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HAEFLIGER STRUCTURES AND LINEAR HOMOTOPY

BY

JAVIER BRACHO1

Abstract. The notion of linear-homotopy into a classifying space is introduced and

used to give a precise classification of Haefliger structures. Appendix on the product

theorem for simplicial spaces and realizations of bisimplicial spaces.

Introduction. A concrete model for a classifying space is usually defined as the

realization of a simplicial space. It is obtained by glueing continuous families of

standard geometric simplexes, and thus, we have a nice coherent notion of linear

simplex lying in it. This extra "linear structure" helps in trying to understand a

classifying space geometrically and not only up to homotopy type. Thinking of

points moving ('/»/-ishly') along these simplexes, we get the notion of linear-

homotopy, which, applied to Segal's model for the classifying space of a groupoid

([S] or (1.3)), gives a finer classification than Haefhger's classical one.

Theorem B. For any topological groupoid G and a locally compact space X, there is

a one-to-one natural correspondence between linear-homotopy classes of maps from X to

BG, and G-structures on X.

This is the main result of the paper (observe (2.1)), so let us make it precise:

Given a simplicial space A, its geometric realization \A | is obtained from UAn X A"

identifying with all the simplicial relations ([S] or (1.1)). Intuitively, think of \A | as

having two directions: a "continuous" one given by the topologies of the An's; and a

"linear" one induced by the second factors. More precisely, consider the underlying

simplicial set of A: As (read /1-discrete) obtained by forgetting the topologies of the

An's. The set-theoretical identity gives us a map |/48|-»|.,4 |. \AS\ represents the

"linear direction" of \A \.

Definition. A homotopy H: X X I ->|/11 is a linear-homotopy if, for every x G X,

the pathHx: I-*\A\ factors through |As\-*\A |.

In terms of foliations: a linear-homotopy is one in which every point moves along

its leaf (see §l(ii) for discussion and examples).
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530 JAVIER BRACHO

G-structures were defined by Haefliger in [H] (there, he called them T-structures

but here G will denote the groupoid). Haefliger's work opened broad perspectives to

the theory of foliations through

Theorem A (Haefliger's Classification). There is a one-to-one natural corre-

spondence between homotopy classes of maps from X to BG, and homotopy classes of

G-structures on X.

We venture a proof of Theorem A when X is locally compact. It follows formally

from Theorem B:

The correspondence is given by pulling back a universal (7-structure on BG, thus,

homotopic maps induce homotopic G-structures. On the other hand, suppose f0 and

/,: X -> BG induce G-structures £0 and £, homotopic through a G-structure £ on

XXI. Use Theorem B to classify £ with a map H: X X I -> BG, and then use it

again to join the endmaps of H to f0 and to/, (through linear-homotopies—which

are good enough).    D

In principle, Theorem B should enable us to work with Haefliger structures in

terms more precise than "up to homotopy" (e.g., foliations up to isotopy). Unfor-

tunately, we still do not know the invariants of linear-homotopy necessary to

undertake such projects.

In the case where G is a topological group, there is a simple application of

Theorem B. Using the fact that (for a paracompact space X) homotopy of principal

G-bundles (i.e., of G-structures) implies isomorphism, Theorems A and B yield that

homotopy and linear-homotopy induce the same relation among maps from X to

BG, that is to say, every homotopy into BG can be transformed into a linear-homo-

topy.

The paper is self-contained. §2 can be considered as a precise proof of Theorem

A. There, we develop the techniques necessary to prove the extra part of Theorem B

which is completed in §3.

The Product Theorem (Theorem 2, Appendix) is essentially used twice within the

text. Its particular application to the proof of Theorem B (part (ii) of Proposition 1,

which is the "support" of the local compactness hypothesis) could have easily been

left to the reader. But we preferred a general treatment in an Appendix to fill the

void of a suitable reference in the literature.

Without the persistent encouragement and advice of Solomon Jekel, this work

would have never achieved its present form. I thank him deeply. Also, I must

acknowledge Daniel Kan's impressive introduction to the subject.

1. Definitions and examples. The definitions in (i) are well known [S]; we rush

through them only to precise notation. In (ii) we discuss a little further the notion of

linear-homotopy and detail the relevant examples. Haefliger structures are treated in

(iii).

(i) Simplicial spaces, topological categories and groupoids. Let n denote the category

naturally associated to the ordered set {0,1,...,«}. Analogously, N has object set

{0,1,...}.
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(1.1) A simplicial space A is a collection {An} of spaces together with face maps f *:

Am -» An for every functor f: n -> m. Its realization is the space | A \— WnAn X A"/~ -

where (a,f*(0) ~ (f*(a), t) for every f : n -» m, a G Am and í G A".

