
Advances in Mathematics 213 (2007) 902–918
www.elsevier.com/locate/aim

Flat transversals to flats and convex sets
of a fixed dimension

J.L. Arocha, J. Bracho ∗, L. Montejano

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria,
México D.F. 04510, Mexico

Received 14 September 2005; accepted 29 January 2007

Available online 16 February 2007

Communicated by Michael J. Hopkins

Abstract

Helly and Hadwiger type theorems for transversal m-flats to families of flats and, respectively, convex
sets of dimension n are proved in the case of general position. The proofs rely on Helly type theorems for
“linear partitions” and “convex partitions,” so that a general theory of Helly numbers is also developed.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Hadwiger considered in [11] the possibility of a Helly type theorem for transversal lines to
a family of planar convex sets. He observed that an extra hypothesis about the hitting order
of transversal lines to subfamilies of size 3 must be assumed to conclude the existence of a
transversal line to the whole family; such a theorem is what we understand as a “Hadwiger type
theorem.” His result was generalized by Goodman and Pollack [9] (and further by Pollack and
Wenger [14]) to one of transversal hyperplanes using the notion of order type, which generalizes
order for lines. These ideas have ramified to different contexts by restricting the type of convex
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sets considered (see [10,16]); but few results, other than [1] or the recent [5], are known for
transversals of dimension and codimension different from 1. This problem, explicitly posed in
[7, Problem 7.9], is the one we address.

In [3] we proved a Hadwiger type theorem for transversal lines to a family of convex sets of
dimension 1 (detailed bellow). It is closely related to a Helly type theorem for transversal lines
to a family of lines in projective space (of any dimension); namely, if each six of them have a
transversal line, they all do. Here, those ideas are extended to existence theorems of transversal
flats of dimension m to finite families of convex sets and of projective flats of dimension n;
an extra assumption is made concerning the “general position” of the families. There is a work
of Lovász about transversal flats to families of flats (seemingly, with no extra hypothesis). It is
reported in [8]; but the “Helly number” announced is binomial while ours is linear.

First, we state the main theorems and sketch their proofs; then, to conclude the introduction,
we see through an example that when considering convex sets of a fixed dimension greater than 1
some extra hypothesis is always needed.

A projective subspace of a projective space is also called a flat or an n-flat if it has dimen-
sion n. A finite collection X0,X1, . . . ,Xk of flats in projective space is in general position if
together they span the biggest possible projective subspace; that is, if

dim

〈
k⋃

i=0

Xi

〉
=

k∑
i=0

dimXi + k,

where 〈A〉 denotes the projective (or linear) span of A. We say that a family of flats is k-generic if
each k + 1 of them are in general position, or equivalently, if no k + 1 of them have a transversal
(k − 1)-flat (this condition was used in [9], see also [7]). For example, they are 1-generic if each
pair is disjoint. Likewise, we say that a family of convex sets in Euclidean space is in general
position (or k-generic) if their spanned projective flats are; considering, of course, that they lie
in the projective closure of Euclidean space.

Observe that the usual notion of “general position” for points in Pn corresponds to our notion
of being n-generic, for at most n + 1 points in Pn can be in general position in the sense we have
defined above. Thus, beware of the slight difference with usual terminology.

Considering only finite families to avoid routine topological considerations, our main theo-
rems are:

Theorem 1. An m-generic family of n-flats has a transversal m-flat if every subfamily of cardi-
nality ⌊

1

2
(3n + 2m + 7)

⌋
has a transversal m-flat.

Theorem 2. An m-generic family of convex sets of dimension n has a transversal m-flat if they
correspond to an order type of dimension m such that every subfamily of cardinality

2n + m + 3

has a transversal m-flat compatible with that order type.
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The proofs of these theorems follow the same general sketch. First, to establish the structure
of the set T of m-flats transversal to m+2 elements of the family—in the first case it is (naturally
parametrized by) a projective space of dimension n, in the second, considering the order, it will
be a convex set of dimension n. Second, to prove that every other member of the family is
transversal to a subset of T of a special type: in the first case what we call a linear partition; in
the second, a convex partition. Finally, to prove and use a Helly theorem for such special subsets.

A linear partition is a subset of projective space which is a union of flats in general position.
Analogously, a convex partition is a subset of Euclidean space such that its connected compo-
nents are convex sets which, as a family, is in general position. The two Helly theorems we have
referred to are:

Theorem 3. A family of linear partitions in Pn has non-empty intersection if every �3(n + 1)/2�
of them have non-empty intersection. Furthermore, this is the least possible such number.

Theorem 4. A family of convex partitions in Rn has non-empty intersection if every 2n + 1 of
them have nonempty intersection. Furthermore, this is the least possible such number.

1.1. An example

In [3] we proved that if a numbered family of intervals in an affine space has the property
that any six of them have a transversal line compatible with the numbering, then all the intervals
have a transversal line. The “magic” number six is easily reduced to three if instead of intervals
we consider points. However, if we increase the dimension of the convex sets, there is no such
“magic” number for transversal lines; some other assumption has to be made.

To see this, consider a family of lines close together which belong to one of the two rulings of
the symmetric hyperboloid x2 + y2 = z2 + 1 (Fig. 1(a)).

Consider a vertical plane (containing the z axis). A planar convex polygon is spanned by the
intersection points of our lines with that plane. For a wide range of such planes, this polygon
is contained outside the hyperboloid, as shown in Fig. 1(b). On the other hand, if we do the
same with a horizontal plane (parallel to the xy plane), then the polygon obtained lies inside the
hyperboloid (Fig. 1(c)).

Since a line cannot cross the hyperboloid in more than two points, we can construct several
such polygons, alternating inside and out, to force the fact that any transversal line to them must
be one of the a priori chosen family.

