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Abstract. In this paper we “measure” the size of the set ofn-transversals of a family
F of convex sets inRn+k according to its homological complexity inside the correspond-
ing Grassmannian manifold. Our main result states that the “measure”µ of the set of
n-transversals ofF is greater than or equal tok if and only if everyk + 1 members ofF
have a common point and also if and only if for some integerm, 1 ≤ m ≤ n, and every
subfamilyF ′ of F with k+ 2 members, the “measure”µ of the set ofm-transversals ofF ′

is greater than or equal tok.

1. Introduction

For a family F = {A1, . . . , Ad} of d convex sets inRn+k, let Tn(F) be the set ofn-
transversals toF, that is, the set of alln-planes inRn+k which intersect every member
of F.

If X is a set ofn-planes inRn+k, we say thatµ(X) ≥ r if X has “homologically” as
manyn-planes as the set ofn-planes through the origin inRn+r . Thus,µ “measures”
the homological complexity ofX inside the corresponding Grassmannian manifold.We
use this “measure” to prove that if subfamilies ofF with few members have enough
transversals of small dimension, then the whole familyF has many transversals of a
fixed dimension. That is, after a formal definition ofµ, in Section 2, we prove in Section
3 the equivalence of the following three properties:

• Everyk+ 1 members ofF have a point in common.
• µ(Tn(F)) ≥ k.
• For some integerm where 1≤ m ≤ n and every subfamilyF ′ of F with k + 2

members,µ(Tm(F ′)) ≥ k.
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The first equivalence can be thought of as a homological version of Horn and Klee’s
classical results [5], [6]. See also [4]. They proved that the following assertions are
equivalent:

(a) Everyk+ 1 members ofF have a point in common.
(b) Every linearn-subspace ofRn+k admits a translate which is a member ofTn(F).
(c) Every(n− 1)-plane3 lies in a member ofTn(F).

First note that (b) is just assertion (c), when3 lies at infinity. In fact, the set of all
n-planes that contain3 is a manifold embedded in the corresponding Grassmannian
manifold, which represents an element of its cohomology. So, by using the product
structure of the cohomology we shall prove that

µ(Tn(F)) ≥ k ⇒ (b) and(c).

If X is a set ofn-planes inRn+k and for every linearn-subspace ofRn+k we can
choose a translate which is a member ofX, thenµ(Tn(F)) is not necessarily greater
than or equal tok, unless, of course, according to our definition ofµ, the choice can
be done continuously. IfX = Tn(F), the existence of a member ofTn(F) parallel to
every linearn-subspace ofRn+k implies that we can choose this member continuously
and hence that

µ(Tn(F)) ≥ k ⇔ (b) and(c).

The spirit of the complete equivalences follows the topological study of the space of
transversals initiated in [1] and [2].

We consider Euclideann-spaceRn and complete it to then-projective spacePn by
adding the hyperplane at infinity. LetG(n+k,n) be the Grassmanniannk-manifold of all
n-planes through the origin in Euclidean spaceRn+k. Although we summarize what we
need in Section 2, good references for the homology and cohomology of Grassmannian
manifolds are [7], [9] and [3]; see also [8]. In this paper we use reduced Cech-homology
and cohomology withZ2-coefficients.

2. The Topology of Grassmannian Manifolds

Let λ1, . . . , λn be a sequence of integers such that 0≤ λ1 ≤ · · · ≤ λn ≤ k. We denote
by:

(2.1) {λ1, . . . , λn} = {H ∈ G(n+ k,n) | dim (H ∩ Rλj+ j ) ≥ j, j = 1, . . . ,n}. For
example,{0, λ, . . . , λ} = {H ∈ G(n+ k,n) | R1 ⊂ H ⊂ Rn+λ} and{k − λ, . . . , k −
λ, k} = {H ∈ G(n+ k,n) | dim(H ∩ Rn−1+k−λ) ≥ n− 1}.

(2.2) It is known that{λ1, . . . , λn} ⊂ G(n + k,n) is a closed connectedλ-manifold,
where λ = ∑n

1 λi , except possibly for a closed connected subset of codimension
three. Thus,Hλ({λ1, . . . , λn}; Z2) = Z2 = Hλ({λ1, . . . , λn}; Z2). Let (λ1, . . . , λn) ∈
Hλ(G(n + k,n); Z2) be theλ-cycle which is induced by the inclusion{λ1, . . . , λn} ⊂
G(n+ k,n). These cycles are calledSchubert-cycles. A canonical basis forHλ(G(n+
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k,n); Z2) consists of all Schubert-cycles(ξ1, . . . , ξn) such that 0≤ ξ1 ≤ · · · ≤ ξn ≤ k
and

∑n
1 ξi = λ

(2.3) We denote by [λ1, . . . , λn] ∈ Hλ(G(n + k,n); Z2) theλ-cocycle whose value
is one for(λ1, . . . , λn) and zero for any other Schubert-cycle of dimensionλ. Thus a
canonical basis forHλ(G(n+ k,n); Z2) consists of all Schubert-cocycles [ξ1, . . . , ξn]
such that 0≤ ξ1 ≤ · · · ≤ ξn ≤ k and

∑n
1 ξi = λ.