Given a point x G|/4 |, there is a unique nondegenerate simplex of A, car(x) (read

carrier of x), such that (car(x), ?x) represents x, rx is an interior point of A", and

« = dim(car(x)).

(1.2) Given a topological category (top-cat) C, Ob(C) (Mor(C)) denotes its object

(morphism) space; S&T: Mor(C) -» Ob(C) denote the source and target maps. If

every morphism c E Mor(C) has an inverse c"', and if the involution c h» c~x is

continuous, C is called a groupoid. G will denote a groupoid throughout this work.

X will denote a space, or the groupoid naturally associated to it: Ob(A) and

Mor(A) are copies of X and all structural maps are the identity map of A' (A as a

groupoid is the initial object among top-cats having object space X). The context

will always clarify the meaning of X (although that, in a categorical sense, the

difference is superfluous).

The nerve of a top-cat C is the simplicial space AC having (NC)n = Functors{n

-» C} with the subspace topology from Mor(C)Mor(n). And the realization of C is

\C\ = \NC\.
Observe that if x E\C\, then \car(x)\(tx) — x.

The explicit model for the classifying space of a groupoid that we use is Segal's

generalization of Milnor's join construction [S]:

(1.3) Given a topological category C, let CN denote the subtop-cat of N X C

obtained by deleting all nonidentity morphisms whose first component is an

identity. Then define BC — | CN |.

(ii) Linear homotopy. Xs (read X-discrete) denotes the space with the same pointset

as X but with the discrete topology. Thus, for a simplicial space A, we have

As — {As„} and there is an obvious simplicial map As -» A. The analogous notation

applies to top-cats.

Let A be a simplicial space (or a top-cat). Consider a homotopy H: X X I -» | A \.

We always have a set theoretical commutative diagram:

Xs X I     "       \AS\

(1.4) I I
H

XXI      -*      \A\

H is a linear-homotopy if and only if H1 is continuous.

Linear-homotopy is a natural equivalence relation to consider among maps into

"classifying spaces". Here are some examples.

For a discrete simplicial space, linear-homotopy is homotopy in the usual sense.

On the other extreme, a linear-homotopy into a space Y = \ Y | is constant (as a

homotopy). Thus, linear-homotopy is equality among spaces.

(1.5) Natural transformations induce linear-homotopies. This observation is due to

Segal [S] (where we borrowed the term from). Let T: C X 1 -» D be a (continuous)
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532 JAVIER BRACHO

natural transformation—C and D are topological categories. The Product Theorem

(Theorem 2, Appendix) gives us a homotopy |F|:|C|X/-»|Z)|. But we also have a

map | Ts | : | Cs \ XI -| Ds | through which | Tf clearly factors (see (1.4)). Whence, | T\

is, in fact, a linear-homotopy.

Finally, let us consider Haefliger's groupoid F [H]. BY is the "classifying space for

foliations", and it is well known that BTS is the leaf of the universal foliation on BY.

Thus, linear-homotopy is precisely "moving along the leafs". In this context,

Theorem B is intuitively clear: the foliation induced by a map /: X -» BY is not

changed at all if we let X move along the universal foliation.

(iii) Haefliger structures. The following definition is easily seen to correspond

exactly to the original one of Haefliger [H].

First, we associate a groupoid to an open cover:

(1.6) Given U = {Va}ae-Z, an open cover of X, denote by 2 the discrete groupoid

with Ob(2) = 2 and Mor(2) = 2X2 with the obvious structural maps. Then

define Xu to be the full subgroupoid of X X 2 spanned by the subspace of objects:

{(x,a)\xEUa).

(1.7) Definition. A G-structure on X is an equivalence class of G-cocycles on X;

where a G-cocycle on X is a pair (U, F) with U an open cover of X and F: XL, -» G a

functor; and where two G-cocycles (U0, F0) and (Ux, Fx) on X are equivalent if there

exists a functor F: Xu uu -> G restricting (in the obvious sense) to F0 and F,. A

G-structure on X is numerable if it is represented by a G-cocycle (U, F) with Í/

admitting a subordinate partition of unity.

Examples of G-structures form a wide spectrum: maps (when G is a space);

principal bundles (when G is a group); foliations (for Haefliger's T); manifold or

geometric structures (O-dimensional foliations for obvious choices of T), and vector

bundle morphisms are some of them. For more discussion and examples see [H or

B].