Moreover, to generate the polygons we are not obliged to take the convex hull of all the
intersection points; we can leave out one or more of them. It is clear then that our freedom is

Fig. 1. Crossing a ruling with horizontal and vertical planes.
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Fig. 2. An example of 9 polygons with the lines transversal to each 8 of them.

enough to force any of the lines to intersect only a subset of the polygons. In particular, we can
build up a set of k polygons and k lines in such a way that each polygon avoids exactly one of
the lines. In Fig. 2, two perspectives of such an example for k = 9 are shown.

These examples can be easily generalized to convex sets of higher dimension as follows.
Suppose we have a family F of convex sets in Rd . In Rd+1, multiply each of the sets in F by
the interval 0 � w � 1, where w is the new coordinate, to obtain a family F ′ of convex sets one
dimension higher. It is not difficult to see that a subfamily of F has a transversal line if and only
if the corresponding subfamily of F ′ has one.

Thus, we showed that such general transversal line theorems are possible only when the con-
vex sets have dimension 0 (trivial) or 1 (the one in [3]).

2. Rulings

We will work in a high-dimensional projective space as a universal ambient space. It will be
denoted PN but may also be thought of as P∞ with only finite-dimensional subspaces consid-
ered. Some subspaces of a specific dimension k will be relevant as ambient spaces and then are
denoted Pk . By X � PN we mean that X is a flat of PN ; and by Xn � PN we mean, furthermore,
that X has dimension n. Superscripts will always mean dimension and so are used to establish it,
but later on they may be dropped to ease reading.

Given a family F of subsets of PN , an m-transversal to F is an m-flat that intersects every
member of F . Let us denote by Tm(F) the set of all m-transversals to F , that is,

Tm(F) := {
Ym � PN

∣∣ Y ∩ A 
= ∅ for all A ∈F
}
.

Let Xn
1 ,Xn

2 , . . . ,Xn
m+1 be projective flats of dimension n in general position. They span a

projective space of dimension n(m + 1) + m. Let

Pn∗m = 〈X1, . . . ,Xm+1〉,
where n ∗ m := (n + 1)(m + 1) − 1.

Observe that any m-transversal Ym to X1, . . . ,Xm+1 is contained in Pn∗m because Y con-
tains a point in each of the Xi and, by general position, these m + 1 points span Y. So that
Tm(X1, . . . ,Xm+1) is naturally parametrized by the Cartesian product X1 × · · · × Xm+1.
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Let p ∈ Pn∗m be a generic point, which means that the family p,X1, . . . ,Xm+1 is m-generic.
Then p lies in a unique m-flat transversal to X1, . . . ,Xm+1, which we denote Yp . Indeed, if we
let

pi = Xi ∩ 〈p,X1, . . . , X̂i , . . . ,Xm+1〉

(where X̂i means “omit Xi”), which is a well-defined point by a simple-dimensional argu-
ment, then Yp = 〈p1, . . . , pm+1〉. Therefore, if Zk

0 � Pn∗m is such that {Z0,X1, . . . ,Xm+1} is
m-generic (and thus, 0 � k � n), then Tm(Z0,X1, . . . ,Xm+1) is naturally parametrized by Z0
(p ↔ Yp), because Z0 consists of generic points. Moreover, for each i ∈ {1, . . . ,m+ 1}, the map
p �→ Xi ∩ Yp from Z0 to the k-dimensional subspace of Xi ,

Zi = Xi ∩ 〈Z0,X1, . . . , X̂i , . . . ,Xm+1〉,

is a projective isomorphism. Observe that Tm(Z0,X1, . . . ,Xm+1) coincides with Tm(Z0,Z1,

. . . ,Zm+1). The union of these m-flats, which lies in the projective space 〈Z1, . . . ,Zm+1〉 of
dimension k ∗ m, is what we call a (k,m)-ruling and we denote it by

R(k,m) =
⋃

p∈Z0

Yp =
⋃

Y∈Tm(Z0,X1,...,Xm+1)

Y.

Each Ym ∈ Tm(Z0,Z1, . . . ,Zm+1) is called an m-rule of R(k,m); the set of m-rules is denoted
R(k,m), that is, R(k,m) = Tm(Z0,Z1, . . . ,Zm+1).

It happens that the (k,m)-ruling R(k,m) can also be expressed as a union of k-rules: if we
define R(k,m) = Tk(R(k,m)), we have

R(k,m) =
⋃

Z∈R(k,m)

Z.

So that Z0,Z1, . . . ,Zm+1, which are, by definition, k-rules of R(k,m), extend to a family of
k-flats naturally parametrized by Pm via intersection with any of the m-rules Ym ∈ R(k,m). In
fact, R(k,m) is the algebraic variety Pk × Pm together with a fixed embedding which is linear in
each factor.

To sketch a proof of the assertions we have made, let us ease the notation. Assume that the
space Z0 we started with has dimension n. Let Z0 = X0,X1, . . . ,Xm+1 be m-generic n-flats
in Pn∗m, and let R(n,m) be their associated (n,m)-ruling. Consider Pn∗m as the projective space
associated to the vector space V of dimension (n ∗ m) + 1 = (n + 1)(m + 1), which we write
Pn∗m = P(V). For j = 0, . . . ,m+ 1, let Vj be the (n+ 1)-dimensional linear subspace of V such
that Xj = P(Vj ). Observe that the m-generic hypothesis is that V is expressed as the direct sum
of any m + 1 of V0, . . . , Vm+1. Consider a basis v0, v1, . . . , vn of Vm+1. Then, for i ∈ {0, . . . , n}
and j ∈ {0, . . . ,m}, we have uniquely defined vij ∈ Vj such that

vi = vi0 + vi1 + · · · + vim;

and moreover, v0j , . . . , vnj is a basis of Vj . The bilinear map
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ϕ : Rn+1 × Rm+1 → V(
(xi)

n
i=0, (yj )

m
j=0

) �→
∑
i,j

xiyj vij

governs the ruling R(n,m) which is the projectivization of its image. For example, we may write

R(n,m) = {
P
(
ϕ
(
x × Rm+1)) ∣∣ x ∈ Rn+1 − {0}},

R(n,m) = {
P
(
ϕ
(
Rn+1 × y

)) ∣∣ y ∈ Rm+1 − {0}}.
Now, the unproved assertions of our previous paragraphs follow easily from here.

