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ABSTRACT

A k-graph, H = (V,E), is tight if for every surjective mapping f. V —
... k} there exists an edge a € £ such that f|, is injective. Clearly,
2-graphs are _tight if and only if they are connected. Bounds for the mini-
mum number ¢} of edges in a tight k-graph with n7 vertices are given. We
conjecture that o7 = [n(n — 2)/3] for every n and prove the equality when
2n + 1 is prime. From the examples, minimal embeddings of complete
graphs into surfaces follow. ® 1992 John Wiley & Sons, Inc.

1. INTRODUCTION

The concepts of heterocoloring and heterochromatic number of hyper-
graphs are introduced in this paper. They are inspired by the triangle-free
disconnection of a digraph, introduced in [6]. From them, a new type of
connectivity-related notion is obtained.

By a t-coloring of the hypergraph H = (V, E), we mean a surjective map-
ping from the vertex set V onto a -element set. A t-coloring f of H separates
the edge a € E if the images by f of the vertices in a are all diffcrent. We
call f heterochromatic (or a t-heterocoloring of H) if f separates some edge
of H. The heterochromatic number of H, denoted 4e(H), is the maximum ¢
for which there exists a (f — 1)-coloring that is not heterochromatic.

Observe that 4c(H) = n + 1, where n denotes the number of vertices.
On the other hand, assuming E # &, we have 4e(H) = min{a; a € E}, and
4e(H) is the minimum number ¢ for which any #-coloring of H is hetero-
chromatic. Note also that if H' is a spanning subhypergraph of H, then
he(H') = he(H).
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A k-graph, also called k-uniform hypergraph, is a hypergraph for which
all edges have exactly k vertices.

A 2-graph is simply a graph. Clearly, for a graph G, 4¢(G) = ¢ + 1, where
¢ is the number of connected components of G. Hence, G is connected iff
he(G) < 2.

A k-graph is called tight iff 4c(H) =< k, that is, if it has less than k vertices
or if 42(H) = k. In a tight k-graph, one can find a heterochromatic edge for
any k-coloring (see Figure 1 for small examples with & = 3, where the edges
are the shaded triangles).

A tight k-graph H = (V, E) is a k-tree if for any edge @ € E the k-graph
H\a = (V, E\{a}) is not tight.

Fork = 3, k-trees on the same vertex set may have diffcrent size (i.c., num-
ber of edges). Take, for example, the 3-graphs on 06 vertices with edge scts

{123,124, 125, 134, 136, 145, 146, 235, 236, 256}
and
{123,134, 145, 156, 246, 256, 235, 346} .

Graham and Lovasz [5] defined a k-forest as a k-graph such that any edge is
separated by some coloring that does not scparate any other edge. Clearly, a

Y

FIGURE 1. Minimal 3-trees.
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k-graph is a k-tree if and only if it is a tight k-forest. In [S], Lovasz proved
that the maximum size of a k-forest on n vertices is (;71). Since the k-graph
whose edges are all k-tuples containing a fixed vertex is a k-tree, then the
maximum sizc of a k-tree on n vertices is (0|

In this paper we study the minimum size @} of a k-tree with n vertices. A
k-tree with this number of edges will be called a minimal k-tree. It is easy
to see that only for k = 2 k-trees and minimal k-trees coincide, being the
usual trees (with ¢ = n —~ 1). Examples of minimal 3-trees of order n < 6
are those of Figure 1.

In Section 2, some properties of tight k-graphs are given and ¢} is
bounded below (Corollary 2.6). We conjecture that this lower bound is best
possible. In Section 3, restricting to & = 3, we prove the conjecture asymp-
totically with an explicit construction of 3-trees of order n when 2n + 1 is
prime. They are related (Section 4) to triangular embeddings of complete
graphs into surfaces.

2. THE LOWER BOUND

Let H = (V, E) be a k-graph, and let X be a nonempty subset of V. Define
the trace of X as the (k — 1)-graph Ja(X) = (V\X, Ex), where

EX = {{vly--',vk—l} g V\Xl ax € X1 {v.,...,v;..-,,X} € E},
and the skeleton of H as the (k — 1)-graph $4(H) = (V, S), where
S={{vi,...,ve-} CV|Ix EV, {u,...,v-1,x} € E},

2.1. Basic Lemma. H = (V, E) is a tight k-graph if and only if for each
nonvoid subset X of ¥, J»(X) is a tight (k — 1)-graph. (Furthermore, it is
sufficient to consider sets X of cardinality at most [n/k]).

Proof. Suppose H is not tight, and that we are in the nontrivial case, i.e.,
n = [V| = k. Then there is a k-coloring f: ¥ — {1, ..., k} that is not hetero-
chromatic. Set X = f~'(k) (we may assume that [X [ =< [n/k})). Clearly, the
restriction of f to /\X is not a heterocoloring of I»(X) and thus Ja(X ) is
not tight.

