Topology Vol. 30, No. 4, pp. 541-550, 1991, 0040-9383/91 83.00 + .00
Printed in Great Britain © 1991 Pergamon Press plc

THE SCORPIONS: EXAMPLES IN STABLE NON COLLAPSIBILITY
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1. INTRODUCTION

THE Scorpion A is obtained from a pentagon abcc'b’ by identifying first two sides bc = b'c’
and then the remaining three sides ab = ab’ = cc'.

The dunce hat D is obtained from A by shrinking its essential circle to a point, D = A/bc
(compare with Fig. 1 of [9]). The scorpion A is the simplest example of a homotopy circle
which does not collapse to a circle. However, A x I does collapse to S'.

The scorpion A can be generalized to higher dimensions as follows: Let n: S" — B" be the
restriction of the standard projection of R"*! onto R"; let 9: B" - S" be the quotient map
that identifies the boundary of B" onto a single point, and let f":5" — S" be the null
homotopic map given by the composition dn. It is easy to see that 4 is the mapping torus
of f1.

Define the (n + 1)-dimensional scorpion A"*' as the mapping torus of the map
fm:8" — §". That is:

AP = (8" x [0, 1])/(x,0) ~ (f"(x), 1) for every xeS".
Since /™ is nullhomotopic, A"*! is a homotopy circle.

In the next theorem we will not only prove that the scorpions are highly non collapsible
but we will completely determine their range of g-collapsibility.

TureoreM 0. A"*! x I9\ 8! if and only if g > n.

It is well known (see for example Corollary 5.1A of [4]) that the classic notion of
collapsibility coincides with the following one:

Let X and Y be polyhedra. If ¥ = X u, I"**, wheref: I" x {0} - X isa PL-map, then ¥
PL-collapses elementarily to X. We say that Y PL-collapses to X and write Y\ X if thereisa
finite sequence of elementary PL-collapses from Y to X.

Fig. 1. The Scorpion.
541

TOP 30:4-C



542 Javier Bracho and Luis Montejano

Ifin the above definition we let X and Y be topological spaces and f any map, we obtain,
verbatim, the notion of topological collapsibility.

For polyhedra the two notions are different, as the following examples of Berstein,
Cohen and Connelly show:

Suppose that " is a non-simply connected PL homology n-sphere. Let S* denote
the standard PL p-sphere, and let B be a PL (n+ p + 1)-ball in (SP*X") — S”. Let
#"*P*! = (SPxT") — Int(B). The Main Proposition of [1] asserts that #"*?*! x ["~?
is not PL-collapsible. Nevertheless, if p > 1, the Double Suspension Theorem [3] and
the Schoenflies Theorem [2] imply that #"*?*! is a topological ball and therefore
topologically collapses to a point.

The notion of piecewise linear g-collapsibility has mainly been studied for the one point
space. Until now, the examples of Berstein, Cohen and Connelly are essentially the unique
known family of contractible non PL g-collapsible polyhedra, but as we already show, they
are (in the worst case) topologically 2-collapsible. Their non collapsibility properties come
from their exotic combinatorial PL-structures. However, the non collapsibility of our
examples is proved in this stronger sense. It is topological in nature. We restate Theorem 0.

Tueorem 1. (a) A"+ x I? PL-collapses to S', if ¢ =n and, (b) A"*' x I? does not
topologically collapse to S*, if g < n.

In the last section, we will return to the notion of non PL-collapsibility. The scorpions
yield a natural generalization of the dunce hat to higher dimensions, creating a new family
of contractible polyhedra D, which are highly non PL-collapsible.

The other notion we treat in this paper is the geometric category of a space. For a
polyhedron X, its geometric category, gcat(X), is the smallest integer k such that X can be
covered with k contractible subpolyhedra. This concept is closely related to the Lusternik—
Schnirelmann category and it is also related to the concept of collapsibility because it is easy
to see (Lemma 1 below) that if X PL-collapses to Y then gcat(X) < gcat(Y).