In summary: if X0, . . . ,Xm+1 are m-generic n-flats, then Tm(X0, . . . ,Xm+1) is naturally para-
metrized by a projective space of dimension at most n; namely, by Z0 = X0 ∩ 〈X1, . . . ,Xm+1〉.

3. Linear partitions

Our interest in linear partitions arises from the following.

Proposition 1. Let X0, . . . ,Xm+1,X be m-generic n-flats. Then

Tm(X0, . . . ,Xm+1,X) ⊂ Tm(X0, . . . ,Xm+1)

is a linear partition, where Tm(X0, . . . ,Xm+1) is considered naturally as a projective space.

Before we begin the proof, we must give some insight into linear partitions and establish basic
facts about them. As defined in the introduction, a linear partition is a union of flats in general
position. In terms of the vector space covering, a linear partition corresponds to a union of linear
subspaces whose sum is a direct sum.

First, observe that the intersection of linear partitions is again a linear partition. Thus, there
is a linear partition closure operator. Given any subset S of a projective space, its LP-closure
〈S〉LP is the minimal linear partition that contains it, or, equivalently, the intersection of all that
do. The subscript is to distinguish it from the linear closure operator, or projective span, that
we denote 〈 〉. They may clearly be different. For example, if p1 and p2 are distinct points then
〈p1,p2〉LP = {p1,p2} while 〈p1,p2〉 is the line through p1 and p2; but if we choose a third point
p0 ∈ 〈p1,p2〉 − {p1,p2}, then 〈p0,p1,p2〉LP = 〈p0,p1,p2〉 = 〈p1,p2〉. Thus, three points are
needed to generate a line as a linear partition.

A set S of (k + 2) points is minimally degenerate if they are not in general position but
every proper subset of S is (they are k-generic and span a k-flat). We will need the following
characterization of linear partitions.

Lemma 1. A ⊂ PN is a linear partition if and only if whenever a set of points S ⊂ A is minimally
degenerate then 〈S〉 ⊂ A.

The proof is simple so we leave it to the reader. Formally, it can be traced back to Tutte [15],
where he studied “connectivity in matroids.” In our case, considering projective space as a ma-
troid in the natural way, our minimally degenerate sets are the circuits on which Tutte based the
notion of connectivity. This general approach is studied further in [4].
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Proof of Proposition 1. Identify Tm(X0, . . . ,Xm+1) with a subspace of X0 by intersection. Sup-
pose Ym

0 , . . . , Ym
k+1 ∈ Tm(X0, . . . ,Xm+1,X) are such that their intersection points pi := Yi ∩ X0

are minimally degenerate. Let Z0 = 〈p0, . . . , pk+1〉; it is a subspace of X0 of dimension k,
and also of 〈X1, . . . ,Xm+1〉; therefore, we may use the notation of Section 2. By Lemma 1,
it is enough to prove that for every p ∈ Z0 the corresponding Yp ∈ Tm(X0, . . . ,Xm+1) is also
transversal to X.

For i = 1, . . . ,m + 1, let Zi := {Yp ∩ Xi | p ∈ Z0} ⊂ Xi be the corresponding k-flat
in Xi . Then Z0, . . . ,Zm+1 generate a (k,m)-ruling R(k,m) in a projective space of dimen-
sion k ∗ m, Pk∗m. Observe that Y0, Y1, . . . , Yk+1 are dual generators of R(k,m).

By hypothesis, we have points qi ∈ Yi ∩ X, i = 0, . . . , k + 1. Let Z = 〈q0, . . . , qk+1〉 ⊂ X.
If dimZ = k, then Z is a k-rule of R(k,m) (Z ∈ R(k,m)) and is therefore transversal to all
its m-rules which is what we wanted to prove. Otherwise, Z has dimension k + 1. But then,
Z1, . . . ,Zm,Z are not in general position because they are all in Pk∗m and

m∑
i=1

dimZi + dimZ + m = mk + k + 1 + m = (k + 1)(m + 1) > k ∗ m.

This contradicts the hypothesis that X0, . . . ,Xm+1,X are m-generic, because then any collection
of their subspaces should also be m-generic. �

Observe in the proof that the subspace Z of X is also a k-flat within one of the n-rules of
R(n,m); where, to ease notation, we assume that X0 ⊂ Pn∗m and identify Tm(X0, . . . ,Xm+1)

with R(n,m). This way we may obtain a little more. For each component of the linear partition
Tm(X0, . . . ,Xm+1,X), there exists an n-rule Xy ∈ R(n,m) such that Xy ∩ X is a flat parameter-
izing that component. From this observation, one can construct examples of X that produce any
linear partition on X0; simply, lift the components to different “heights” of one m-rule and then
take their linear span.

4. Helly theory

We have observed and used that the intersection of linear partitions is a linear partition. We are
now interested in proving that they have a Helly number like convex sets do. However, we will
need a similar result for convex partitions and since many of the arguments are essentially the
same, it will be more efficient to work abstractly in a general setting where Helly numbers make
sense. Our point of view is different from the classic one introduced by Levi [13] and further
developed in [12] (see also [6]) for “abstract convexity spaces,” merely in the sense that we look
at Helly numbers from within a lattice, not only for the maximal element. However, the main
concepts are the same.

Let Λ be a meet semilattice; that is, it is a partial order such that for any two elements a and b,
there is a well-defined intersection, or meet, a ∧ b satisfying that

c � a and c � b ⇒ c � a ∧ b.

