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1 Introduction

A polytope P is circumscribed about a convex body φ ⊂ Rn if φ ⊂ P and each
facet of P is contained in a support hyperplane of φ. We say that a convex
body φ ⊂ Rn is a rotor of a polytope P if for each rotation ρ of Rn there exist
a translation τ so that P is circumscribed about τρφ.

If Qn is the n-dimensional cube then a convex body Φ is a rotor of Qn if and
only if Φ has constant width. However, there are convex polytopes that have
rotors which are not of constant width.

A survey of results in this area has been given by Golberg [4]. See also the
book Convex Figures of Boltyanskii and Yaglom [3].

It is well known that if Φ is a convex plane figure which is a rotor in the
polygon P , then every support line of Φ intersects its boundary in exactly one
point, and if Φ intersects each side of P at the points {x1, . . . xn}, then the
normals of Φ at these points are concurrent.

In this paper we shall prove that if P is a triangle, then there is a baricentric
formula that describes the curvature of bdΦ at the contact points.We prove also
that if Φ ⊂ R3 is a convex body which is a rotor in a tetrahedron T then the
normal lines of Φ at the contact points with T generically belong to one ruling
of a quadric surface.

2 Rotors in the triangle

Consider Φ a smooth rotor in the triangle T and suppose that the three sides
of T intersect the boundary of Φ at the points x1, x2, x3, respectively. As in the
case of constant width bodies in which the radii of curvature of the boundary
at the ends of a binormal sum to h, we are interested in a formula that involves
the curvatures of the boundary of Φ at x1, x2, x3.

A Cm framed curve (α, λ) is a curve of class Cm given by a parametrization
of the following form: there is a support function P : (−δ, δ) → R of class
Cm, m ≥ 2, such that α(θ) = P(θ)u(θ0 + θ) + P ′(θ)u′(θ0 + θ) and λ is the
tangent line through α(0) = x, in the direction x⊥. Therefore, P ′(0) = 0 and
α(0) = P(0)u(θ0) is the closest point of the line λ to the origin and the normal
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line of α at α(0) passes through the origin. Where u(θ) = (cos θ, sin θ) and
u′(θ) = (− sin θ, cos θ), for every θ ∈ R.

A sliding along two given Cn framed curves (α1, λ1) and (α2, λ2) is a one
parameter family of Euclidean isometries Lθ, θ ∈ (−ε, ε), ε > 0, satisfying

• L0 is the identity map,

• Lθ rotates the plane by an angle of θ,

• Lθ(λi) is a tangent line of the curve αi, for each θ ∈ (−ε, ε) and i = 1, 2.

Lemma 1. Let (α1, λ1) and (α2, λ2) be two Cn framed curves. Suppose that
their normal lines at α1(0) = x1 and α2(0) = x2 are not parallel and are
concurrent at the origin. Then

1. there is a unique sliding Lθ, θ ∈ (−ε, ε), ε > 0, along them,

2. there is a Cn map f : (−ε, ε) → R2 such that Lθ(x) = Rθ(x) + f(θ), for
every x ∈ R2, f(0) = f ′(0) = 0, where Rθ is the rotation of the plane
about the origin by an angle of θ.

3. If the origin does not lie in the line λ3, then the envelope of {Lθ(λ3)}θ∈(−ε,ε)
is a Cn framed curve (α3, λ3), such that the tangent line at α3(0) is λ3

and the normal line at α3(0) passes through the origin.

Proof. Let E be the Lie Group of orientation-preserving isometries of the Eu-
clidean space R2. Let Rθ denote the rotation about the origin by an angle of θ.
Since every g ∈ E takes the form g(x) = Rθ(x)+f for some θ and a fixed f ∈ R2,
we will identify a neighborhood of the identity in E with (−γ, γ)×R2 ⊂ R3, via
the mapping (θ, f)→ Rθ + f . Observe that the identity in E is identified with
the origin in R3.

Given a Cm framed curve (α, λ) with support function P(θ), consider the
set

S = {g ∈ E | g(λ) is a tangent line to α}

defined in the neighborhood of the identity in E (or of the origin in R3). We
shall prove that S is a surface of class Cm. Indeed, we have the following explicit
parametrization: consider the map ψ : R2 → R3 given by ψ(θ, t) = (θ, h(θ, t)),
where h(θ, t) = (P(θ)−P(0))u(θ0 + θ) + tu′(θ0 + θ), It is not difficult to verify
that the for every −δ ≤ θ ≤ δ and t ∈ R, the isometry Lθ + h(θ, t) sends the
line λ to a tangent line of α. Furthermore,

dψ

dθ
(0) = (1,P ′(0)u(θ0)) = (1, 0, 0)

and
dψ

dt
(0) = (0, u′(θ0)).

