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Abstract. What is the maximum positive integer n such that every set of n
points in Rd has the property that the convex hull of all k-set have a transversal
(d−λ)-plane? In this paper, we investigate this and closely related questions. We
establish a connection with a special Kneser hypergraph by using some topological
results and the well-known λ-Helly property.

1. Introduction

Let A be a set of eight points in general position in R3. We claim that there is
not a transversal line to the convex hull of the 4-sets of A. Otherwise, if we let L
be such a transversal line and x0 ∈ A a point not lying on L, then the plane H
through x0 and L would contain at most three points of A and so, there would be
at least five points of A not in H. Therefore, by the pigeon-hole principle, three of
these points would lie on the same side of H. Consequently, the line L would not
intersect the convex hull of these three points and x0.

On the other hand, if A is a set of six points in R3 then there is always a transversal
line to the convex hull of the 4-sets of A. For this, if x0 ∈ A then every 4-set either
contains x0 or is contained in A − x0. Moreover, the family of 4-sets of A − x0

satisfies the 4-Helly property (recall that a family F of convex sets in Rd has the
λ-Helly property if every subfamily F ′ of F , with size λ + 1, is intersecting) and
consequently there is a point y0 in the intersection of the convex hull these 4-sets.
Therefore, the line through x0 and y0 is a transversal line to the convex hull of the
4-sets of A.

With seven points in R3 we may have both options. The suspension of a suitable
pentagon with two extra points (one above and one below the pentagon) has a
transversal line to the convex hull of the 4-sets, see Figure 1.

The construction of a set of seven points in general position without a transversal
line to the convex hull of the 4-sets is more difficult (and tricky). We first notice
that if there exists a transversal line L of convex hull of the 4-sets in a set of seven
points A in R3 then L must contains two points of A. Otherwise, if we let L be
such a transversal line and x0 ∈ A a point not lying on L, then the plane H through
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Figure 1.
→
67 is a transversal line of all tetrahedrons.

x0 and L would contain at most three points of A (none lying on L). If there were
three points in H then there would be four points of A not in H, and so L would
not intersect the convex hull of the three points in H and a point out H. If there
were two points in H then there would be five points of A not in H and, by the
pigeon-hole principle, there would be at least two on the same side of H. The line
L would not intersect the convex hull of these two points and the two points in H.
Finally, if there was just one point (x0) in H then there would be six points of A
not in H and, by the pigeon-hole principle, there would be at least three points on
the same side of H. The line L would not intersect the convex hull of these three
points and x0.

We now consider the points of a tetrahedron and those of a suitable triangle placed
under the tetrahedron, see Figure 2. We claim that any line containing two of these
points has empty intersection with the convex hull of a 4-set. By the symmetry of
the configuration, there are just five cases to be checked, see Figure 3.

We define the following two functions. Let k, d ≥ 1 and d ≥ λ ≥ 1 be integers.

M(k, d, λ)
def
= the maximum positive integer n such that every set of n points (not

necessarily in general position) in Rd has the property that the convex hull of all
k-set have a transversal (d− λ)-plane.

and

m(k, d, λ)
def
= the minimum positive integer n such that for every set of n points

in general position in Rd the convex hull of the k-sets does not have a transversal
(d− λ)-plane.
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Figure 2. Configuration of 7 points without transversal line to the
convex hull of the 4-sets.

Figure 3. Transversals missing a tetrahedron.

The purpose of this paper is to study the above functions. It is clear that
M(k, d, λ) < m(k, d, λ) and, from the above, we have M(4, 3, 2) = 6 and m(4, 3, 2) =
8. In the next section, we prove the following.

Theorem 1. Let k, d ≥ 1 and d ≥ λ ≥ 1 be integers. Then,

m(k, d, λ) =

{
d + 2(k − λ) + 1 if k ≥ λ,
k + (d− λ) + 1 if k ≤ λ.

After discussing some topological results, we will introduce a special Kneser hy-
pergraph and establish a close connection between its chromatic number and both
M(k, d, λ) and m(k, d, λ), in Section 3. We then give an upper bound for the
chromatic number of such hypergraphs (Theorem 4) yielding to a lower bound for
M(k, d, λ). We will end this section by showing that the following conjecture is true
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when d = λ (Theorem 5) and if either λ = 1 or k ≤ λ or λ = k − 1 or k = 2, 3
(Theorem 6).

Conjecture 1. M(k, d, λ) = (d− λ) + k + d k
λ
e − 1.

2. Formula for m(k, d, λ)

Let conv(x1, . . . , xn) denote the convex hull of the points x1, . . . , xn. We may
prove Theorem 1.

Proof of Theorem 1. We first prove that

m(k, d, λ) ≤
{

d + 2(k − λ) + 1 if k ≥ λ,
k + (d− λ) + 1 if k ≤ λ.