We will always assume that our partial orders have a minimum element, denoted by ∅ which we
call the empty set. This is strictly the case for our relevant examples, which are: convex sets, C;
linear partitions, LP ; convex partitions, CP ; projective subspaces, L; and finite sets. All of them
are with set inclusion as order and intersection as meet.
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For any a ∈ Λ, a 
= ∅, define its Helly number h(a), or hΛ(a) to be more explicit, as the
minimum k such that if a0, . . . , ak � a satisfy that

a0 ∧ · · · ∧ âi ∧ · · · ∧ ak 
= ∅ for every i = 0, . . . , k,

then a0 ∧ · · · ∧ ak 
= ∅. When h(a) > 1, it clearly coincides with the maximum k for which there
exist a1, . . . , ak � a with

a1 ∧ · · · ∧ ak = ∅, and

a1 ∧ · · · ∧ âi ∧ · · · ∧ ak 
= ∅ for every i = 1, . . . , k;

in this case, we call a1, . . . , ak � a a Helly family for a. If h(a) < ∞, then a satisfies a Helly
theorem for finite families; namely, a (finite) family of elements of a� := {b ∈ Λ | b � a} in-
tersects (i.e., has non-empty intersection) if every h(a) of them have non-empty intersection. If
hΛ(a) < ∞ for every a ∈ Λ, we say that hΛ is the Helly function of Λ, and that Λ is a Helly
semilattice.

The upper-rank, r(a), may be defined as the maximum k such that there exist a0 < a1 < · · · <
ak = a. And if r(a) < ∞ for every a ∈ Λ, one says that Λ has an upper-rank function. It is the
rank function if the length of maximal chains depends only on the extremes.

Convex sets C do not have an upper-rank function because they have infinite strict chains;
however, they are a Helly lattice with hC = dim+1 by Helly’s theorem. It is not difficult to see
that projective subspaces L and finite sets have both a rank function and a Helly function and
that they coincide.

Lemma 2. If Λ is a meet semilattice with upper-rank function r , then it is a Helly semilattice
and

hΛ � r.

Proof. Atoms (which have no smaller element other than ∅) have upper-rank and Helly functions
well-defined as 1. So we may inductively assume for k > 1 that if r(a) < k then h(a) � r(a).
Suppose that a ∈ Λ has r(a) = k, and let a0, a1, . . . , ak be elements of a� such that for every
j = 0, . . . , k, we have that

∧
i 
=j ai 
= ∅. If we prove that then

∧k
i=0 ai 
= ∅, we may conclude

that h(a) � k and we are done.
We may assume that one of the ai is different from a, otherwise their intersection is a 
= ∅.

Suppose a0 < a, so that r(a0) < r(a) = k and, by induction, we have that h(a0) < k.
For i = 1, . . . , k, let bi := ai ∧ a0, so that b1, . . . , bk ∈ (a0)�. For each j = 1, . . . , k and i in

{1, . . . , k}, we have that

∧
i 
=j

bi =
∧
i 
=j

(ai ∧ a0) = a0 ∧
( ∧

i 
=j

ai

)

= ∅,

because we are only missing an index. Therefore, since h(a0) < k, we have that
∧k

i=1 bi 
= ∅.
But

∧k
i=1 bi = ∧k

i=0 ai and thus the proof is complete. �
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Observe that we essentially proved that

hΛ(a) � max
{
hΛ(b)

∣∣ b < a
} + 1, (1)

so that if strict chains are not infinite (an upper-rank function exists) there is a Helly number
bounded by the upper-rank.

The intersection lattice of linear partitions LP has a rank function and thus, by the
lemma, a Helly function. To see that rLP (Pn) = 2n + 1, consider points in general position
p0,p1, . . . , pn ∈ Pn. Then the chain of linear partitions

∅ < {p0} < {p0,p1} < · · · < {p0, . . . , pn} < 〈p0,p1〉 ∪ {p2, . . . , pn}
< 〈p0,p1,p2〉 ∪ {p3, . . . , pn} < · · · < 〈p0, . . . , pn−1〉 ∪ {pn} < 〈p0, . . . , pn〉 = Pn

gives that rLP (Pn) � 2n + 1. Moreover, it is easy to see that this chain is maximal. However, as
we will shortly see, the Helly function of LP is, in general, strictly smaller.

Suppose furthermore that Λ is a lattice, that is, it also has join: well-defined minima a∨b such
that a, b � a ∨ b. This is the case for our lattices of interest because they all have an associated
closure operator defined on any set.

For any pair of elements a, b ∈ Λ, there is a natural morphism

a� × b� → (a ∨ b)�

(a′, b′) �→ a′ ∨ b′,

where × denotes the standard Cartesian product. When this morphism is a lattice isomorphism,
we say a ∨ b is a direct join and denote it by a � b. It is easy to see that a ∨ b is a direct join if
and only if for every c � a ∨ b one has that c = (a ∧ c) ∨ (b ∧ c).

Observe that if A is a linear partition whose connected components are A0,A1, . . . ,Ak then
in LP : A = A0 � A1 � · · · � Ak .

Lemma 3. If Λ is a Helly lattice, then

h(a � b) = h(a) + h(b).

Proof. Let k1 = h(a), k2 = h(b) and k = k1 + k2. To show that h(a � b) � k, we must prove that
if c0, c1, . . . , ck � a ∨ b are such that every k of them have non-empty intersection then they all
have non-empty intersection.

Let ai = a ∧ ci for i = 0, . . . , k. If ∅ 
= ∧k
i=0 ai �

∧k
i=0 ci then we are done. So suppose∧k

i=0 ai = ∅. Then, because the Helly number of a is k1, there exist k1 indices, say I ⊂ {0, . . . , k}
with �I = k1, such that

∧
i∈I ai = ∅.

