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January 5, 2010

Abstract

We prove that the lattice of linear partitions in a projective geometry of rank n has
Helly number b3n/2c.

1 Introduction

Consider a set P whose elements will be called points and a family L of subsets of P whose
elements will be called lines. For A ⊆ P, let L (A) be the set of all lines which have at least
two points in A. Denote hAi the union of all lines in L (A). The function A 7→ hAi is a closure
operator whose closed sets are called flats. The rank of a flat f is the minimum cardinality of a
set of points A such that f = hAi. A n-flat is a flat of rank n. The pair (P,L) is a projective
geometry of rank n if the following axioms are satisfied:

• Two distinct points belong to exactly one line.

• If a line intersects two sides of a triangle (not at their intersection), then it also intersects
the third line.

• Every line has at least three points.

• P is a n-flat.

The main example of a projective geometry is obtained considering a vector space kn over
a division ring k and taking the set of all its subspaces moduli the action of the multiplicative
group k∗. Such geometry will be called projective geometry over k. A remarkable fact (see [2]) is
that any projective geometry of finite rank at least 4 is a projective geometry over some division
ring.
If f, g are two flats, then f + g denotes the flat hf ∪ gi. It is well known (see e.g. [2]) that

the collection of all flats of a projective geometry with the operations +,∩ is a modular lattice
i.e. for any two flats f, g the equality rk f + rk g = rk (f + g) + rk (f ∩ g) holds. Observe also
that every point is a flat.
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A flat f is transversal to a family of flats F if f intersects every member of F . A finite family
of flats F is independent if together they span the biggest possible flat; that is, if

rk
X
f∈F

f =
X
f∈F

rk f

We say that a family of flats is m-generic if each m of them are independent.
In [1] its is proved the following: a m-generic finite family of n-flats of a projective geometry

over the field of real numbers has a transversal m-flat if every subfamily of cardinality
¥
3n
2

¦
+m+1

has a transversal m-flat. However, it was used only that the ring of real numbers is commutative.
Therefore, this fact is also true for any field.
The proof of this result has two key elements: a Helly type theorem for linear partitions (see

below) and the use of double ruled linear manifolds. Unfortunately, the existence of double ruled
linear manifolds in a projective geometry over a division ring k can be shown to be equivalent
to the commutativity of multiplication in k. So, the result above seems to be false for projective
geometries over non-commutative division rings.
A linear partition is the union of an independent family of flats. This concept is natural and

can be easily introduced in a wide class of lattices. The Helly type theorem mentioned above is
the following:

Theorem 1 A family of linear partitions in a projective geometry of rank n has non-empty
intersection if every ¹

3n

2

º
of them have non-empty intersection. Furthermore, this is the least possible such number.

Therorem 1 was proved in [1] for projective spaces over the field of real numbers. In this note
we will show that modularity is enough to prove such result, i.e. commutativity is not essential.
Beware of the differences between formulas and concepts in [1] and here. They arise because the
numbers in [1] are calculated based on the dimension and here on the rank. It seems that in the
abstract case the use of the rank function is more appropriate.

2 The Helly number of a lattice

Let L be a lattice. We will suppose that L is complete and atomic i.e. it has a minimum element,
every element of L is a join of a set of points and every set of points has a join. So, L is defined
by a closure operator (denoted by hi) on the set of points. The elements of L will be called flats.
Any flat is defined by the set of points which it contains. The join, is the closure of the union
and the meet is equal to the intersection.
We will say that L is k-Helly if for any finite family T ⊆ L the condition that every subfamily

of T of cardinality k has non-empty intersection is sufficient to conclude that the whole family has
non-empty intersection. If L is k-Helly, then it is k0-Helly for any k0 ≥ k. The Helly number
of L is the minimum number h such that the lattice is h-Helly. Of course, L may have or have
not Helly number. If every chain of L has bounded length, then it has (see [1] ). The classic
Helly theorem states that the lattice of all convex sets (ordered by inclusion) of an affine space

