a sequence of
configurations. Since it is easy to see thatKP1

k is compact, there is [p] = lim[pi ] ∈ KP1
k .

If [p] ∈ KP1
k(R), then we are done. If not, then [p] has a prohibited maximal block, A

say, and therefore Ā ∈ R.
We may clearly assume that pA = {0}, and also that ∞ /∈ pi

A because pi
A tends to {0}.

We need a sequence qi projectively equivalent to pi with limit q such that q Ā = {∞}
and {0, 1} ⊂ qA ⊂ B1 = {x | 1 ≥ ‖x‖} (the closed unitary ball). This can be achieved
by choosing νi = pi

j such that ‖pi
j‖ = min�∈A ‖pi

�‖ and µi = pi
j at maximum distance

from νi . Since pi has all its blocks permitted, we have that 
pi
A ≥ 2 and hence for each i

these points are different and well defined. Let f i ∈ PGL(K2) be the projectivity defined
by f i (νi ) = 0, f i (µi ) = 1, and f i (∞) = ∞, and qi := f i (pi ).

Since q = lim qi contains 0, 1, and ∞, it fixes. If 
A = 2, then q has maximal
blocks Ā (at ∞) and singletons at 0 and 1; therefore, [q] ∈ KP1

k(R) because all of its
blocks are permitted. If [q] /∈ KP1

k(R), then q has a maximal prohibited block A′, but
with A′ a strict subset of A (2 ≤ 
A′ < 
A), and we may repeat this process (taking
p = q, pi = qi and A = A′) to obtain, after a finite number of iterations, a limiting
configuration in KP1

k(R).

Now, let us complete the proof of Theorem 2.1.
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Proof of Theorem 2.1. Observe that the if side of the theorem follows from the pre-
ceding result. So, suppose T ⊂ KP1

k is a compact closed (Hausdorff) manifold of full
dimension. LetR be the set of subsets of indices A such that there exists some [p] ∈ T
with A a block of [p]. Then, since an open set in T is also open in KP1

k (the full dimen-
sionality) and any neighborhood of any point in KP1

k contains configurations in general
position,R contains all the singletons and so it satisfies R1. It obviously satisfies R2. If
it does not satisfy R3, then there would exist [p], [q] ∈ T such that [p] has block A and
[q] has block Ā. Since both configurations fix we have that 2 ≤ 
A ≤ k − 2. Then, by
Proposition 2.3, any two neighborhoods in T of [p] and [q] would intersect, implying
T is not Hausdorff. SoR also satisfies R3.

By definition of R, it is clear that T ⊂ KP1
k(R). Since, by hypothesis and Proposi-

tion 2.4, both are closed compact manifolds of the same dimension, then they must be
equal.

3. Combinatorial and Quirurgical Structure of P1
k

In this section we restrict ourself to the case of the field of real numbers. First, we describe
a polyhedral decomposition of the manifolds P1

k(R) = RP1
k(R) and then we study the

quirurgical structure ofRP1
k .A similar study for the case of the field of complex numbers

will require further research.

3.1. Dihedral Partitions and Polyhedral Complexes

An ordered partition of a finite set A is an m-tuple (A1, A2, · · · , Am) of disjoint subsets,
called blocks, such that A1∪̇A2∪̇ . . . ∪̇Am = A. A linear partition is an equivalence
class of ordered partitions modulo the orientation involution (there are two possible
orders or orientations for a linear partition); a cyclic partition is an equivalence class
of ordered partitions modulo the corresponding cyclic group, and a dihedral partition
is an equivalence class modulo the natural action of the dihedral group (the two cyclic
partitions which are the same dihedral partition are its two possible orientations). One
should think of a dihedral partition as a necklace of subsets of A.

Dihedral partitions (like the other kinds) have a natural partial order. Indeed, if in a
necklace of subsets we join two consecutive blocks we obtain another dihedral partition
coarser (or smaller) than the original. The Hasse diagram of the dihedral partitions of
{1, 2, 3, 4} is shown in Fig. 3.

We denote the poset (partially ordered set) of dihedral partitions of {1, . . . , k} by
Dk with partial order &. It has a rank function α  → |α|, the number of subsets in the
dihedral partition α. The maximal elements in Dk are called dihedral orders, they are
permutations modulo the action of the dihedral group.