Let bi = b ∧ ci for i = 0, . . . , k. Because h(b) = k2, to see that ∅ 
= ∧k
i=0 bi �

∧k
i=0 ci , it is

enough to prove that for any given J ⊂ {0, . . . , k} with �J = k2, we have
∧

i∈J bi 
= ∅. We claim
that ∧

bi �
∧

bi 
= ∅.
i∈J i∈I∪J
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Let c = ∧
i∈I∪J ci . Because �(I ∪J ) � k1 + k2, we know that c 
= ∅ by hypothesis. We also have

that a ∧ c = ∧
i∈I∪J (a ∧ ci) = ∧

i∈I∪J ai �
∧

i∈I ai = ∅. So that, because a ∨ b is a direct join,
b∧c = ∧

i∈I∪J bi = ∅ implies that c = (a∧c)∨ (b∧c) = ∅, which is a contradiction. Therefore,∧
i∈I∪J bi 
= ∅ proving that h(a � b) � k.
To see that h(a �b) = k, let a1, . . . , ak1 � a be a Helly family for a, and let b1, . . . , bk2 � b be

a Helly family for b. Define ci = ai ∨b for i = 1, . . . , k1 and ci = a ∨bi−k1 for i = k1 +1, . . . , k.
It is easily seen that c1, . . . , ck is a Helly family for a � b. �
4.1. Helly for linear partitions

We turn our attention to the lattice of Linear Partitions LP . Observe that by Lemma 3, once
we know the Helly number of the flats, hLP (Pn), we know the Helly function because any
linear partition is the direct join of its connected components. Thus, the Helly function of LP is
determined by the following theorem which is a reformulation of Theorem 3.

Theorem 5. hLP (Pn) = �3(n + 1)/2�.

Proof. By definition, we have that hLP (P0) = 1. Suppose inductively that for m < n > 0,
hLP (Pm) = �3(m + 1)/2�, and let k = �3(n + 1)/2�. To see that hLP (Pn) � k, consider
�(n + 1)/2� lines in general position in Pn and choose three different points in each of them;
for n even, choose yet another point in general position with the lines. Label these points
p1,p2, . . . , pk , and let Ai := 〈pj | j 
= i〉LP = 〈p1, . . . , p̂i , . . . , pk〉LP . We clearly have that
∅ 
= {pi} = ⋂

j 
=i Aj and
⋂

i Ai = ∅, so k � hLP (Pn).
We are left to prove that hLP (Pn) < k + 1. Suppose A0,A1, . . . ,Ak are linear partitions in

Pn such that every k of them intersect (observe that we use this shorthand for “have non-empty
intersection”). We must prove that they all intersect.

For every i = 0, . . . , k, choose a point pi ∈ ⋂
j 
=i Aj , and let A′

i := 〈pj | j 
= i〉LP . Observe
that A′

i ⊂ Ai so that if the A′
i intersect, so do the original ones. To ease notation, we may assume

that Ai = A′
i . We will call p0, . . . , pk the special points: S = {p0, . . . , pk}.

By induction, we may assume that for every proper flat Xm � Pn we have that

�(S ∩ X) � hLP
(
Xm

) = ⌊
3(m + 1)/2

⌋
, (2)

because if not, it is easy to find an intersection point of all the Ai in X.
If A0 = 〈p1, . . . , pk〉LP = Pn, then p0 ∈ A0 and so

⋂k
i=0 Ai ⊃ {p0} 
= ∅ which completes the

proof. Therefore, assume A0 breaks into flat components. All of them cannot be points because
k > n + 1 and two special points cannot be equal by (2); this takes care of the case n = 1. So,
we may consider a flat component X of A0 which is not a point. Let I = {i | pi ∈ X, 1 � i � k}
so that X = 〈pi | i ∈ I 〉LP . Let Y be the linear span of the other components of A0, so that
A0 ⊂ X ∪ Y . Using (2) one easily sees that X and Y span Pn and that p0 /∈ X ∪ Y ; so that we
have a well-defined point q = X ∩〈Y,p0〉. We will prove that q ∈ ⋂k

i=0 Ai to conclude the proof
of the theorem.

For j /∈ I we have that q ∈ X = 〈pi | i ∈ I 〉LP ⊂ 〈p0, . . . , p̂j , . . . , pk〉LP = Aj . Fix i ∈ I .
We have that 〈pj | j ∈ I − {i}〉 = X; indeed, because X is not a point, if 〈pj | j ∈ I − {i}〉 was
a proper subspace of X, then pi would be a component of 〈pi | i ∈ I 〉LP . Let Ii ⊂ I − {i} be
a minimal set that generates q ∈ X, that is, such that q ∈ 〈pj | j ∈ Ii〉. On the other hand, let
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J be a minimal set that generates q in 〈Y,p0〉, that is, J ∩ I = ∅ and q ∈ 〈pj | j ∈ J 〉. Then
{pj | j ∈ Ii ∪ J } is minimally degenerate. Therefore, by Lemma 1, we have that

q ∈ 〈pj | j ∈ Ii ∪ J 〉 = 〈pj | j ∈ Ii ∪ J 〉LP ⊂ 〈p0, . . . , p̂i , . . . , pk〉LP = Ai,

and the proof is complete. �
We now have all the ingredients to prove Theorem 1.

Proof of Theorem 1. Let F be an m-generic family of n-flats such that every �(3n+2m+7)/2�
of them have a transversal m-flat. We will prove that they all have a transversal m-flat.

Consider X0, . . . ,Xm+1 ∈ F and the ruling they define. Identify the m-rules (their transver-
sal m-flats) naturally with a subspace of Pn ∼= X0. For every X ∈ F , let TX = Tm(X0, . . . ,

Xm+1,X) ⊂ Pn which is a linear partition by Proposition 1. Observe that⌊
3(n + 1)

2

⌋
+ m + 2 =

⌊
3n + 2m + 7

2

⌋
so that, by hypothesis, every subfamily with �3(n + 1)/2� elements of FLP = {TX | X ∈ F}
intersects. Since hLP (Pn) = �3(n + 1)/2� by Theorem 5, all the members of FLP have non-
empty intersection. Each point there corresponds to a transversal m-flat to F . �
5. The convex case

We first establish the Helly number for convex partitions including Theorem 4. Then we prove
Theorem 2.