The isomorphismD: Hλ(G(n + k,n); Z2) → Hnk−λ(G(n + k,n); Z2) given by
D((λ1, . . . , λn)) = [k− λn, . . . , k− λ1] is the classicalPoincaŕe Duality Isomorphism.

(2.4) By the above, ifX ⊂ G(n + k,n) is such thatX ∩ {λ1, . . . , λn} = ∅ and
i X: X→ G(n+ k,n) is the inclusion, then

i ∗X(D((λ1, . . . , λn))) = i ∗X([k− λn, . . . , k− λ1]) = 0.

(2.5) Let M(n+ k,n) be the set of alln-planes inRn+k. Thus,G(n+ k,n) ⊂ M(n+
k,n). We regardM(n + k,n) as an open subset ofG(n + k + 1,n + 1), making the
following identifications:

Let z0 ∈ Rn+k+1 − Rn+k be a fixed point and, without loss of generality, letG(n+
k + 1,n + 1) be the space of all(n + 1)-planes inRn+k+1 throughz0. We identify
H ∈ M(n + k,n) with the unique(n + 1)-plane H ′ ∈ G(n + k + 1,n + 1) which
containsH and passes throughz0. Thus

G(n+ k,n) ⊂ M(n+ k,n) ⊂ G(n+ k+ 1,n+ 1),

where M(n + k,n) is an open subset ofG(n + k + 1,n + 1) and G(n + k,n) ⊂
G(n + k + 1,n + 1) may be regarded as{0, k, . . . , k}, the set of all(n + 1)-planes in
Rn+k+1 which containsR1. In other words, ifj : G(n+k,n)→ G(n+k+1,n+1) is the
inclusion, thenj ({λ1, . . . , λn}) = {0, λ1, . . . , λn}. So, if 0≤ λ ≤ k, then{0, λ, . . . , λ}
as a subset ofM(n+ k,n) is the set of alln-planesH through the origin inRn+k with
the property thatH ⊂ Rn+λ.

If X ⊂ M(n+ k,n), theni X: X→ G(n+ k+ 1,n+ 1) denotes the inclusion.

(2.6) Let A be a subset ofX, let i : A→ X be the inclusion and letγ ∈ H∗(X; Z2).

We say thatγ is zero or not zeroin A, providedi ∗(γ ) is zero or not zero respectively, in
H ∗(A; Z2).

Now we are ready to state our main definition which captures the basic idea of having
as manyn-planes as the set of alln-planes through the origin inRn+r .

Definition. Let X ⊂ M(n+ k,n) ⊂ G(n+ k+ 1,n+ 1). For 0≤ r ≤ k, we say that
the “measure” ofX is at leastr,

µ(X) ≥ r,

if [0 , r, . . . , r ] is not zero inX.
It is easy to verify that ifµ(X) ≥ r, then, for any integer 0≤ r0 ≤ r, µ(X) ≥ r0.

Furthermore, observe that ifm> 0, thenX is also naturally contained inM(n+m+k,n)
and the definition of the “measure”µ is independent ofm.
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Example 2.1. Let F = {A0, . . . , Ad} be a family of convex sets. We say thatF has
a cycle of transversal linesif there is a transversal line that moves continuously until
it comes back to itself with the opposite orientation. Observe thatF has a cycle of
transversal lines if and only ifµ(T1(F)) ≥ 1.

The following lemma will be very useful for our purposes.

Lemma 2.1. Let X⊂ M(n+k,n) be a collection of n-planes and let H be an r-plane
of Rn+k, 1≤ r ≤ k. If µ(X) ≥ r, then there is0 ∈ X such thatπH (0) is a single point,
whereπH : Rn+k → H is the orthogonal projection.