2. Proof of Theorem A. Partitions of unity play an important role in the classic

proof of Theorem A. For expository reasons, we did not mention them in the

Introduction. But it is due time to correct this omission:

(2.1) Remark. In Theorems A and B, "G-structures" should read "numerable

G-structures". Furthermore, in Theorem A, homotopies between numerable G-struc-

tures are understood to be numerable.

Here, instead of working with partitions of unity in the usual way, we work with

(the closely related concept of) maps into the infinite simplex A00 ( = | N |, as

definition). So we have

(2.2) Definition. Given a map/»: X -» A00, let Xp be the full subtop-cat of X X N

spanned by the subspace of objects {(x, i)\ i G Image(car(/»(x)))}. A numerated

G-cocycle on X is a pair (/», F) where /»: X -» A00 is a map and F: Xp -* G is a

functor. Denote by NumCo(X, G) the set of such.

(2.3) Remark. Numerable G-structures on X can be considered in a natural way as

equivalence classes of numerated G-cocycles on X under the obvious equivalence

relation (see, e.g., (2.5)).
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This is so because a numerated G-cocycle on X is essentially a G-cocycle together

with a fixed subordinate partition of unity. (Compare (2.2) with (1.6) and (1.7),

keeping in mind the natural open cover of A00 and that G is a groupoid.) (Details can

be found in [B] or in the author's Thesis.)

Matching the precision gained by (2.3), we have

Proposition 1. For a locally compact space X, and any groupoid G, there is a

natural bijection

Maps( A, £G ) « NumCo( X, G).

Proof, (i) Let /: X -» BG be a given map. Recall that BG=\GN\ and that

GN C N X G, (1.3). Let ttx be the projection functor from GN to N. Then put

P=\"x\-f
To define F: X -» G, let Xf be the subtop-cat of X X GN consisting of objects

(and morphisms) (x, g) such that g E Image(car(/(x))). Ay is indeed a category for,

by the definition of GN, the image of any simplex (n -> GN) is already a subcategory

of GN.

(2.4) Claim. The restriction to Ay of the functor idx X ttx: X X GN -» X X N is an

isomorphism onto Xp.

Since 77, takes car(/(x)) isomorphically onto car(/»(x)) for every x E X, then it is

clear that (idx X trx)\X¡is a bijection onto Xp. That it is, moreover, an isomorphism

of top-cats follows from the fact that, since N is discrete, id x X mx is open.

Observe that Xf comes equipped with a functor/: Xf -» GN, so that we define F as

the composite

/ w2

Xp -> Xf->GN^G.

This gives the correspondence Maps(Ar, BG) -» NumCo(X, G).

(ii) Take (p, F) ENumCo(X,G). Let /»: X -» N be the projection functor.

Observe that (p, F): Xp -» N X G factors through the inclusion GN -* N X G; so

that we get a functor F: Xp -» GN.

If A" is locally compact then | X X N | = X X A00 (Theorem 2, Appendix), and then

the graph of/» defines a section j : X -»| X \. This gives a map

The rest of the proof is straightforward.    D

Proposition 2. Let X be locally compact, and G a groupoid. Letf0, /,: X -* BG and

(/»0, F0),(/»,, F,) G NumCo(Ar, G) correspond, respectively, to each other by means

of Proposition 1, then

( Fo ' F0 ) ~ ( /» |, F, ) => /0 « linear-homotopic to /,.

Proof. Let «0, «,: N -» N be the functors «0(«) = 2«, «,(«) = 2« + 1. Let /»:

X -» A°° be the map defined by

/» = i(l*o|-A)+i(N-i»i)
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and let ik: Xpk -* X , k = 0,1, be the obvious inclusions (restrict iàx X hk). We

clearly have

(2.5) (p0, F0) ~ (/»,, F,) iff there exists F: Xp -» G such that F0 — F ■ i0 and

F^F-/,.
Recalling part (ii) of Proposition 1, consider the diagram

>BG

where /0 and /, appear as the top and bottom row compositions respectively. We see

that the diagram commutes up to linear-homotopy:

Clearly, the left-hand side triangles are linear-homotopy commutative (all the

maps except the F's are linear-homotopy equivalences). On the other hand, the

natural transformations from Fk to F ° ik defined by

(x, n) h* (n -* hk(n),id(Fk(x, «)))

for (x, n) G Ob(Xp¡) and k = 0,1, produce via (1.5) the required linear-homotopies

for the right-hand side triangles.    D

At this point, the proof of Theorem A given in the Introduction works with two

comments on it: the first assertion is clearly valid (reconsider part (i) of Proposition

1 with idBC); as for the applications of Theorem B, observe that Propositions 1 and

2 are (respectively) sufficient.

3. Proof of Theorem B. There only remains to prove the following

Proposition 3. With notation as in Proposition 2, we have

f0 is linear-homotopic tofx => ( p0, F0 ) ~ ( p x, F, ).