2



of dimension d has Helly number d+ 1. From now on, the existence of the Helly number will be
obvious and our task will be to find its value. Therefore, we will not make any provisions for the
case that the Helly number does not exist. We will denote by h (L) the Helly number of L.
For a finite set A of points we will call Z (A) =

T
a∈A hA− ai the Radon center of A. The

Radon center is a monotone function, i.e. A ⊆ B ⇒ Z (A) ⊆ Z (B). Denote by h∗ (L) the
maximum cardinality of a finite set of points of L with empty Radon center. The following
proposition generalizes to an abstract setting the proof of the classic Helly theorem using the
Radon theorem.

Proposition 2 h (L) = h∗ (L).

Proof. Let A be a set of points with empty Radon center. The family T = {hA− ai}a∈A has the
property that any subfamily of cardinal #A−1 has non-empty intersection but the whole family
has empty intersection. Therefore L is not (#A− 1)-Helly and so h (L) ≥ #A. This shows that
h (L) ≥ h∗ (L).
Now, let T be any finite family with empty intersection and such that any of its subfamilies

of cardinality h (L)− 1 has non-empty intersection. By the definition of the Helly number, there
must exist T 0 ⊆ T with empty intersection and such that #T 0 = h (L). Any subfamily of T 0

of cardinality h (L) − 1 has non-empty intersection and there are h (L) such subfamilies. For
each such subfamily we choose a point in the intersection, thus obtaining a set of points A of
cardinality h (L) (no two of the chosen points can be equal). It is clear that the Radon center of
A is contained in the intersection of T 0 and therefore is empty. So, h (L) ≤ h∗ (L).

We will use a property of the Radon center function defined in the direct product of lattices.
Let L = L1×L2 be the direct product of two atomic complete lattices. Then L is also atomic and
complete. The points in L are of the form (a,∅) or (∅, b) with a ∈ L1 and b ∈ L2. Therefore,
we can think that any set of points of L is the (disjoint) union of a set of points of L1 with
a set of points of L2. Moreover, for any sets of points A ⊆ L1 and B ⊆ L2 we have that
hA ∪Bi = hAi ∪ hBi.

Lemma 3 If L = L1 × L2, then for any sets of points A ⊆ L1 and B ⊆ L2 the equality
Z (A ∪B) = Z (A)∪ Z (B) holds.

Proof. Using the distributive properties between union and intersection we obtain:\
a∈A

hA− a ∪Bi ∩
\
b∈B
hA ∪B − bi = (Z (A) ∪ hBi) ∩ (Z (B) ∪ hAi) = Z (A) ∪ Z (B)

Lemma 3 will mainly be used when considering ideals in a lattice which are isomorphic to a
direct product of two lattices. Suppose that the set of points A∪B is such that A∩B = ∅ and
hA ∪Bi = hAi ∪ hBi. Then the ideal generated by hA ∪Bi is isomorphic to the direct product
of the ideals generated by hAi and hBi and by lemma 3 we have that Z (A ∪B) = Z (A)∪Z (B).
A f flat is called irreducible if its ideal f≤ = {g ∈ L | g ≤ f} can not be decomposed into the

direct product of nontrivial lattices. A set of points A of an atomic complete lattice is called
block (a word taken from graph theory) if it minimally spans the irreducible flat hAi. Singletons
are always blocks and have empty Radon center.
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Observe that if in a set of points A there is a point a such that hAi = hA− ai , then a ∈ Z (A).
Therefore, by the preceding remarks, to calculate the Helly number of a lattice it is enough to
find out which of its blocks have non-empty Radon center.