On the other hand, suppose there is a subset X of V such that J»(X) is
not tight. Let f: ¥\X — {1,...,k ~ 1} be a mapping that is not a hetero-
coloring of J»(X). Painting the vertices of X with color k£ we obtain a k-
coloring that is not heterochromatic. ¥

Assume henceforth that n = k.

2.2. Proposition. The skeleton of a tight k-graph is the complete (k — 1)-
graph with (1) edges.
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Proof. For any (k — 1)-subset of ¥, consider its complement and apply
the basic lemma. I

Let p: V — V' be a surjective mapping from the vertex set V of the
k-graph H = (V, E) onto the set ¥’. The k-graph H' = (1, E'), with

E'={{v,...,u}| 3{vi,..., 0} € E, plv) = v/, i=1,...,k},
is called the quotient of H by p, and will be denoted as Hyp.
2.3. Proposition. Quoticnts of tight k-graphs arc tight.
Proof. If f is a coloring of H/p, then fop is a coloring of H. Since H is
tight, there is an edge {v,,...,v} separated by fop and then {p(v)),...,
p(vi)} is separated by f. 1

2.4. Corollary. of = @f,,.

Proof. Take a minimal k-tree on n + 1 vertices, identify two vertices,
and apply Proposition 2.3. 1

For v € V] denote by Va/(v) the number of edges in Tx(v).
h-1

2.5. Proposition. % = (n/k)glZ).

Proof. Let H = (V, E) be a minimal k-tree on the n-vertex set V. For any
vin V the trace Jx(v) must be tight. Hence, Val(v) = ¢f-], and therefore,

KIE| = 2 Val(v) = ngt-}. &
vev

k- _._2.__~ n
= Tk 2 k)1

Proof. Tterate the bound in 2.5 having in view that 2 =n ~ 1. §

2.6. Corollary.

From now on we concentrate on the case & = 3 and for simplicity we de-
—_ a3
note ¢, = @;.

2.7. Propesition.
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Progf. Just observe 2.6 and Lovasz’s upper bound. I
2.8. Conjecture. o, = [n(n — 2)/3].

For infinitely many n, this conjecture is true (Corollary 3.4, below),
whereas for general k-graphs, the corresponding conjecture is that Corol-
lary 2.6 is in fact an equality.

According to the basic lemma (2.1), this conjecture states that for every
minimal 3-tree either all one-vertex traces are trees (case n = 0,2 (mod 3)),
or one of them is a unicycle and the rest trees (case n = 1 (mod 3)).

For examples of nonisomorphic minimal 3-trees of order 8, consider the
3-graphs H, and H, whose set of vertices is Zy and whose sets of edges are
respectively:

Vi = {013, 014,027,037,045, 046, 124, 125, 156,
157,235, 236,267, 346, 347, 457}

Vy = {014,025, 035, 036, 037,045, 125, 136, 140,
147, 156,236, 247,257, 267,347} .

They were constructed so that the function (x — x + 1) is an automor-
phism. The traces of 0 are, respectively, the trees T; and T of Figure 2.
Thus, they are nonisomorphic, and from their symmetry it is easy to see
that both H, and H are tight.

However, not all trees may appear as onc-vertex traces of minimal 3-trees

(see [1]).

3. AN INFINITE FAMILY OF MINIMAL 3-TREES

For the rest of this paper p will denote a prime number and Z, = {0,1,...,
p — 1} the field with p elements. Let Z,; = Z,\0} be the multiplicative
group of Z,,.

3.1. Proposition. For any 3-coloring of Z,; there is a solution of the equa-
tion x + y = z with different colors.

Praof. Suppose that the proposition is false. Then there exists a parti-
tion m = {4, B, C} of Z, into nonempty blocks such that

(A+B)nC=®‘
(C+BNA=T¢. (*)
A+C)NB=yY

Note that if the partition = = {4, B, C} satisfies (*) then for any x in Z,,
xm = {xA,xB,xC} is also a partition that satisfies (*¥). We may suppose
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7 4 1
FIGURE 2. Traces of 0 in H, and H,.

that |[A] < |B| and |4] < |C|. If 1 & A then for any @ € A the new partition
a~'m = {a'A,a 'B,a”'C} has 1 in the smallest block. So, assume that 1 is
in A. Let ¢ be the greatest number such that {1,...,1} C A. We have ¢ = 1
and we may consider ¢ + 1 in B.

Claim. IfcE€Cthen{c —1,c—2,...,c~t} C A.