In 1967 T. Ganea [6] introduced the notion of strong category of a compact polyhedron
Cat(X) = Min{gcat(Y)|Y is a compact polyhedron with the homotopy type of X }

The strong category differs from the classic Lusternik—Schnirelmann category in at most
one unit and there is essentially only one known example, due to I. Berstein, for which both
notions do not agree. Furthermore, the difference between the geometric category and the
strong category may be arbitrarily large. For more relations about these concepts see [7]
and [8].

In [8] it was proved that Cat(X) = Min{gcat(X x I%)|q = 0}. In most of the cases
geat(X x I) = Cat(X), hence it is natural to ask how big must the integer ¢ be in order to
get gcat(X x I9) = Cat(X). Since Cat(4") = Cat(S 1) = 2, the following theorem shows that
this integer may be arbitrarily large, thus solving Question 5 of [7].

THEOREM 2.
3 if 0<qg<n

n+1 qy —
geat(A x I {2 if g=n

The essence of Theorem 2 is that A"*! x I cannot be covered with two contractible sets
when g is smaller than n. The following intuitive proof of this fact, for the case n = 1, is
illustrative of the complete proof. Suppose 4 = K U L where K and L are contractible sets.
The argument has two steps:

(1) Since L is contractible, any essential circle of 4 is not contained in L, which implies
by “duality” that K must contain a null homotopic circle “isotopic” to j. (See Fig. 1).



THE SCORPIONS: EXAMPLES IN STABLE NON COLLAPSIBILITY 543

(2) There is “essentially” only one way to deform f in A into a single point, which is by
passing through y. Therefore, if = K, K must contain the circle y. Repeating the
same idea, y cannot be deformed in A into a single point without using all points
of A, thus K = A which is a contradiction.

The precise definitions and the formalization of these ideas will take the following two

sections.
This paper is dedicated to Dan Kan, in whose seminars we were introduced to Zeeman’s
“On the Dunce Hat”.

2. THE COLLAPSING

This section is devoted to exhibit a collapse A"** x I"\S™.
First, we describe the (n + 1)-scorpion A"*! in a suitable way. Identify B}, with
B}, x 0 c B"*'. Observe, from the definition of A"t that

An+1 — Bn+1/~

where ~ is the identification; x ~ d(2x) for every xe B},.
Remember that 0: B* — S" is the quotient map that identifies the boundary of B" onto a
single point, and B}, denotes the 1/2-radius n-ball.
Now, consider a PL-map g:B"*' — 1% and let I', be its graph in B"*! x I We claim
that
A x [N (8" BYR) x I UT,)/ ~

where ~ now denotes the restriction of the product extension of ~ to B**!xI%

The above follows from Lemma 2 of [9] or Lemma 38 of [10], since ~ only identifies
points in " U BY,.

Observe now that ((S" U B} ;) x I%)/~ = 8" x I% so that

A" 9N (8" x [7) Uy BT
where §:0B"*! U B}, » §" x I?is given by

i(x) = {(x, g(x)) if xeS", and
~l0(2x), g(x)) if xeBY ;.

Suppose that we may choose g in such a way that:

(@) §" x 17~ §(@B"** U BY,,),
(b) G(@B"*')n §(B};) is a single point and
(¢) 4B}, is an embedding.

Then
AT 5 [N (8" x T U B N B {x, y) N ST

where xedB"*! and ye Bj),.

In order to achieve (a), (b) and (c), choose g = n and g: B! — I" in such a way that
g(0B"* 1) is a single point and g restricted to BY, is a homeomorphism. Clearly, with this
choice, (b) and (c) follows immediately. In order to prove (a), let xq, ..., X,4,; be the
standard orthonormal basis for R**! and regard R" as the subspace generated by
Xy(s ..., X, Forevery xeR" — {0}, let R? be the subspace generated by x, , ; and x/|x]|. Let
us define ¢:B"—SO(n + 1) as follows: $(0) =1d and if x # 0, let ¢(x) be the linear
isometry which fixes the subspace orthogonal to R2? and, in R2, is a rotation of 7| x| radians
in the direction of x. Note that if £:SO(n+1) - S” is the evaluation map on x,.,, then



544 Javier Bracho and Luis Montejano

Fig. 2. The collapsing.

e¢ = 0:B" - S". Furthermore, ¢ give rise to a fiber preserving homeomorphism
$: S"x B"—S"x B" given by &(y,x)=(d(x)(y),x). Note that hence the pair
(8" x B", {x,+,} x B") is homeomorphic to the pair (§" x B", d x 1(B")). Consequently,
in our case, the pair (S" x I",§(@B"*'UBj;;)) is homeomorphic to the pair
(8" x I",({xp+1} X I"YU(S" x {d})), where {d}=g(dB""'). Now, it is easy to see
that (a) follows from our choice of ¢ = n and g: B"** — I". This concludes the proof.