3 The Radon center of linear partitions.

A combinatorial geometry (see e.g. [4],[5]) is a bounded length atomic lattice with submodu-
lar (rk (f + g) + rk (f ∩ g) ≤ rk f + rk g) rank function. Combinatorial geometries have been
intensively studied often under different names (e.g. “geometric lattices” [3] or “matroids” [6]).
Let L be a combinatorial geometry. Independent families of flats are defined as in the intro-

duction. A family of flats F is dependent if it is not independent. Minimal dependent families
of flats are called circuits (another word taken from graph theory). When the flats are points
these three concept coincide with the usual ones for sets of points.
We will need the following lemma which is valid in any combinatorial geometry, it is straight-

forward and difficult to find in the literature. So, we state it without a proof.

Lemma 4 Let C1 ∪ p and C2 ∪ p be two circuits of points such that hC1 ∪ pi ∩ hC2 ∪ pi = p.
Then C1 ∪ C2 is also a circuit of points spanning p.

A linear partition in L is the union of an independent family of flats. In particular, inde-
pendent sets of points are linear partitions. The following characterization of linear partitions
in combinatorial geometries can be traced back to Tutte [7], where he studied “connectivity in
matroids”.

Lemma 5 A set of points A ⊆ L is a linear partition if and only if whenever a set of points
S ⊆ A is a circuit, then hSi ⊆ A.

For a set of points A ⊆ L denote kAk = {p ∈ hSi | S ⊆ A is a circuit}. By Lemma 5 the set
kAk is a linear partition and the function A 7→ kAk is a closure operator. Therefore, the set of
all linear partitions in L ordered by inclusion is an atomic complete lattice and Proposition 2
can be applied to compute its Helly number.
Another way to define the operator kk is the following. Let A be a set of points. For a, b ∈ A

define a ∼ b if a = b or there is a circuit S ⊆ A such that {a, b} ⊆ S. It is well known
(and can be easily proved from Lemma 5) that ∼ is an equivalence relation. So, the set A
splits into the disjoin union of the equivalence classes A1, . . . , Ar called the components of A
and kAk = hA1i ∪ · · · ∪ hAri. Therefore, if a linear partition kAk is irreducible, then r = 1 and
kAk = hAi.
Let A be a set of points. Denote by Z∗ (A) its Radon center in the lattice of linear partitions,

i.e. Z∗ (A) =
T

a∈A kA− ak. Circuits of points are blocks in the lattice of linear partitions. Since
for a point a in a circuit A we have that kA− ak = A − a it follows that circuits have empty
Radon center in the lattice of linear partitions.

Proposition 6 Suppose that L is modular. If A is a block in the lattice of linear partitions which
is not a circuit nor a singleton, then Z∗ (A) 6= ∅.
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Proof. Let a be a point in A. Observe that a ∈ hA− ai because if not, then no circuit in
A contains a and this contradicts that kAk is irreducible. The set A − a has more than one
component because if not, then hAi = kAk ! kA− ak = hA− ai.
Let X,Y, . . . , Z be the components of A− a. If all components of A− a are singletons, then

A is a circuit. So, we can suppose that X is not a point and therefore for any x in X there is a
circuit in X which contains x. Denote B = Y ∪ · · · ∪ Z. Since the flats hXi , hY i , . . . , hZi are
independent, then hXi and hBi are disjoint. Observe that a /∈ hBi because this would imply
that X is a component of A.
Therefore, rk hB ∪ ai = rk hBi+1 and rk hXi+rk hBi = rk hA− ai = rk hAi. By modularity,

we have that the rank of hXi ∩ hB ∪ ai is equal to

rk hXi+ rk hB ∪ ai− rk (hXi+ hB ∪ ai) = rk hXi+ rk hBi+ 1− rk hAi = 1

Hence hXi ∩ hB ∪ ai is a point which we denote by p.
First, we prove that p /∈ A. Since hXi and B are disjoint, then p /∈ B. If p = a, then