5.1. Helly for convex partitions

Observe that there is a convex partition closure operator which we denote 〈 〉CP . It can be
thought of as first applying the linear partition closure (in the projective compactification) and
then, back in Euclidean space, taking the usual convex closure within each flat component.

Theorem 6. If C is a convex partition whose connected components are K1, . . . ,Kr of dimen-
sions n1, . . . , nr , respectively, then

hCP (C) =
r∑

i=1

(2ni + 1).

Proof. Observe that Theorem 4, which simply states that hCP (Rn) = 2n+ 1, is a special case of
Theorem 6.

First, let us give an example proving that hCP (Rn) � 2n + 1; it will turn out to be a Helly
family. Let e1, . . . , en be the canonical basis of Rn. Let p0 be the origin, and for i = 1, . . . , n,
let p2i−1 := ei and p2i := 2ei . For j = 0, . . . ,2n, let Cj := 〈p0, . . . , p̂j , . . . , p2n〉CP . Observe
that, for n > 1, C0 is the convex hull of the basis and their “doubles” (a simplex of dimension n

truncated at a vertex), and that every other Cj consists of a point component in a coordinate axis
and a simplex (of dimension n − 1) in its orthogonal complement. Each 2n of them intersect in
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the corresponding common point pj , but all of them have empty intersection, thus hCP (Rn) �
2n + 1. Since this example can essentially be built within any convex set K of dimension n, we
also have that hCP (K) � 2n + 1.

Assume inductively that if K is a convex set of dimension m < n, then hCP (K) = 2m + 1;
which is true for a point to start the induction with.

To see that hCP (Rn) � 2n + 1, let C0, . . . ,C2n+1 be convex partitions in Rn such that each
2n + 1 of them intersect; we must prove that they all intersect. If they are all connected, that
is, if they are all convex sets, then by Helly’s classic theorem (used with ample margin) they do
intersect. Assume that one of them, say C0, is not connected. Suppose it has connected compo-
nents K1, . . . ,Kr of dimensions n1, . . . , nr respectively. We have that

∑r
i=1 ni + (r −1) � n and

r � 2.
Since C0 = K1 ∪ · · · ∪ Kr is a direct join in the lattice of convex partitions, by Lemma 3 and

induction (ni < n), we have that

hCP (C0) =
r∑

i=1

hCP (Ki) =
r∑

i=1

(2ni + 1) =
r∑

i=1

2ni + r � 2n − (r − 2) � 2n.

Then the convex partitions (C0 ∩ C1), (C0 ∩ C2), . . . , (C0 ∩ C2n+1) in (C0)� intersect because
each 2n of them do by hypothesis (such an intersection is an intersection of 2n + 1 of the origi-
nals). This proves that hCP (Rn) = 2n + 1.

To complete the induction process, consider any convex set K of dimension n. K ⊂ Rn im-
plies hCP (K) � hCP (Rn) and we have seen that hCP (K) � 2n+1, therefore hCP (K) = 2n+1.

The theorem now follows from Lemma 3. �
5.2. Hadwiger for convex sets

For the rest of this section we turn our attention to Theorem 2. We first establish the setting
we will be working in. From it, we construct a family of convex partitions in an affine flat by first
analyzing the order types of the m-rules in an appropriate ruling, and then conclude the proof of
the theorem.

5.2.1. Setting
Let F = {Ki}i∈Γ be a family of convex sets in RN such that {Xi}i∈Γ is a corresponding

family of m-generic n-flats in PN , with Ki ⊂ Xi for every i ∈ Γ . We think of PN as the projective
closure of RN . Denote by H∞ the hyperplane at infinity, so that RN = PN −H∞. Then, for every
flat F � PN we may refer to its affine flat F − H∞ = F − (F ∩ H∞), provided that F 
⊂ H∞.
Observe that convexity and order type make implicit reference to these affine flats.

We also have a given order type of dimension m for the same index set, that is, a family of
points Q = {qi}i∈Γ ⊂ Rm which we will call the abstract points. Our hypothesis is that for a
certain k (for the moment we only need to know that k > m + 2), we have that for any I ⊂ Γ

with �I � k, there exists an affine m-flat Y in RN for which there are points yi ∈ Y ∩ Ki (i ∈ I ),
such that {qi}i∈I ⊂ Rm and {yi}i∈I ⊂ Y define the same oriented matroid, order type or separoid.
More precisely, and using the simple terminology of separoids [2]: for every index partition
α ∪ β = I with α ∩ β = ∅, there exists a hyperplane L � Rm that separates {qi}i∈α from {qi}i∈β

if and only if there exists a hyperplane L′ � Y that separates {yi}i∈α from {yi}i∈β . (For further
reference, the combinatorial information of all the index partitions that do separate is called a
separoid; it defines the order type.)
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Our aim is to prove that F has a transversal m-flat.
First, observe that the abstract points Q are m-generic. If not so, there exist q0, . . . , qm ∈ Q

contained in a hyperplane of Rm. By hypothesis, their corresponding convex sets K0, . . . ,Km

have a transversal m-flat Y that intersects them in y0, . . . , ym respectively, such that they de-
fine the same separoid as q0, . . . , qm. Therefore, y0, . . . , ym lie in a hyperplane of Y , so that
K0, . . . ,Km have a transversal flat of dimension m − 1. But then they are not m-generic contra-
dicting the hypothesis, and proving the claim.