Remark. There is a technical problem in our proof of the collapsing. The problem is that
the map 0: B" — S" is not PL. Nevertheless, this technical problem causes no difficulties
mainly because the topological mapping cylinder of a simplicial map is homeomorphic to
its simplicial mapping cylinder.

Note that " x I9 does not collapse to §(@B"*! U BY,,) unless g > n, because § embeds
the interior of B}, and, if ¢ < n, closes 0B}, over I as a “zipper”, creating n-homotopy
other than §(8B"*!). Figure 2 shows, for n = 1 = g, the choice of g such that g(0B"*!) = 0
and is the “identity” on Bf,,.

3. THE PROOF OF THE THEOREMS

In this work we are interested in topological collapsibility, so that we need a slight
modification of the notion of geometric category:

Definition. Given a topological space X, gcat(X) denotes the smallest integer k such
that there is an open cover {U,, ..., U} of X, where each U, is contractible and is

contained in some closed contractible subset of X.
We will prove Theorem 2 in this setting, although it will be clear that the proof also

works when we use the classic notion of geometric category.
LemMa 1. If Y topologically collapses to X then gcat(Y) < gcat(X).

Proof. Ttis enough to prove thelemma for the case of an elementary collapse. So, we may
assume ¥ = X U, I"*! where f:1" x {0} - X. Let U = C be two contractible subsets of X
with U open and C closed. Then

u | Urtoyxnec Y (mHOx D
VARG

ARG
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are two contractible subsets of X U, I"*! = Y, with the first open and the second closed.
Thus any suitable cover of X can be extended to ¥ and the lemma follows. 0

Next, we will prove Theorem 2. To prove that geat(4"! x 19) < 3,assume 9((0, . . ., 0))
=(,...,0,—1). Let D"*! be a small ball contained in {(Xy,...,Xs+1)€
Int(B"+1)|x,,, > 0}. It is easy to see that

B —Int(D"* )N S"UB, U {0, ..., 0, %0 )] — 1 S Xnyy <0}

By Lemma 2 of [9], A"*' — Int(D"*!) N $" v S'. Since geat(S" v §') =2, then
geat(A4"*!) < 3, and therefore geat(4"*! x [9) < 3forall ¢ > 0.

For q=n, geat(4"*! x 19 =2 follows from Lemma 1 and the fact that A"*!
x 19\ S!, proved in Section 2.

The hard part of the proof is that geat(4"*! x %) > 2 for g < n. For that purpose we
need to describe the universal cover of A"*'.

Let M ;.. be the mapping cylinder of the null homotopic mapf": S" — §” described in the
introduction. That is

M= (8" x [0, 1)118")/(x, 1) ~ f*(x) for every xe§".

and let S" x {0} and S” be the two standard copies of the n-sphere in M ;n.

Note that A™*! is obtained from M, by identifying x with f(x), for every xeS".

For every i€Z, let S} be a copy of S" and let f":S? - S}, be a copy of the map
f":S"— S". Let M. be the mapping cylinder of each f". Since A"*1is the mapping torus of
the null homotopic map f", hence A4**! has the homotopy type of a circle and its universal
cover A"*! can be described as follows:

Z'H-l =< G Mﬂu)/ ~y

where f"(x) ~ (x,0)€ S,y x {0} = M, , for every xeS!and ieZ.

Clearly A"*! is the universal covering space of A"*! and its group of covering
transformations Z is generated by a homeomorphism 7: A"t A"*1 such that
(Mg, S7) = (Mpy, Steq) _

For every ieZ, let §;= Sf x I"< A" x I4.