a ∈ hXi ⊆ kA− ak and this contradicts that A minimally spans kAk. Since p ∈ hB ∪ ai but
p /∈ B ∪ a, then there is a circuit C1 ∪ p with C1 ⊆ B ∪ a. If p ∈ X, then there is a circuit C2 ∪ p
with C2 ⊆ X. By Lemma 4 the circuit C1 ∪ C2 ⊆ A − p spans p and therefore p ∈ kA− pk.
From this, A does not minimally span kAk
Finally, we prove that p ∈ Z∗ (A) , i.e. for any q ∈ A we have that p ∈ kA− qk. Suppose

q /∈ X and let X 0, Y 0, . . . , Z 0 be the components of A− q. Since X ⊆ A− q, then any circuit in
X is a circuit in A − q. Therefore, all the elements of X are equivalent in A − q. So, we can
suppose that X ⊆ X 0 and hence p ∈ hXi ⊆ hX 0i ⊆ hX 0i ∪ hY 0i ∪ · · · ∪ hZ 0i = kA− qk.
Suppose q ∈ X. Since X is not a point, then q is in some circuit of X and therefore

hX − qi = hXi 3 p. Let C1 ⊆ X−q be such that C1∪p is a circuit. Since p ∈ hB ∪ ai− (B ∪ a),
then there exist a circuit C2∪p with C2 ⊆ B∪a. By Lemma 4 the circuit C1∪C2 ⊆ A− q spans
p and therefore p ∈ kA− qk.

4 The proof of Theorem 1

Proof. By Proposition 6 the blocks with empty Radon center in the linear partition lattice of
a modular combinatorial geometry are precisely the singletons and circuits. Therefore, by the
results in Section 2, all we have to do is to solve a maximization problem: how big can the
number of points be in a set which is the union of circuits or points provided that they span an
independent family of flats.
Let N = N1 ∪ · · · ∪Nr be such a set. Let s be the number of Ni which are points and t the

number of Ni which are circuits. For j ≥ 3 let tj the number of Ni which are circuits with j
points. Since

n ≥ rk (N) = s+
X
j

(j − 1) tj = #N −
X
j

tj = #N − t,

then the inequality #N ≤ n+ t must hold. From this, we conclude that we must make t as big
as possible.
If n is even, then this is achieved when all the Ni are 3-point circuits and #N = 3t3 = 3n/2.

If n is odd, then there are two solutions. The first is when one of the Ni is a point and all the
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other Ni are 3-point circuits. The second is when one of the Ni is a 4-point circuit and all the
other Ni are 3-point circuits. For both solutions, #N = (3n− 1) /2.
By Proposition 2, we have that the Helly number of the lattice of linear partitions in a

modular combinatorial geometry of rank n is bounded from above by the number b3n/2c. To
show the equality we must find a concrete set of points N = N1 ∪ · · · ∪Nr with the properties
described above. This is not difficult to do for projective geometries using their representation
as projective geometries over a division ring.

5 Conclusion

Denote by π (L) the lattice of linear partitions in L. A theorem due to Garret Birkhoff (see [3])
states that modular combinatorial geometries of finite rank are isomorphic to the direct product
of projective geometries. Since π (L1 × L2) = π (L1)× π (L2) and h (L1 × L2) = h (L1) + h (L2) ,
then Theorem 1 allows to calculate the Helly number of π (L) for all L which are modular
combinatorial geometries of finite rank.
The case when L is a non-modular combinatorial geometry can be tricky. To see this, first

observe that if L has rank 3, then any block in π (L) is a circuit or a singleton and therefore
h (π (L)) = 4, i.e. Theorem 1 also holds for such combinatorial geometries.
On the other hand deleting a point from a combinatorial geometry gives another combinatorial

geometry. Consider the real projective space Pn as Rn augmented with the hyperplane at infinity.
The set A of vertices of the cross-polytope conv {±ei | {e1, · · · , en} is a basis of Rn} is a block
in π (Pn) and Z∗ (A) is the origin of coordinates O. So, h (π (Pn)) = b3 (n+ 1) /2c but by
Proposition 2 we have that h (π (Pn −O)) ≥ #A = 2n. Therefore, Theorem 1 does not hold for
Pn −O for n ≥ 4.
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