Proof. Let Y ⊂ M(n+ k,n) be the set of alln-planes0 in Rn+k such thatπH (0) is a
single point. As in (2.5), we regardY ⊂ M(n+ k,n) as a subset ofG(n+ k+1,n+1).
Let1 be the(n+k− r )-plane inRn+k+1 throughz0 orthogonal to the(r +1)-plane that
containsH and passes throughz0. Note that0 ∈ Y if and only if the(n+ 1)-plane0′

that contains0 and passes throughz0 is such that dim(0′ ∩1) ≥ n.Consequently, if we
regardY as a subset ofG(n+k+1,n+1), by (2.1) and (2.5),Y = {k− r, . . . , k− r, k}.

We regardX as a subset ofG(n+ k+ 1,n+ 1) and suppose thatX ∩ Y = ∅. Then,
by (2.4), i ∗X([0, r, . . . , r ]) = 0, which means that [0, r, . . . , r ] is zero in X, but this
is a contradiction becauseµ(X) ≥ r. Then X ∩ Y 6= ∅. This completes the proof of
Lemma 2.1.

Remark 2.1. If, in the above proof,k = r andY ⊂ M(n + k,n) is the set of all
n-planes0 in Rn+k such that0 ⊂ 3, where3 is an(n − 1)-plane inPn+k, then we
obtain the following result. LetX ⊂ M(n + k,n) be a collection ofn-planes with the
property thatµ(X) ≥ k, then every linearn-subspace ofRn+k admits a translate which
is a member ofX; and every(n− 1)-plane3 lies in a member ofX.

3. The Space of Transversals

Let F = {A0, . . . , Ad} be a family of convex sets inRn+k and letTn(F), the space of
n-transversals of F, be the subset of the Grassmannian manifoldM(n+k,n) of n-planes
that intersect all members ofF.

Before stating our first result we need the following technical lemma.

Lemma 3.1. Let A0, A1, . . . , Ak be k+ 1 convex sets in Rn+k, n ≥ 0, such that⋂k
0 Ai = ∅. Then there is a k-dimensional linear subspace H of Rn+k with the property

that
⋂k

0 πH (Ai ) = ∅, whereπH : Rn+k → H is the orthogonal projection.

Proof. The proof is by induction onk. If k = 1, the proof follows by the separation
theorem for disjoint convex sets. Suppose the theorem is true fork, we will prove it for
k+ 1.

Let A0, A1, . . . , Ak+1 bek + 2 convex sets inRn+k, such that
⋂k+1

0 Ai = ∅. Since
(
⋂k

0 Ai ) ∩ Ak+1 = ∅, then there is a hyperplane3 that separates
⋂k

0 Ai from Ak+1.
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Suppose
⋂k

0 Ai ⊂ 3− and Ak+1 ⊂ 3+, where3+ and3− are the closed half-spaces
determined by3. Note that

⋂k
0(A

i ∩3+) = ∅.
By the induction hypothesis, there is ak-dimensional linear subspaceH0 such that⋂k

0 πH0(A
i ∩3+) = ∅. Let H be a(k+ 1)-dimensional linear subspace containingH0

and the one-dimensional linear subspace orthogonal to3. We shall prove that

k+1⋂
0

πH (A
i ) = ∅.

Assume the opposite and takex ∈ ⋂k+1
0 πH (Ai ). Sincex ∈ πH (Ak+1) ⊂ πH (3

+),
thenx ∈ πH (Ai ∩3+), for i = 0, . . . , k, which is a contradiction because

⋂k
0 πH (Ai ∩

3+) 6= ∅ implies
⋂k

0 πH0(πH (Ai ∩3+)) =⋂k
0 πH0(A

i ∩3+) 6= ∅.

Our first result characterizes families of convex sets with the(k + 1)-intersection
property.

Theorem 3.2. Let F = {A1, . . . , Ad} be a family of d convex sets in Rn+k, d ≥ k+ 1.
Every subfamily of F with k+ 1 members has a common point if and only if

µ(Tn(F)) ≥ k.

Proof. Suppose every subfamily ofF with k + 1 members has a common point. We
start by constructing a continuous mapψ : G(n+ k,n)→ Tn(F) as follows: for every
n-planeH through the origin, letπH : Rn+k → H⊥ be the orthogonal projection, where
H⊥ is thek-plane through the origin orthogonal toH.We consider the familyπH (F) =
{πH (A1), . . . , πH (Ad)} of d convex sets inH⊥. Note that every subfamily ofπH (F)
with k+ 1 members has a common point. Therefore, by Helly’s theorem, the convex set
F(H) = ⋂d

1 πH (Ai ) is not empty. Note also thatF(H) ⊂ H⊥ depends continuously
on H ∈ G(n+ k,n). Letψ(H) be then-plane through the center of mass ofF(H) and
orthogonal toH⊥. By construction,ψ(H) ∈ Tn(F).