Each configuration [p] ∈ P1
k has naturally associated a dihedral partition dp ∈ Dk ,

called the type of [p], given by the dihedral order of its maximal blocks (which look like
points) along P1 (which is a circle). Observe that since configurations have, by the fixing
hypothesis, at least three points, then all their types have at least rank 3 (|dp| ≥ 3), so,
abusing notation, we denote also by Dk the poset of dihedral orders with rank at least 3.
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1|2|3|4 1|2|4|3 1|3|2|4

12|34 13|2414|23

12|3|4 13|2|414|2|3 23|1|4 24|1|334|1|2

1|2342|1343|1244|123

1234

Fig. 3. The poset of dihedral partitions of {1, 2, 3, 4}.

Lemma 3.1. Given α ∈ Dk (with |α| ≥ 3), the set of all configurations [p] ∈ P1
k such

that dp = α is an open ball of dimension |α| − 3, which we denote σα and call the cell
of α.

Proof. The dihedral partition α has the information about the maximal blocks of p.
Applying a projectivity we can send three consecutive maximal blocks to 1,∞, and
0. To define [p] completely, we have to choose |α| − 3 =: n real numbers such that
0 < x1 < · · · < xn < 1 and this is an open simplex in Rn.

The cells σα ⊂ P1
k behave as in a ball complex whose partial order is Dk , because

given α, β ∈ Dk we have

α & β ⇔ σα ⊆ σβ,

where σβ is the closure of σβ . This follows because α & β if and only if the blocks of
α are obtained by joining consecutive segments of blocks of β so that configurations
in σα are limits of configurations in σβ . The limits of configurations in σβ always have
a coarser type. However, it is not a ball complex in the classic sense because of the
non-Hausdorff phenomena—the closures of the cells are not closed balls.

If R is a good rule (satisfying R1–R3) we obtain a partial order Dk(R) ⊂ Dk of the
dihedral partitions, all of whose blocks are permitted (inR). We always adjoin toDk(R)
a new element 0 which is smaller than all others and a new element 1 which is bigger
that all others. This new poset will be denoted the same way.

Lemma 3.2. IfR is a good rule, then Dk(R) is a lattice.

Proof. Let us show that any two α, β ∈ Dk(R) have a join α ∨ β. Suppose that there
is a dihedral partition γ such that γ ( α, γ ( β. We can think of the blocks of α and
β as arcs in γ . If a block A of α intersects a block B of β, then A ∩ B is also an arc in
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γ since otherwise B ⊂ Ā, which is prohibited. Therefore we can construct γ ′ & γ by
joining in a block each arc in γ which is an intersection of a block in α with a block in
β. It is easy to check that γ ′ = α ∨ β.

The proof concludes with the fact that any finite join semilattice with 0 is a lattice
(see [2]).

Let θ be a dihedral order (a coatom) and let θ̄ = [0, θ ] ⊂ Dk(R) be its closure.
Denote by Tθ the poset obtained from θ̄\0 reversing the order relation.

Lemma 3.3. Tθ is a pure simplicial complex of dimension k − 4.

Proof. Denote by E the set of pairs {i, j} such that i, j are consecutive in the dihedral
order θ . For α ∈ Tθ we denote by tα the set of all pairs {i, j} ∈ E such that i, j are in
a same block of α. Of course, tθ = ∅ and observe that α & β iff tα ⊆ tβ. Moreover,
if A ⊆ tβ, then there is α ∈ Tθ such that tα = A because we can always split the
blocks of β in the places defined by the elements of E . This means that Tθ is a simplicial
complex. Finally, any maximal element α in Tθ has exactly three blocks and this implies
that #tα = k − 3.

Now, recall (see Section 4.7 in [3]) that a shelling of a pure simplicial complex
of dimension d is a linear order s1, . . . , sn of its maximal simplices such that for all
1 ≤ i < j ≤ n there exist 1 ≤ i ′ < j such that dim(si ′ ∩sj ) = d−1 and si ∩sj ⊆ si ′ ∩sj .

A complex is said to be shellable if it has a shelling.

Lemma 3.4. IfR is a good rule, then Tθ is shellable.

Proof. The notations in the proof of the preceding lemma are used. We choose one
of the two orientations of the dihedral order θ. We label an arbitrary element of E by
1. The others elements of E are labeled 2, . . . , k by taking consecutive (in the chosen
orientation) elements of E . With this labeling we have E = {1, . . . , k}.

For any maximal simplex α ∈ Tθ the set E\tα has exactly three elements of E
which we denote α1 < α2 < α3. Now, we can identify α with the vector (α1, α2, α3).

The set of all vectors (a, b, c) ∈ E3 are linearly ordered by the lexicographic order and
therefore the maximal simplices in Tθ are linearly ordered. We need to prove that it is a
shelling.