5.2.2. The ruling and order types
Consider (m + 2) n-flats X0, . . . ,Xm+1 in the family and their generated (n′,m)-ruling with

n′ � n, where, recall, n′ = dim(X0 ∩〈X1 ∩· · ·∩Xm+1〉). The case n′ < n is basically the same as
the one when n′ = n, with minor adjustments that, however, complicate notation needlessly (we
should replace n by n′ and Xi for X′

i = Xi ∩ 〈X0 ∩ · · · X̂i · · · ∩ Xm+1〉 below). So let us assume
that X0, . . . ,Xm+1 generate an (n,m)-ruling R(n,m). Identify the m-rules by their intersection
with X0, so that for x ∈ X0, let Yx ∈ R(n,m) be such that x = Yx ∩ X0.

By intersection with the m-rules we have naturally given projective isomorphisms between the
n-rules that we refer to as projections—dually, the m-rules are projectively identified by intersec-
tion with the n-rules. Our main problem to be solved is that, for i = 1, . . . ,m+1, the convex sets
Ki ⊂ Xi project to the affine part of X0 to sets that may have two connected components. Indeed,
the image of a convex set under a projectivity is either convex or the union of two unbounded
convex components: we will have to choose the appropriate one.

For i = 0, . . . ,m + 1, let Hi := {x ∈ X0 | Yx ∩ Xi ∈ H∞} ⊂ X0, which is the hyperplane
at infinity of Xi (Xi ∩ H∞) projected to X0 by the ruling; observe that H0 is the hyperplane
at infinity of X0. Each Hi is a hyperplane because the Xi come from affine n-flats (they have
non-empty convex sets defined on them). The Hi cut the affine X0 − H0 into convex regions.

Claim 1. m-rules in different regions of X0 − (∪m+1
i=0 Hi) intersect the n-rules X0, . . . ,Xm+1 in

points with a different order type.

Let x and x′ in X0 − (
⋃m+1

i=0 Hi) be such that the affine segment σ from x to x′ intersects
some of the Hi . More precisely, let

α = {i | σ ∩ Hi 
= ∅}.

We assume that α 
= ∅; and know that 0 /∈ α because affine segments do not cross infinity.
Let Y = Yx and Y ′ = Yx′ be the m-rules at x and x′, and let yi = Y ∩ Xi (respectively, y′

i =
Y ′ ∩Xi ) so that x = y0 (respectively, x′ = y′

0). We must prove that the order types {y0, . . . , ym+1}
in Y − H∞ and {y′

0, . . . , y
′
m+1} in Y ′ − H∞ are different.

Denote by ϕ :Y ′ → Y the projective isomorphism defined by the ruling R(n,m) so that
ϕ(y′

i ) = yi . Let L = ϕ(Y ′ ∩ H∞) ⊂ Y , which is a hyperplane because x′ ∈ Y ′ 
⊂ H∞.
First, we prove that L separates α from its complement ᾱ, which shall be written as α |L ᾱ.

Since 0 ∈ ᾱ, it is enough to prove that the segment from y0 to yi (in Y ) intersects L if and only
if σ intersects Hi .

The lines 	 := 〈x, x′〉 ⊂ X0 and η := 〈y0, yi〉 ⊂ Y define a (1,1)-ruling H contained in
R(n,m). Indeed, R(n,m) may be naturally identified with X0 × Y ; then H is the (1,1)-ruling
identified with the inclusion 	 × η ⊂ X0 × Y . The standard hyperboloid H lies in a projective
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space P3, and we have two cases to consider: when it is transversal or tangent to the plane at
infinity.

When H is transversal to H∞ there is a natural projective identification of 	 and η given by

	 � s ↔ t ∈ η ⇔ ηs ∩ 	t ∈ H∞

where, for s ∈ 	, ηs is the other rule passing through s, and analogously, 	t is the rule parallel to 	

passing through t ∈ η. Observe that x ∈ 	 corresponds to the point at infinity of η, ∞η := η∩H∞,
because ηx = η; that x′ ∈ 	 corresponds to L ∩ η; that ∞	 := 	 ∩ H∞ corresponds to y0 ∈ η, and
that Hi ∩ 	 corresponds to yi ∈ η:

x x′ ∞	 Hi ∩ 	 (∈ 	)

� � � �
∞η L ∩ η y0 yi (∈ η).

From this information it follows that Hi ∩ 	 is in the affine segment σ from x to x′ (i ∈ α) if and
only if L ∩ η is in the affine segment from y0 to yi (L separates y0 from yi ). See Fig. 3 for a
rough sketch.

If H∞ is tangent to H, then H has two rules at infinity, one in each ruling. So that, with
notation as above, ∞	 = Hi ∩ 	 and ∞η = L∩η. Then i ∈ ᾱ and L leaves y0 and yi on the same
side. Completing the proof that L separates α from its complement.

Now, Claim 1 follows from:

Lemma 4. Let y0, . . . , ym+1 be m-generic points in Rm ⊂ Pm, and let L be a hyperplane in Rm

that separates {yi}i∈α from {yi}i∈ᾱ , where ∅ 
= α � {0, . . . ,m + 1}. If f : Pm → Pm is a projec-
tivity that sends L to the hyperplane at infinity then {y0, . . . , ym+1} and {f (y0), . . . , f (ym+1)}
define different order types in Rm.

Proof. From Radon’s classic theorem, and the general position hypothesis, it follows that there
exists a unique β � {0, . . . ,m + 1}, β 
= ∅, such that the simplexes Δβ := 〈yi | i ∈ β〉C and
〈yi | i ∈ β̄〉C (where 〈 〉C denotes the convex hull) intersect in a point, say y, in their interior.
Furthermore, β, β̄ is the only such Radon partition in the order type of {y0, . . . , ym+1}. Then, we
have that {α, ᾱ} 
= {β, β̄} because α |L ᾱ. We may assume that α ∩ β 
= ∅ 
= ᾱ ∩ β . This implies
that L intersects the simplex Δβ . Therefore, we have that f (Δβ) 
= 〈f (yi) | i ∈ β〉C because

Fig. 3. The two cases of hyperboloids.
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f (Δβ) has points at infinity. Then〈
f (yi)