The following two propositions correspond respectively to the two steps of the intuitive
proof given in the introduction. All our homomorphisms, unless otherwise stated, are
induced by inclusions and homology is with Z ,-coefficients.

PrOPOSITION 1. Suppose gcat(A"** x 1) = 2. Then there exists an open subset U of
A1 x I with compact closure, such that H,(U) =0 and So = U.

ProposITION 2. Let U be an open subset of At x *=' with H,(U)=0. If
H,(UNS) - HyS) is non-trivial then so is H,(U N Sj41) = Ha(Si+1).

We can now conclude the proof of Theorem 2. It will be enough to prove that
geat(4"*! x I"~1) > 2. Suppose geat(4"*! x I"~1) = 2. By Proposition 1, there is a
homologically trivial open subset U of A"*1 x [*~1 with compact closure which contains
S,. Hence H,(UnS;)— H,(So) is non-trivial, which implies, by Proposition 2, that
H,(UNS,;)— H,(S,) is non-trivial. Then H,(U N S;)) = H,(S,) is non-trivial for every i > 0,
which is a contradiction to the compactness of the closure of U. This finishes the proof of
Theorem 2. Furthermore, the second part of Theorem 1 follows immediately from
Theorem 2, Lemma 1 and the fact that gcat(S =2
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Proof of Proposition 1. Let us suppose A"*! x [ = WU V,where W # and V< v
are contractible sets with W, V open and #°, ¥ closed and contractible. By the
Mayer—Vietoris exact sequence, W n V has exactly two components and these are homo-
logically trivial. Let IT:A4"*!— A"*! be the universal covering space map. Then,

o0 0
M x H Y (W)= . [I Wiand(M x 1)"'(V)= ][] V. where W, and V; are copies of W

and V respectively, and t(W)) = W,,,, t(V) = V.., i€ Z
Simple applications of Mayer-Vietoris imply that with the appropriate choice of indices:

(@) WinV;#¢ifandonlyif i =j,j— 1, and
(b) U, = {J (W,u V) is homologically trivial.

i=-m
Now, since #” and ¥~ are compact and contractible, it is easy to see that U,, has compact
closure. Hence, since S, is compact, S, < U,,, for sufficiently large m,. a

In order to prove Proposition 2, we need another proposition whose proof requires the
following version of Alexander Duality.

ALEXANDER DuaLrty LemMMA. Let X be a subpolyhedron of I" x I™ such that
I"x o™= X and oI"x I" < (I" x Iy — X. If H,,_(I" x I"™) > H,,_((X) is non-trivial
(respectively, trivial) then H,_ (01" x I™)— H,_,((I" x I'"") — X) is trivial (non-trivial).

Proof. Let us identify S"*™ with the one point compactification of R"*™ Then
I"x "« R*"*™ < $"*™ Consider the following commutative diagram, where D is the

Alexander Duality Isomorphism.
H,_ (I" x oI™) —2 H™(S"*m — (I" x aI™))

! l
H, - (X) H'(S""™ — X)

w|s

Since H,,_ ,(I" x 8I™) > H,,_,(X) is non-trivial (trivial), then H*($**™ — (I" x oI™)) -
H"(S"*™ — X)) is non-trivial (trivial), and hence, since we are working with Z,-coefficients,
H,(S"*™ — X)— H,(S"*™ — (I" x 0I™)) is non-trivial (trivial).

Let U=(S""" —(I" x I"))u (0I" x ™). Note that U is an AR. Consider the following
commutative diagram, where the columns are Mayer-Vietoris exact sequences induced by
(S — X)=((I"x I")— X)u U and (§"*™ — (I" x oI™)) = (I" x m™uu

l !
H (" x I") = X)®H,(U) —  0=H,(I"xI™ @ H,(U)
l !
H,,(S"*"' - X) _ H,(S"*™ —(I" x oI™)
ia o ~ i = 0
H,_,(0I" x ™) — H,_,(@I"xI™
! L
H_ (I"xI")=X)®H,.,(U) — 0=H,_,(I"xI")@H,_ (V)
! !