Let α = (α1, α2, α3) < (β1, β2, β3) = β be two maximal simplices in Tθ . Define
γ = (γ1, γ2, γ3) as:

• If α1 < β1, then (since the complement of a prohibited block is permitted) one of
the two vectors (α1, β2, β3), (α1, β1, β2) is a maximal simplex in Tθ . In this case
we put γ equal to this simplex.

• If α1 = β1 and α2 < β2, then one of the two vectors (β1, α2, β3), (α2, β2, β3) is a
maximal simplex in Tθ . In this case we put γ equal to this simplex.

• If α1 = β1 and α2 = β2 then γ = α.
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In all cases we have:

• γ is a maximal simplex in Tθ and γ < β,

• #(E\tγ∩β) = 4 and therefore dim γ ∩ β = k − 5,
• E\tγ∩β ⊂ E\tα∩β = {α1, α2, α3, β1, β2, β3} and therefore α ∩ β ⊆ γ ∩ β,

and this is all we had to prove.

Lemma 3.5. IfR is a good rule, then Tθ is the boundary complex of a convex polytope
in Rk−3.

Proof. Every simplex α ∈ Tθ of dimension k − 5 is contained in exactly two maximal
simplices. Since Tθ is shellable, then by [5] it is Sk−4 (triangulated with at most k vertices).
By [9] all such triangulations are realizable as a convex polytope in Rk−3.

Since Dk(R) is a lattice, then two maximal cells in Dk(R) intersect in a cell. Since
the polars of maximal cells are convex polytopes and the polar of a convex polytope is
a convex polytope itself, then we obtain for any good ruleR the following:

Theorem 3.6. The latticeDk(R) gives to P1
k(R) the standard structure of a polyhedral

complex.

Observe that the symmetric group Sk acts naturally on Dk , and accordingly on P1
k

preserving its cell structure. However, it usually sends a rule into another one, with one
exception that should be noted. If k is odd, then there is a special rule invariant under the
action of Sk , the “choose the small” rule, S, where a set A is permitted iff #A < k/2.
Then P1

k(S) with its polyhedral structure has symmetries Sk ; Fig. 2 is the case k = 5
with its cellular structure drawn.

3.2. Attached Projective Cores

Given an index set A, with 2 ≤ 
A ≤ k − 2, let PA be the subspace of P1
k consisting

of all configurations that have maximal block A. The notation PA comes about because
PA is homeomorphic to a projective space of dimension k − a − 2, where a = 
A. To
see this, observe that a configuration [p] with maximal block A can be assumed to have
its block A at infinity, corresponding then to an affine configuration of the remaining
indices Ā in the affine line because Aff(R) is the subgroup of PGL(R2) that fixes infinity.
That is, PA

∼= A1
(k−a), and this is homeomorphic to Pk−a−2. Indeed, we may assume that

the first point is zero, then equivalence is given by nonzero multiplication and the fixing
hypothesis is that not all the points are zero.

Moreover,PA is a subcomplex ofP1
k : it is the union of all the cells of dihedral partitions

with block A. The poset of dihedral partitions with block A is isomorphic to the poset of
linear partitions of Ā which is a simplicial complex. Geometrically, it is the triangulation
ofPn , where n = k−a−2, obtained by the “chopping” ofPn by the hyperplanes spanned
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by n + 2 points in general position (corresponding to the linear partitions {{i}, Ā\{i}}).
For n = 2, collapse the four inside circles of Fig. 2 to points.

By Proposition 2.3 we know that every point in PA is attached to every point in
P Ā

∼= Pa−2. We will prove that, moreover, they have a common punctured regular
neighborhood VA (= VĀ) homeomorphic to the standard punctured regular neighborhood
of a projective flat in projective space.

To see this, we consider oriented configurations
−→
P 1

k , where we only divide by the
orientation-preserving projectivities. We can give an explicit description of SA (the ori-
ented double cover of PA, whose simplicial complex is the ordered partitions of Ā) as

SA = {[p] ∈ −→
P 1

k : pA = {∞}, {0, 1} ⊂ p Ā ⊂ [0, 1]},
because for oriented affine configurations we have a well-defined minimum and maxi-
mum which can be assumed (via a unique orientation-preserving affinity) to be 0 and 1,
respectively. Now, a punctured regular neighborhood of SA can be given by the config-
urations [p] (and parametrized by the k-tuples p) that satisfy the conditions

ṼA :



{0, 1} ⊂ p Ā ⊂ [0, 1] ,
{∞} ⊂ pA ⊂ [∞,−1] ,

pA ≥ 2

(where [∞,−1] is the interval from−1 to∞ not containing 0), because a configuration p
close to SA but not in SA has at least two different points in A and the point (in A) closest to
1 may be projectively moved to∞. Observe that if the third condition is deleted we obtain
a (nonpunctured) regular neighborhood, with a natural (trivial) disk bundle structure
(because the A-tuples {∞} ⊂ pA ⊂ [∞,−1] are clearly homeomorphic to a disk Da−1).