∣∣ i ∈ β
〉
C ∩ 〈

f (yi)
∣∣ i ∈ β̄

〉
C = ∅

because the flats 〈f (yi) | i ∈ β〉 and 〈f (yi) | i ∈ β̄〉 (which contain, respectively, the above sim-
plexes) intersect in the unique point f (y) which is in f (Interior(Δβ)) and outside of 〈f (yi) |
i ∈ β〉C . Therefore, β separates from its complement in the order type of {f (y0), . . . , f (ym+1)},
completing the proof of the lemma. �
5.2.3. The convex partitions

The abstract points q0, . . . , qm+1 corresponding to our flats X0, . . . ,Xm+1 define a separoid
S on {0, . . . ,m+ 1}. By Claim 1 and the fact that the convex sets K0, . . . ,Km+1 have transversal
m-flats compatible with that order type (k � m + 2), there exists a unique open connected com-
ponent R ⊂ X0 − (

⋃m+1
i=0 Hi) for which the m-rules Yx with x ∈ R intersect the Xi in points that

define the separoid S. This region defines a positive hemispace H+
i ⊃ R in X0 − H0 for each

hyperplane Hi , i = 1, . . . ,m + 1.
Let C0 := K0 ⊂ X0. For i ∈ {1, . . . ,m + 1}, we have that the convex set Ki ⊂ Xi projects by

the ruling to a set K ′
i in X0 which consists of one or two connected convex components in the

affine X0 − H0, according to whether the hyperplane H0 misses or hits K ′
i . In the first case, let

Ci := K ′
i ⊂ X0 − H0. In the second case, observe that the hyperplane Hi (which corresponds to

the plane at infinity in Xi ) separates the two components of K ′
i , then let Ci ⊂ X0 − H0 be the

component of K ′
i − H0 lying in the positive side H+

i . In any case, Ci is a convex set in the affine
X0 − H0.

Now, we define Cj ⊂ X0 for the general j ∈ Γ − {0,1, . . . ,m + 1}. Suppose first that the
n-flat Xj is a rule in R(n,m). Replacing j instead of m + 1 in the above discussion, we obtain
a hyperplane Hj � X0 with a distinguished positive side H+

j satisfying the property that if an
m-rule Y ∈ R(n,m) is such that {Xi ∩ Y | i = 0, . . . ,m, j} ⊂ Y − H∞ defines the same order
type as {q0, . . . , qm, qj } in Rm, then we have that Y ∩ X0 ∈ H+

j . Then we define Cj as above
(the component of Kj projected to X0 that lies in H+

j ).
If Xj is not a rule in R(n,m), then Tm(X0, . . . ,Xm+1,Xj ) viewed in X0, is a linear partition

Z = Z1 ∪ · · · ∪ Zr where each Zi is a flat. By the proof of Proposition 1 (see the observation
that follows it), we have rules Xj,i ∈ R(n,m), i = 1, . . . , r , such that Z′

i := Xj,i ∩ Xj is a flat
that is projected unto Zi under the ruling identification Xj,i → X0. Let Kj,i := Xj,i ∩ Kj , and
proceeding as in the case above, define Cj,i ⊂ X0 −H0, observing that Cj,i ⊂ Zi . Finally, define
Cj := Cj,1 ∪ · · · ∪ Cj,r and observe that it is a convex partition because each component lies in
the corresponding component of the linear partition Z.

We have defined the corresponding family of convex partitions {Ci}i∈Γ in X0 − H0 with the
property that if Y ∈ Tm(K0, . . . ,Km+1,Kj ) intersects them compatibly with the order type Q,
then Y passes through

⋂m+1
i=0 Ci ∩ Cj .

5.2.4. Completion of the proof
We are left to prove that if the number k, for which there exist compatible m-flat transversals,

is

k = 2n + m + 3 = (m + 2) + (2n + 1),

then the whole family F = {Ki}i∈Γ has a transversal m-flat.
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Let I0 := {0,1, . . . ,m+1} ⊂ Γ be the index subset we have been working with. Given I ⊂ Γ

with �I = 2n+ 1, we will prove that
⋂

i∈I Ci 
= ∅. Since �(I ∪ I0) � k, the family of convex sets
{Ki | i ∈ I ∪ I0} has a transversal m-flat Y that intersects them compatibly with the order type.
But Y ∈ R(n,m) = Tm(X0, . . . ,Xm+1), so Y passes through each Ci (i ∈ I ) by the construction
of Ci , therefore

⋂
i∈I Ci 
= ∅. By Helly’s theorem for convex partitions (Theorem 4), we have

that
⋂

i∈Γ Ci 
= ∅; if we take x ∈ ⋂
i∈Γ Ci , Yx is an m-flat transversal to {Ki}i∈Γ .

Observe that no claim is made about the order type of {Yx ∩ Ki}i∈Γ in Yx − H∞, because the
construction only gives information about the subsets of type {0,1, . . . ,m, j} ⊂ Γ .

6. Concluding remarks

The fact that there exists a Helly number for flat transversals to flats is due to Lovász, see [8].
Here, we reduced the number for the generic case, and established (again, in the generic case) that
there exists a “magic” number for flat transversals to families of convex sets of a fixed dimension.
However, in both settings, there seems to be room for improvement in our numbers. In particular,
we know that for m = 1 and n = 2 in which Theorem 2 gives 8 as the “magic” number, it can
be reduced to 7 with ad hoc arguments to agree with Theorem 1. Only for m = 1 = n is there
a proof, by explicit examples in [3], that the numbers (6 in both settings) are the best possible.
To have new critical examples, and thus lower bounds, would be helpful to establish the best
possible “magic” numbers: the natural problem to pose.

Finally, observe that the proofs of Theorems 1 and 2 work for the more general case of families
of linear partitions and, respectively, convex partitions of a fixed dimension (understood as the
dimension of the linear span). However, the statements and arguments in such generality would
have made the presentation quite awkward.
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