Remember that H,(S"*™ — X) - H,(S"*™ — (I" x 0I™)) is non-trivial (trivial), hence we
have that &: H,(S"*™ — X)— H,_ (0" x I™) is non-trivial (trivial) and consequently, by
exactness, since ﬁ*(U) =0 and H,_,(0I" x I°'") = Z,, we have that H,_,(0I" x ID"')—>
H,_,((I" x I"") — X) is trivial (non-trivial). This concludes the proof of the Lemma. U
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In order to state Proposition 3 we need to simplify notation.

There is a homeomorphism B"*1/S%,,' - M ;. which sends B"*! homeomorphically
onto S" x {0} and also B},/S};' homeomorphically onto S", where S15," is the boundary
of Bj,,.

Let p: B"*! — M. be the corresponding quotient map and let us identify M ;. with
My, so that S, = p(@B"* 1) x I""Vand S, = p(Bl;;) x I"" ' Let T = p(S73") x I"" 1 thus
T is homeomorphic to 1" 71,

Let Y © M. x I"™! and consider the following diagrams:

H,(So)
So

H,(YNS)

7%

J
H,(Y)

H,(So v $,)

H (Y (S v Sy))

A

H,(Y)

PRrOPOSITION 3. Let Y be open and assume there is ye H,(Y N Sy) such that so(y) # O but
jo(y)ej(kerns). Then H,(Y)— H, (M. x I""1) is non-trivial.

Proof. We first observe that it is enough to prove the proposition in the case Y is a
compact polyhedron instead of open, by restricting to the carrier of the homology between

the appropriate cycles.
The main idea is to lift the situation to a ball and use Alexander-Duality.

Let X = (p x )™H(Y)u (ST x I"™'). We may assume that
X (B x a1 Y) = (ST} x aIm ),
Claim. H,_(S1' x I"™Y) = H,_(X) is trivial.

Suppose it is not, then H,_,(Si5' x I""')=H, 1(X') is non-trivial, where
X' = X n (B}, x I"™!). By the Alexander-Duality Lemma in B}, X L

H,-,({0} x oI"™) = H,_,((B};2 X I" Yy — X'} s trivial.
Then, there exists a compact subpolyhedron K of
(B’;/2 % I"—l) - X' (Bn+1 x In—l) - X

such that K n d(B},, x I"™') = {0} x oI""" and such that H,_,({0} x 9I"" ') = H,_,(K)
is trivial. Again, by the Alexander-Duality Lemma in Bl x "L,

H,(@B"*! x I"™) > H,(B"*' x I""") = K)

is non-trivial and hence it is a monomorphism.
Observe that also

H (B! x ") — K) 252 Ho(Mgo x I"1) = (p x 1)(K))
is a monomorphism because the following diagram commutes

0o Hy(B™1 x ") — K) = H((B'*1 x ") = K, STt x ")
LD 3 Lpxna=)
H((Mp x =1 = (p x DK) 3 Hy((Mpn x ") = (p x DK, T)
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Let us now consider the following commutative diagram, where the top and upper right
maps are monomorphisms.

0
A
0— H,(0B"*! x I"™1) H,((B"*! x I""1) - K)
\ /
(p x Dy(2) H (X n(8B"*' x I"™1))
(p x D)y(2)
H,(S5) + %o H(YNS,) (0 x 1),
Jo
J k
H(Y) : H, (Mg x I"™ Y= (p x 1)(K))
4
i
H,(Yn(S,uS8,)) : » H,(SoUS,)

By hypothesis there is ye H,(YnS;) such that so(y) #0 but jy(y) =j(a), where
acH, (YN (SyuS;)) and s(¢) =0. Consequently, k,j,(y)=0. Let BeH, (X n(8B"*!
x I""1)) be such that (p x1),(f) =7, hence k,(f) =0 because (p x 1)k, = kyjo(p x 1),.
Then k;(B) = 0 which is a contradiction because s,(y) # 0. This proves the claim.

Hence, H,(X, S1;' x I"”‘)—6>H,,_1(S';,‘21 x I""1) is an epimorphism and therefore
non-trivial. The following commutative diagram completes the proof of Proposition 3.