Moreover, it follows that the normal vector to S at the origin is (0,−u(θ0)).
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Now, given two Cm framed curves, (α1, λ1) and (α2, λ2), Let S1 and S2 be
their corresponding surfaces. If αi(0) = Pi(0)u(θi), then the normal vector to
Si at the origin is (0,−u(θi)), i = 1, 2, and since θ1 6= θ2, we have that in a
neighborhood of the origin S1 and S2 intersect transversally in a curve of the
form (θ, f(θ)) and hence the sliding can be written as

Lθ = Rθ + f(θ)

where f : (−ε, ε)→ R2 is of class Cm.
Thus, for i = 1, 2 the support function of αi is given by

Pi(θ) = Pi(0) + 〈f(θ), u(θi + θ)〉.

where 〈·, ·〉 denotes the interior product.
This implies that f(0) = 0 and furthermore, 0 = P ′i(0) = 〈f ′(0), u(θi)〉.

Since θ1 6= θ2, then f ′(0) = 0.
Finally, let θ3 be such that u(θ3) is orthogonal to the line λ3 and let r3 be

the distance from λ3 to the origin. Then the support function of α3 is given by
P3(θ) = r3 + 〈f(θ), u(θ3 + θ)〉 and P ′3(0) = 0 as we wished.

For curves of constant width h, the sum of the radii of curvature at extreme
points of every diameter is h. For rotors in a triangle, the analogous result is
the following baricentric formula.

Theorem 1. Let Φ be a rotor in the triangle T with vertices {A1, A2, A3}.
Suppose the boundary of Φ is twice continuous differentiable and let x3 = Φ ∩
A1A2, x1 = Φ ∩ A2A3 and x2 = Φ ∩ A3A1. Let {a1, a2, a3} be the baricentric
coordinates of the point O with respect to the triangle T , where O is the point
at which the normal lines to T at the points x1, x2 and x3 concur. If ri is the
distance from O to xi and κi the curvature of the boundary of Φ at xi, i = 1, 2, 3,
then

a1

κ1r1
+

a2

κ2r2
+

a3

κ3r3
= 1.

Figure 1
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Proof. Let αi : (−ε, ε) → R2 be a C2-parametrization of a neighborhood of
the boundary of Φ around xi, with αi(0) = xi and let λi be the line through
Ai+1Ai+2, mod 3, so that (αi, λi) are C2 framed curves, whose corresponding
normal lines at xi are concurrent at O. Suppose without loss of generality
that O is the origin. By Lemma 1, there is a sliding along the three framed
curves. That is, there is a one parameter family of Euclidean isometries Lθ,
θ ∈ (−ε, ε), ε > 0, satisfying

• L0 is the identity map,

• Lθ rotates the plane by an angle of θ,

• Lθ(λi) is a tangent line of the curve αi, for each θ ∈ (−ε, ε) and i = 1, 2, 3.

Furthermore, there is a C2 map f : (−ε, ε)→ R2 such that

Lθ(x) = Rθ(x) + f(θ),

for every x ∈ R2, f(0) = f ′(0) = 0, where Rθ is the rotation of the plane
through the origin by an angle of θ.

Let Pi(θ) be the pedal function of the framed curve αi, with Pi(0) = ri =
| xi |, i = 1, 2, 3. Hence, P ′i(0) = 0 and the radius of curvature of the boundary
of Φ at xi is

1

κi
= Pi(0) + P ′′i (0).

On the other hand, Pi(θ) =| Lθ(xi) |=| Rθ(xi) + f(θ) | . Hence,

Pi(θ)2 = 〈Rθ(xi) + f(θ), Rθ(xi) + f(θ)〉.

So,

Pi(θ)P ′i(θ) = 〈Rθ(xi) + f(θ), Rθ(xi)
⊥ + f ′(θ)〉.

Let hi(θ) = 〈Rθ(xi), f ′(θ)〉 + 〈Rθ(xi)⊥, f(θ)〉 + 〈f ′(θ), f ′(θ)〉 in such a way
that

P ′i(θ) =
hi(θ)

Pi(θ)
and

P ′′i (θ) =
h′i(θ)Pi(θ)2 − hi(θ)2

Pi(θ)3
.

Note that hi(0) = 0 and h′i(0) = 〈f ′′(0), x〉.
Since the radius of curvature of bdΦ at xi is given by Pi(0)+P ′′i (0), we have

that for i = 1, 2, 3

1

κi
= ri +

〈f ′′(0), xi〉
ri

.
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Let {b1, b2, b3} be the baricentric coordinates of the origin O with respect
the triangle with vertices {x1, x2, x3}. That is: b1x1 + b2x2 + b3x3 = 0, with
b1 + b2 + b3 = 1. Hence, for i = 1, 2, 3,

bir
2
i

κiri
= bir

2
i + 〈f ′′(0), bixi〉,

and therefore, ∑ bir
2
i

κiri
=

∑
bir

2
i + 0.

To conclude the proof of the theorem, it will be enough to prove that

ai =
bir

2
i

b1r2
1 + b2r2

2 + b3r2
3

.

The basic property that defines Ai is 〈Ai, xj〉 = 〈xj , xj〉 = r2
j for i 6= j.