Proof. Let /»: X -» A00 be as in Proposition 2. From (2.5) it clearly suffices to fill

the following diagram:

(3.1)
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Let H: X X I -* BG be a linear-homotopy from/0 to/,.

(i) Construction of C. (a) Let A be the subsimplicial-space of A( A X /) X AGN

generated by the simplices {((x, t),car(H(x, t)))}.

(b) Let B = A/~ , where ~ is the equivalence relation:

(3.2) Given ((x, t), a)&((x,_£),_o) G A„, for any « 3* 0, ((x, t), a) ~ ((x, s), a) iff

((x, t'), a) G An for every t' G ts (ts is the interval between / and s).

(c) Let C be the top-cat: Ob(C) = B0, Mor(C) = ^0X^50 with the obvious

groupoid structure.

The fibre product B0XXB0 is performed (on both sides) over the 0-component of

the simplicial map B -* AA, obtained from the diagram:

A-► A(A" x /) x AGN-► N(X x /)-► NX
N _- — ~*

Note from the definition that there is a unique simplicial map ß: B -* NC for

which ß0 = id Bo.

(ii) Construction of thej 's.

(3.3) Observe that A is the nerve of (A" X I)H as constructed in (i) of Proposition

1.
Then, (2.4) together with the obvious functoriality of the construction gives us

inclusions AA   -» A  (where, as from now on, k = 0,1). Now, the compositepi, ß

simplicial maps NX   -» A -» B -» AC are the nerves of functors y^: Xp -» C.

Observing that Ob^) = ObiA^IIObi*^), the object map of j: Xp - C is

forced upon us. And on morphisms simply put Mor(y') = (Ob(/) ° S, Ob(j) ° T).

(iii) Construction of F. Here, we have to look at the construction of C more closely.

From the inclusion/I C N(X X I) X NGN we obtain projection simplicial maps:

(3.4) Pr, restricted to any component of An (for any n > 0) is a homeomorphism

onto an open set of X X I = N(X X /)„.
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This follows from (3.3) and (2.4). (Moreover, A0 can be considered as an open

cover of A X /, and An consists of the «-fold intersections of the "components" of

A0.)

(3.5) Given a and b in An, then a ~ b (in the sense of (3.2)) iff for some x G A, a

and b lie in the same component of (Ax)n, where Ax denotes the simplicial fibre in A

over x.

One implication is obvious. For the other, suppose a and b lie in the same

component of (Ax)n. Note from (3.4) that every component of (Ax)n is homeomor-

phic to an open interval in /.

Since H is a linear-homotopy, Hx: I -* BG factors through BGS -» BG. Then, the

projection Pr2\Ax: Ax -» AGN factors through NG\\ -* NGN; thus, Pr2 is constant

on every component of (Ax)„. From here, (3.5) easily follows.

(3.6) The projection B -> AA is locally a homeomorphism (i.e. every point of Bn

has an open neighbourhood homeomorphic to an open set of A).

(3.4) and (3.5) reduce this to an easy exercise in point set topology. Namely, U/~

has the required property with U an open subset of A X / and (x, t) ~ (x, s) iff

(x,t') G U for all t' eTs.

Let Bx be the simplicial fibre in B over x G X. The final step is to prove

(3.7) Bx is a contractible simplicial set (i.e., Bx is discrete as subsimplicial space of

B, and | Bx | is contractible).

(3.5) implies that (Bx)n has a point for every connected component of (Ax)n (one

could write Bx = TL0(AX)), and (3.6) implies that every point of (Bx)n is open. Thus,

Bx is discrete.

Before giving an explicit description of Bx, let us see how its contractibility gives a

natural definition for F:

There is an obvious simplicial map F': B -» AG (recall part (i)). Thus, F is already

defined on objects (Ob(C) = B0). Now, given (a, b) G Mor(C), we have that

a & b E (Bx)0 for some x G A. Then, since Bx is connected, we can find a simplicial

path in 5V:

To     m   Jx_.     In

a b,

where " —" can be " <- " or " -» ". Then define

(3.8) F(a,b) = F'x(yn)c"o ... o F¡(yoy>

where e, is 1 or -1 according to the orientation of y,. Since Bx is simply-connected,

any two paths as above are simphcially homotopic. And, using F{, one easily sees

that simplicial moves do not affect the outcome of (3.8). Thus, F is well defined.

Finally, the continuity of F follows from (3.6) (any simplicial path as above can be

extended over a small neighborhood of x).
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To describe Bx explicitly, consider the map t =| ttx \ ° Hx: I -» A00. Then Ax is the

nerve of IT (recall (2.2), (2.4) and (3.3)).