Let i : Tn(F)→ G(n+k+1,n+1)and note thatiψ : G(n+k,n)→ G(n+k+1,n+1)
is homotopic to the inclusion. Therefore, by (2.1) and (2.3), [0, k, . . . , k] is not zero in
Tn(F) and henceµ(Tn(F)) ≥ k.

Suppose nowµ(Tn(F)) ≥ k and suppose that
⋂k+1

1 Ai = ∅. By Lemma 3.1, there is
a k-dimensional linear subspaceH of Rn+k with the property that

⋂k+1
1 πH (Ai ) = ∅,

whereπH : Rn+k → H is the orthogonal projection. This is a contradiction because,
by Lemma 2.1, there is0 ∈ Tn(F) such thatπH (0) is a single point which lies in⋂d

1 πH (Ai ). This completes the proof of Theorem 3.2.

Example 3.1. Fork = 1 andn = 2, Theorem 3.2 states that every two members ofF
have a common point if and only if for every direction there is a transversal plane toF
orthogonal to it.

Our next result characterizes families ofk+2 convex sets with the(k+1)-intersection
property. Note that this time our transversals need not be of dimensionk.
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Theorem 3.3. Let F = {A1, . . . , Ak+2} be a family of k+ 2 convex sets in Rn+k and
consider an integer1≤ m≤ n.Every subfamily of F with k+1members has a common
point if and only if

µ(Tm(F)) ≥ k.

Proof. Suppose every subfamily ofF with k + 1 members has a common point. For
i = 1, . . . , k+ 2, let ai ∈

⋂
j 6=i {Aj ∈ F} 6= ∅ and let0 be an(m+ k)-plane containing

2 = {a1, . . . ,ak+2}. Furthermore, fori = 1, . . . , k+2, let Bi ⊂ 0 be the convex hull of
the set{aj ∈ 2 | i 6= j }.Therefore,F ′ = {B1, . . . , Bk+2} is a family of convex sets in the
(m+ k)-plane0 with the property thatTm(F ′) ⊂ Tm(F) because, fori = 1, . . . , k+ 2,
Bi ⊂ Ai . By Theorem 3.2, forn = m, µ(Tm(F ′)) ≥ k, which immediately implies that
µ(Tm(F)) ≥ k.

Suppose nowµ(Tm(F)) ≥ k and suppose
⋂k+1

1 Ai = ∅. By Lemma 3.1, there is ak-
dimensional linear subspaceH of Rn+k with the property that

⋂k+1
1 πH (Ai ) = ∅,where

πH : Rn+k → H is the orthogonal projection. Note now thatTm(F) ⊂ M(m+ (n−m+
k),m) is a collection ofm-planes inRm+(n−m+k) with the property thatµ(Tm(F)) ≥ k,
andH is ak-plane, 1≤ k ≤ n−m+ k. By Lemma 2.1, there is0 ∈ Tm(F) such that
πH (0) is a single point which lies in

⋂k+1
1 πH (Ai ). This is a contradiction.

Example 3.2. For k = 1 andm = 1, Theorem 3.3 states that three convex sets have
the property that every two of them have a common point if and only if there is a cycle
of transversal lines to them.

We conclude with our main result, whose proof follows immediately from Theorems
3.2 and 3.3.

Theorem 3.4. Let F = {A1, . . . , Ad} be a family of d convex sets in Rn+k, d ≥ k+2,
and consider an integer1 ≤ m ≤ n. Every subfamily F′ of F with k+ 2 members has
the property thatµ(Tm(F ′)) ≥ k if and only ifµ(Tn(F)) ≥ k.

Example 3.3. Following Horn and Klee’s spirit, fork = 1,n = 2 andm= 1,Theorem
3.4 states that every three convex sets ofF have a cycle of transversal lines if and only
if F has transversal planes orthogonal to every direction.

Example 3.4. Form= n, Theorem 3.4 states that if for every subfamilyF ′ of F with
k+ 2 members and for every linearn-subspace ofRn+k there is a translate which is an
n-transversal toF ′, then every linearn-subspace ofRn+k admits a translate which is an
n-transversal toF.

Example 3.5. Let F = {A1, . . . , Ad} be a family of convex sets inRn+k. According
to [1], F has avirtual n-point if there are (homologically) as manyn-transversals toF
as if F had a common point, that is, as manyn-transversals as there aren-planes through
the origin inRn+k.More precisely,F has avirtual n-point if and only ifµ(Tn(F)) ≥ k.
Form= n, Theorem 3.4 states that every subfamilyF ′ of F with k+ 2 members has a
virtual n-point if and only if F has a virtualn-point.
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