Using it, one easily obtains that

〈b1r2
1A1 + b2r

2
2A2 + b3r

2
3A3, xj〉 = 〈r2

jAj , b1x1 + b2x2 + b3x3〉 = 0,

for j = 1, 2, 3. This implies that b1r
2
1A1 + b2r

2
2A2 + b3r

2
3A3 = 0 because the xj

generate R2, and from here

b1r
2
1∑

bir2
i

A1 +
b2r

2
2∑

bir2
i

A2 +
b3r

2
3∑

bir2
i

A3 = 0.

It follows that
a1

κ1r1
+

a2

κ2r2
+

a3

κ3r3
= 1,

as we wished.

3 The relation with immobilization problems

Immobilization problems were introduced by Kuperberg [5] and also appeared
in [8]. They were motivated by grasping problems in robotics ([6] and [7]).

Let Φ ⊂ Rn be a convex body. A collection of points X on the boundary of
Φ is said to immobilize Φ if any small rigid movement of Φ causes one point in
X to penetrate the interior of Φ. In the plane, for the case in which three points
X = {x1, x2, x3} lie in the boundary Φ, there is a baricentric formula involving
the curvature of bdΦ at xi that allows us to know if X immobilizes Φ. See [1].

Theorem 2. Let Φ be a twice continuous differentiable convex figure and let
X = {x1, x2, x3} be three points in the boundary of Φ, whose normals are con-
current at the point O. Let {a1, a2, a3} be the baricentric coordinates of the point
O with respect to the vertices of the triangle formed be the three support lines
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of Φ at x1, x2 and x3. Also, let ri be the distance from O to xi, let κi be the
curvature of the boundary of Φ at xi, i = 1, 2, 3, and let

ω = a1κ1r1 + a2κ2r2 + a3κ3r3.

Then, if ω < 1, {x1, x2, x3} immobilize Φ, and if ω > 1, they do not.

There is a duality between Theorem 2 and Theorem 1. While in Theorem2,
we have a rigid segment sliding along the boundary of the convex figure Φ,
in Theorem 1, we have a rigid angle (formed by two lines) sliding along the
boundary of Φ.

In dimension three, immobilization results are much more complicated. See
[2]. To characterize when four points in the faces of a tetrahedron T immobilize
T we require the following definition.

Let {L1, L2, L3, L4} be four directionally independent lines in R3. We say
that they belong generically to one ruling of a quadric surface if

• they are concurrent,

• they belong to one ruling of a quadric surface, or

• they meet in pairs and the planes these pairs generate meet in the line
through the intersecting points.

Theorem 3. A necessary and sufficient condition for four points {x1, x2, x3, x4},
in the corresponding four faces of a tetrahedron T , to immobilize it, is that the
normal lines to T at x1, x2, x3 and x4 belong generically to one ruling of a
quadratic surface.

The “duality” mentioned above, gives us the following theorem for rotors in
a tetrahedron.

Theorem 4. Let Φ a twice continuous differentiable rotor in the tetrahedron T ,
and let {x1, x2, x3, x4} be the points of the boundary of Φ that intersect the four
faces of T . Then, the normal lines to T at x1, x2, x3 and x4 belong generically
to one ruling of a quadratic surface.

Proof. Consider a tetrahedron T that circumscribes Φ. For every ρ ∈ SO(3),
let T (ρ) be the tetrahedron directly homothehtic to ρT circumscribing Φ and
let VΦ(ρ) be the volume of of T (ρ). It is not difficult to see that VΦ(ρ) depends
continuously on ρ.

We will prove that if ρ0 is a local maximum of VΦ(ρ), then the four normal
lines to the boundary of Φ at the points that touch the four faces of T (ρ0),
belong generically to one ruling of a quadratic surface. If this is so, then the
proof the theorem is complete because Φ is a rotor in T if and only if VΦ(ρ) is
constant. For the proof of the above statement, it will be sufficient to consider
the case in which Φ is a tetrahedron. The reason is that if a, b, c and d are the
points in which the sides of T (ρ0) touch the boundary of Φ, then ρ0 is also a
local maximum of VK(ρ), where K is the tetrahedron with vertices {a, b, c, d}.
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Let Ha, Hb, Hc and Hd be four planes containing the faces of the tetrahedron
T (ρ0), in such a way that a ∈ Ha, b ∈ Hb, c ∈ Hc and d ∈ Hd, respectively.
Assume now that a T (ρ0) is a rigid tetrahedron sliding along a, b, c. That is,
T (ρ0) is sliding rigidly in such a way that the points a, b, c remain fixed but inside
the planes Ha, Hb and Hc, and during the rigid sliding movement of T (ρ0), the
fixed point d is always inside T (ρ0).

The proof of Theorem 4 now follows straightforward from the proof or The-
orem 3 in [2], but this time we consider, instead of a rigid triangle sliding along
three fixed planes, the dual situation of a 3-dimensional rigid sector (the angle
between three planes Ha, Hb and Hc) sliding along three fixed points a, b, c.
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