Let {t/a}ae2 be the open cover of / consisting of the connected components of

(Ax)0 = Ob(/T). We have a function *: 2 -> N, for which {Ua\aE *"'(/)} is the

set of components of the open subset of I: {t E I\i E Image(car(T(i)))}-

Now Bx can be described as the simplicial set with a vertex ua for each a G 2 and

an «-simplex (k ,...,» ) whenever CY¡=QUa¡ ¥= 0 and ^(öq) < ^(a,) «£•••<

vI'(a„). To give an exphcit contraction of Bx, note that we can find a finite sequence

a0, a1,.. .,ak, such that for each a G 2, we either have (a) Ua C Ua. for a unique i;

or (b) £/a C t/„f-i n C/a, and £/„ n i/a, = 0 for j^i- I, i. (Put lub(t7ao) =

max{lub(i/a) |0 G Ua), and proceed by induction using that each t E I is in exactly

dim(car(T(r))) of the C/a's.) Then, retract Bx to the path (uao, ua<),... ,(wa*-i, uau)

by sending ua to «„<■ if (a) holds, or to the barycenter of (ua,-¡, ua,) if (b) holds, and

extending linearly. The path is contractible. Hence, we have completed the proof of

the theorem.

Appendix. The Product Theorem. We give an elementary proof of Milnor's Product

Theorem for simplicial spaces. Different versions of it are well known and widely

used, but the following one (whose proof follows essentially Milnor's original one

[M]) does not appear in the literature. The right setting to work in is that of

bisimplicial spaces.

Given a bisimplicial space E (i.e., a functor E: Aop X Aop -» Top, where A is the

category of the ordered sets n = {0,1,...,«}), one has three simplicial spaces

naturally associated to it: the diagonal £A; the vertical realization E", obtained by

realizing the columns of E; and the horizontal realization Eh.

Theorem 1. For any bisimplicial space E: |£A| = |£',| = |£/'|.

(Here, equality means canonical homeomorphism, realization is the usual one

([S] or (1.3)), and everything takes place in the classic category of topological

spaces.)

Proof. Consider the diagram

I]   Enm xA(nxrn)fcxA*
n,m,k/ ^^

(A.i) y \^

UEkikxAk UF^xA-xA-
k n,m

To define a and ß, recall that a /c-simplex of the nerve of n X m is a functor a:

k -» n X m; denote its projections by a, : k -» n and a2: k -> m. Then put

a(e, a, t) = ((ax,a2)*(e), t),       ß{e, a, t) = (e, \ax\(t), \a2\(t)).
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(A.2) Let ||£|| be the quotient of WnmEnm X A" X Am under the relation

(e,f*/,,g*í2) ~ ((f>g)*e> 'i> h) (f°r all obvious choices).

Clearly, the fibres of ß composed with the quotient map to ||F|| correspond to the

fibres of a followed by the quotient to | FA |. Thus, to conclude that | £A |= ||F|| we

show that a and ß are quotient maps:

a is a quotient map for it has a section d(e, t) = (e\(idk,idk), t) (which includes

the obvious diagonal mappings).

With ß, one runs into the classic nuisance: "the product of quotients is not

necessarily a quotient". However, we get by with the following elementary lemma,

whose proof follows literally that of Hu's book [HU, Lemma (IV, 6.1), p. 143].

Definition. A quotient map q: X -» Y is locally compact if for every pointed

neighborhood (y, V) in Y there exists an open set U of A with compact closure

contained in q'x(V), and such that q(U) is an open neighborhood of y.

Lemma. If one of the quotient maps p, q is locally compact, then p X q is a quotient

map.

The Lemma applies to the components of ß: "fix n, m"; the hypothesis being

fulfilled by the second factors. Hence, ß is a quotient map and | £A |= ||F||.

The theorem now follows by proving that ||F|| =\Eh\ (and symmetrically ||F|| =

| E° |). But this is obvious from the fact that the composition

II En<m X A" X ÙT - III {il » Enm)\x A"1 -*\Eh\
n.m m

is a quotient map (apply the Lemma—A"1 is compact).    D

As a corollary to the proof we obtain a sharp generalization of Milnor's Product

Theorem [M].

Theorem 2. Let A and B be simplicial spaces. If the quotient map U„Bn X A" -* | B |

is locally compact, then \A X B\ = \A\X\B\.

Proof. Consider the bisimplicial space {En m = AnX Bm). The Lemma implies

that \A | X| B |= ||F|| (recall (A.2)). And, on the other hand, FA = A X B.    □
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