Analogously, changing the role of A for Ā, but not of the special points to make things
explicit, we can describe SĀ and ṼĀ as the configurations [p] that satisfy

SĀ :

{{∞,−1} ⊂ pA ⊂ [∞,−1] ,
p Ā = {0} , ṼĀ :



{∞,−1} ⊂ pA ⊂ [∞,−1] ,
{0} ⊂ p Ā ⊂ [0, 1] ,

p Ā ≥ 2.

It is easy to see that ṼA = ṼĀ because if p satisfies the conditions of ṼĀ then (1/max
(p Ā))p satisfies those of ṼA. Then ṼA∪SA∪SĀ is homeomorphic to the quirurgical torus
H (k−a−2),(a−2), with its boundary naturally homeomorphic to SA × SĀ parametrized by
the k-tuples p that satisfy {0, 1} ⊂ p Ā ⊂ [0, 1] and {∞,−1} ⊂ pA ⊂ [∞,−1]. Finally,
observe that the orientation involution, given by the projectivity x  → (1 − x)/(x + 1),
acts as the product of the antipodal maps so that when passing to the quotient, the nearby
cores PA and P Ā have the standard regular neighborhoods of complementary projective
flats in Pk−3, which coincide when punctured.

3.3. Surgery

Projective surgery is what we call the replacement in a manifold Mm of a submanifold
homeomorphic to Pn with normal bundle equivalent to the standard one (that of Pn ↪→
Pm) by its complementary projective space Pm−n−1. We will prove the following.
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Theorem 3.7. The full-dimensional submanifolds of P1
k can be obtained from each

other by projective surgery staying within P1
k .

Proof. By Theorem 2.1 we might as well analyze the good rules R (satisfying R1–
R3). Suppose that R is a good rule and that A is a maximal permitted block in R with
2 ≤ 
A ≤ k−2. We claim thatPA ⊂ P1

k(R), this is, that all the cells whose dihedral order
have A as a block are in P1

k(R). To see this, suppose α ∈ Dk has a block A. Suppose B is
another block of α, since A � B̄ and A is maximal inR, then B̄ is prohibited and hence
B is permitted. Therefore, σα ⊂ P1

k(R), which proves that PA ⊂ P1
k(R). Performing

projective surgery along PA is replacing it by P Ā and the manifold we obtain is P1
k(R′),

whereR′ = (R\{A}) ∪ { Ā}, that is, A becomes prohibited and Ā permitted.
We are left to see that we can go from any good rule to another by exchanges of this

type. For this, we consider the affine rule A, with permitted blocks (in A) all singletons
and subsets without k, except {k}. So, taking pk = ∞, we have P1

k(A) = A1
k−1

∼= Pk−3

with the triangulation of linear partitions of {k}. Given any good ruleR, denote byRi the
set of permitted blocks in R with i elements. For each A ∈ R2\A (permitted 2-blocks
of R containing k) we have that Ā ∈ A and can exchange it as above (in this case it
corresponds to the blow-up at a distinguished vertex of P1

k(A)); to get a new good rule
R2 coinciding with R in blocks of order 2, so that P1

k(R2) is obtained from P1
k(A) by

projective surgery on points. Then, one can exchange all the blocks A ∈ R3\A (surgery
on projective lines), and so on throughR4, . . . to get finally toR. This clearly completes
the proof of the theorem.

4. Duality and Polarity

In this section we return to the general case when K is any field.

4.1. Polarity

We first describe the polarity between projective configurations of flats (we reserve the
term “duality” for another map). There is a natural homeomorphism

KPn
d ←→ KPn

n−d−1 (1)

that arises because each flat F in KPn has a polar F⊥. More precisely, F corresponds
to a linear subspace ξ in Kn+1, consider its orthogonal complement ξ⊥, and then its
corresponding flat F⊥ in KPn is the polar of F . So, to a k-tuple of flats F1, . . . , Fk

(dim Fi = di ) there corresponds a polar k-tuple of flats F⊥
1 , . . . , F⊥

k (dim Fi = n−di −
1). We still have to consider the action of PGL(Kn+1) on these k-tuples. It happens that
the two actions correspond to each other, so that polarity goes down to the quotients (1).
Consider A ∈ GL(Kn+1) and ξ a linear subspace ofKn+1, then a standard linear algebra
calculation yields

(Aξ)⊥ = (A-)−1ξ⊥. (2)
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So that if two k-tuples of flats are projectively equivalent, by means of a matrix A say,
then their polar k-tuples are also projectively equivalent, but by means of the inverse of
the transpose of A.