Indeed, let C = {c;, <ca<---}and h € {1,...,t}. If ¢, — h € B, then
¢i = (ci — h) + h, which contradicts (*). This proves the claim for ¢,, since
it has no other alternative. Now, suppose that the claim is true up to ¢;-.
If ;, —he€C, thenc,=c;+ h for some j <i. Sincex=t+1-heg
{1,...,}, we have by induction that¢; — x = ¢; — (t + 1) € A. But, since
t + 1 € B, this contradicts (*). Therefore ¢; — h € A, proving the claim,

From the claim, the map ¢ = ¢ — 1 is an injection from C into 4. But it
is not a bijection (2 &€ C and 1 € A), contradicting the fact that A is the
smallest block. 1

Observe that Proposition 3.1 cannot be generalized directly to 4-color-
ings. Indeed, consider the 4-coloring {{1}, {—1}, A, B}, where B = Z\A\
{1,-1} and

A= {2,5,6,9,10,...,p — 4,p — 3}, il p=1mod4;
{2,3,6,7,...,p — 5,p — 4}, if p=3mod4.

We have 4 = —B, and x + y = 2 has no solution withx € A andy € B.
Hence, there is no solution of x + y + z = w with different colors. Note
also that Proposition 3.1 is, in a sense, the anti-Ramsey version of a Theo-
rem of Schur (see [8] and [3]). ‘

Denote by B, = (Z,, E) the 3-graph whose edges are the 3-sets {x, y, z}
such that x + y = z. By Proposition 3.1, %, is tight. Let G be a subgroup
of Z,, and let nat: Z; — Z,/G be the canonical mapping. Denote by &,/G
the quotient of 3B, by nat. By Proposition 2.3, B, /G is tight too. It is easy to
see that the group of automorphisms of &, /G is transitive.

Set £, = (V,,E,) = B,/{1,-1}. Thus V, = {1,2,...,(p — 1)/2}.
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3.2. Lemma, For any vertex x of &£,, J»(x) is a path.

Proof. The path 2,3,...,(p — 1)/2 is the trace of 1. For any vertex x of
&£, there is an automorphism that maps | to x. Such an automorphism must
be an isomorphism between J2(1) and JTa(x). 1

3.3 Theorem. <£,is a minimal k-tree.

Proof. Recall that ¢, = n(n — 2)/3. Let n = (p — 1)/2, and denote by
w the number of edges in &,. By Lemma 3.2, Val(x) = n — 2 for any ver-
tex x of £,. Hence

3w = D Vallx) = nln - 2).

eV,
Since ¥, is tight the theorem follows. 1

3.4. Corollary. If 2n + 1 is a prime number, then ¢, = n(n — 2)/3. 1
3.5. Proposition. ¢,/(n(n — 2)/3) =1 + O(n'"*).

Proof. Denote by p(x) the minimum prime number such that p(x) = x
and let ®(n) = n(n — 2)/3. By (3.4), (2.4), and (2.7), we have

+ —
O(n) = ¢, < @(2@—2-11—1) .
Let a = 23/42. We know (see [14]) that p(2n + 1) = 2n + 1)* + 2n +

1 =2Cn" + 2n + 1 for sufficiently large 2n + 1. Therefore

1= 0,/0(n) < OC 1" + n)/On) < Con™ " +1. &

4. RELATION TO SURFACES

A natural source of candidates for minimal 3-trees comes from minimal
embeddings of complete graphs into closed surfaces. Indeed, suppose that
we are given a triangular embedding K.+ — S (or (K,«1 — uw) — S when
n =1 mod(3) and uw is any edge). Let 7, be the “triangle” 3-graph of
K.+t — u. Clearly, since we cut out an open disk, the trace of each vertex in
T, is a path, except possibly for one cycle. Thus, T, satisfies minimally the
first order trace condition (see the basic lemma (2.1)), becoming a candi-
date for minimal tightness. For n = 10, we can deduce that 7, is tight. On
the other hand, the smallest example that we know of of a nontight T, is of
order n = 15 [2]. What happens in between is not clear.
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On the other hand, let us point out how examples of minimal surface em-
beddings of complete graphs follows from our construction of £, (see
Lemma 3.2), in the case when, in addition to the condition that 2n + 1 = p
is prime, we also have that 2 gencrates the multiplicative group Z,;. For
then, the boundary (i.c., edges in only one triangfe) consists of a single cycle
that can be coned to a new vertex, giving us a triangular embedding of K,,,,
into a surface. As far as we know, these are new examples of triangular em-
beddings of complete graphs, which, for small #, coincide with the construc-
tions of Ringel and Youngs (see [7]), but that differ thereafter.

How does the known archive of complete triangular embeddings stand
the test of tightness, is also a mystery for general n.
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