/Hn-l(sr,;lxl""‘)
Tar=)

Hy(X, 815 x I"™Y) ———  H, (B ' xI""1, 875t x I"™Y)

o x D) o x D(2)
H(YUT,T) —— Hy(M x I"™, T)
1= T=
H,(Y) —_— H, Mz x I"™Y)

Define, for every ieZ

=2 o

i-1 -
RS =< U ij,>><l""cA"’*1 x I""', and
J

R} =<U ij,> x I"" c At x nm1
=i

It is not difficult to see, since f™ is null homotopic, that R;* is contractible and the
inclusions §;,; & My x I""' g R;,, are homotopy equivalences.
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Proof of Proposition 2. Let U be an open subset of A"+ x I""! with H,(U)=0.
Suppose that s,: H,(UnS,)—> H,(S,) is non-trivial. We will prove that
s, H,(UnS;)— H,(S,) is non-trivial.

Let Y=UnN(Mg:x I"™Y). Hence YnS;=UnS,;, i=0,1. By hypothesis, let
yeH,(Y N S,) be such that s,(y) # 0. Let s, j, S, and j, as in the proof of Proposition 3. As
you would expect, the idea is now to use Proposition 3.

The Mayer-Vietoris exact sequence of the decomposition

el U=Yu({(UnR;)u(UnRY))
yields

H({UNS)®HUNS)-H,(Y)®H,(UNR;)®H,(UNRS)—H,(U)=0
Thus there are ae H,(U N S,), be H(U N S;) such that j(a, b) = jo(y) and iz(a) =0,
where ig: H,(UNSy) = H(UNRg).

Therefore s,(a) = 0, because the following diagram commutes

H,(UNS) 3 HyS))

l i =

H,(UnRg) — H,Rg)

If s,(b) # O, there is nothing to prove. Then suppose s, (b) = 0. Hence s(a, b) = (54(a),

s,(h)) = 0, and therefore j,(y)€j (kern s).
Consequently, by Proposition 3,

k:H,(UN (Mg x I"" 1) H(M . x ["™1) is non-trivial.
By Mayer—Vietoris, we have that
H,(UAS,)~>H,(UNR7)®H,(UnR{)->H,(U)=0

which implies that i, : H,(U n S;) = H,(U N Ry is an epimorphism.
Finally, consider the following commutative diagram

0 HJ UA(Mpx I"7Y) 2 H (Mg x 1"
H,(URY) = H,(RT)
H,(UNS,) s‘ » H,(S,)
Since k is non-trivial so is k™, and hence so is s;: H,(U N S;)— H,(S;). O

4. CONTRACTIBLE, NON ¢-COLLAPSIBLE POLYHEDRA
As we know, we can describe the (n + 1)-scorpion A"** as:
An+ ) S Bn + 1/ ~

where ~ is the identification; x ~ d(2x) for every xe BY,.
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Let C’ be a straight line segment from p to d(2p), for some pe S7;,', and let C be the
circle C’/ ~ . Then, the inclusion C G A"*! is a homotopy equivalence.
Define the (n + 1)-dimensional dunce hat D, | as

D,,, = A""/C

Clearly D, is contractible and D, is the classical dunce hat. Let n: 4"*! —» D, ., be the
quotient map and let v = n(C).

THEOREM 3. D, , is not PL g-collapsible for n > 3q + 4.

Proof. Suppose D,,, x 19 PL-collapses. Start to simplicially collapse D, x I? by
collapses of decreasing dimension, but stop as soon as all (g + 2)-simplices and some
(g + 1)-simplices are gone. Then D,,, x I? PL-collapses to T?*!, where 77! is a
(g + 1)-dimensional polyhedron which contains {v} x I% Then Z**! = (n x 1) }(T"*")
is a (g + 1)-dimensional subpolyhedron of 4"*! x I? and (7 x 1) sends homeomor-
phically (4"*! x I4) — Z*! onto (D4, x I9) — T%*'. Therefore, by Lemma 2 of [9],
A"*1 x ]9 PL-collapses to Z?* 1. By Corollary 5 of [5], Z4*! x I*¢** PL-collapses to S*.
Consequently A"*! x [39*4 PL-collapses to S' and therefore, by Theorem 1, it follows
that n € 3q + 4. This concludes the proof of Theorem 3. O
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