4.2. Duality

What we call “duality” follows the general idea first exposed by Whitney [10] for the
duality of matroids (see also [6]). It goes, briefly, as follows. Consider a k-tuple of points
x = (x1, . . . , xk) ∈ (Kn)k that linearly span Kn. The classes of these k-tuples modulo
the diagonal action of GL(Kn) are called vector configurations. The space of all vector
configurations will be denoted by Kn

k . Observe that we can replace Kn by any other
vector space of dimension n over K, since we are dividing by the general linear group
and, therefore, there is a canonical isomorphism. Let e1, . . . , ek be the canonical base of
Kk . The map

Gk−n(K
k) . θ  → (e1 + θ, . . . , ek + θ) ∈ (Kk/θ)k

induces a homeomorphism Gk−n(K
k)↔ Kn

k . Composing it with the “orthogonal com-
plement” Gk−n(K

k) ↔ Gn(K
k) homeomorphism we obtain the vector configuration

duality homeomorphism Kn
k ↔ Kk−n

k .

Now, for configurations of flats, recall thatKPn−1
d−1 is the space of all configurations of

projective flats [F1, . . . , Fk] inKPn−1 such that dim Fi = di −1 where d = (d1, . . . , dk).

We identify Fi with its corresponding di -dimensional linear subspace in Kn. Denote
|d| = ∑

di . Let E1 be the subspace of K|d| spanned by the first d1 vectors of the
canonical basis e1, . . . , e|d|; E2 the subspace ofK|d| spanned by the following d2 vectors
of the canonical basis and so on. Finally, denote by �d the subgroup of PGL(K|d|)which
leaves each of the subspaces E1, . . . , Ek invariant, i.e., �d =∏

i PGL(Ei ).

Lemma 4.1. There is an embeddingKPn−1
d−1 ↪→ G |d|−n(K

|d|)/�d whose image is (mod-
ulo �d) the open subset of G |d|−n(K

|d|) where the action of �d is free.

Proof. For any θ ∈ G |d|−n(K
|d|) such that θ∩Ei = 0 the subspace Ei +θ ofK|d|/θ has

dimension di . Observe that if these subspaces fix, then any isomorphism Kk/θ ↔ Kn

gives the same configuration in KPn−1
d−1. So, we have a partial map

G |d|−n(K
|d|) . θ  → [E1 + θ, . . . , Ek + θ ] ∈ KPn−1

d−1

and two spaces θ, θ ′ have the same image iff θ = θ ′ mod �d.

Now, for f ∈ �d we have f (θ) = θ iff f (Ei + θ) = Ei + θ. If

[E1 + θ, . . . , Ek + θ ] ∈ KPn−1
d−1

then f must be the identity (since E1 + θ, . . . , Ek + θ fixK|d|/θ ). Finally, if θ ∩ Ei �= 0
for some i, then there are nonidentity maps in PGL(Ei ) which leave invariant θ.

Remark 4.1. The above lemma shows that, in fact, we are studying quotients of open
subsets of Grassmannians by groups of block diagonal matrices. In the case that all
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blocks are of dimension 1, the group �d is a maximal torus in GL(C|d|), the lemma is a
result in [6] and the Chow quotients of Gn(C

|d|) by �d are studied in [8].

To obtain the duality homeomorphism it only remains to observe that the group �d

is closed by taking transposes and (2) shows that the stabilizer of θ by the action of �d

in G |d|−n(K
|d|) is isomorphic (taking the inverse of the transpose) to the stabilizer of θ⊥

by the action of �d in Gn(K
|d|).

We summarize our results changing the indices to the standard ones.

Theorem 4.2. There is a natural duality KPn
d ←→ KPm

d where

m =
∑

(di + 1)− n − 2.

4.3. An Application

If we iterate duality and polarity we get infinite families of equivalences. For example,
the first three members of the sequence

P1
5,0 = P2

5,0 = P2
5,1 = P6

5,1 = P6
5,4 = P17

5,4 = P17
5,12 = P46

5,12 = · · ·
appeared in the Introduction.

In the paper we fully described P1
k,0 and therefore we also fully described all the

spaces obtained by alternating polarity and duality. For the affine case the arguments in
the Introduction can be generalized to describe

An
n+2,n−1 ⊂ Pn

n+3,n−1 = Pn
n+3,0 = P1

n+3,0

and to prove that An
n+2,n−1(�=) is Pn with n + 2 blowups.
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