We might use essentially the same idea as in the introduction. Let A be a collection
of d+2(k−λ)+1 points in general position in Rd and assume Xd−λ is a transversal
(d − λ)-plane for the convex hull of the k-sets of A. We have that Xd−λ contains
at most (d − λ + 1) points of A, and so there are at least (2k − λ) > 0 points of
A not lying on Xd−λ. Let x1 ∈ A not belonging to Xd−λ and let Xd−λ+1 be the
(d− λ + 1)-plane generated by Xd−λ and x1. Again, we have that Xd−λ+1 contains
at most (d− λ + 2) points of A, and so there are at least 2k − λ− 1 > 0 points of
A not lying on Xd−λ+1. Let x2 ∈ A not belonging to Xd−λ+1 and let Xd−λ+2 be the
(d− λ + 2)-plane generated by Xd−λ+1 and x2. Note that conv(x0, x1)∩Xd−λ = ∅.

Case 1) If k ≥ λ then we can construct inductively {x0, . . . , xλ−1} ⊂ A and a
(d − 1)-plane Xd−1 containing Xd−λ such that {x0, . . . , xλ−1} ⊂ Xd−1, but where
conv(x1, . . . , xλ−1) does not intersect our original transversal (d − λ)-plane Xd−λ.
Therefore, since Xd−1 can have at most d points of A then there still are at least
2(k − λ) + 1 points of A not lying on Xd−1, and so there are at least (k − λ) + 1
points of A in one the open half-spaces determined by Xd−1. These (k − λ) + 1
points of A together with {x0, . . . , xλ−1} ⊂ A give rise to a k-set of A whose convex
hull does not intersect Xd−λ.

Case 2) If k ≤ λ then k + (d − λ) ≤ d and hence we can construct inductively
{x0, . . . , xk} ⊂ A such that conv(x1, . . . , xk) does not intersect our original transver-
sal (d− λ)-plane Xd−λ.

We may now prove that

m(k, d, λ) ≥
{

d + 2(k − λ) + 1 if k ≥ λ,
k + (d− λ) + 1 if k ≤ λ.

Case 1) If k − λ ≥ 0 then we shall construct a collection of d + 2(k − λ) =
(d − λ + 1) + (2k − λ − 1) points in Rd = Rd−λ ⊕ Rλ with the property that the
convex hull of its k-sets have a transversal (d− λ)-plane.



TRANSVERSALS TO THE CONVEX HULL 5

A classic result of Gale [4] states that there are a set of 2k′ + d′ points in general
position in Sd′

, such that every open half-space has at least k points. In particular,
this implies that the origin lies in the interior of the convex hull of every (k′+d′+1)-
set, otherwise there would be an open half-space with less than k points. Therefore,
if we put k′ = k−λ and d′ = λ− 1, we obtain a finite set A of 2(k−λ) + (λ− 1) =
2k−λ−1 points in general position in Rλ−{0} with the property that the origin lies
in the interior of the convex hull of all k-sets of A. Now, let B be a set of (d−λ+1)
points in general position in Rd−λ. So, by suitably moving the points of A we may
obtain a set of points A′ such that A′ ∪ B is a set of (d − λ + 1) + (2k − λ) − 1
points in general position in Rd = Rd−λ ⊕ Rλ. Furthermore, A′ has the property
that Rd−λ ⊕ {0} is a transversal (d − λ)-plane for the convex hull of all its k-sets,
and hence Rd−λ ⊕ {0} is a transversal (d− λ)-plane for the convex hull of all k-sets
of A ∪B.

Case 2) If k ≤ λ then k + (d− λ) ≤ d. Hence, a collection A = {a1, . . . , ak+d−λ}
of k + (d− λ) points in general position in Rd is a simplex, and so the (d− λ)-plane

generated by {
k∑

i=1

1
k
ai, ak+1, . . . , ak+d−λ} is transversal to all k-set of A. ut

3. Topological’s results and Kneser hypergraphs

Let G(d, λ) be the Grassmanian space of all λ-planes in Rd and let G0(d, λ) be the
Grassmanian space of all λ-planes through the origin in Rd. A system Ω of λ-planes
in Rd is a continuous selection of a unique λ-plane in every direction of Rd. More
precisely, it is a continuos function Ω : G0(d, λ) → G(d, λ) with the property that
Ω(H) is parallel to H, for every H ∈ G0(d, λ).

If γd,λ : Ed,λ → G0(d, λ) is the standard vector bundle of all λ-planes through the
origin in Rd, then a system of λ-planes is just a section s : G0(d, d − λ) → Ed,d−λ,
for the vector bundle γd,d−λ. That is: G(H) = H + s(H⊥).

For example, the diametral lines of a strictly convex body K ⊂ Rd is a system of
1-planes or a system of lines in Rd, although the standard system of lines in Rd is the
collection of lines through a fixed point p0 in Rd. It is not difficult to verify that two
systems of lines in Rd agree in some direction. In particular this is the reason why
there is a diametral line of K through any point p0 of Rd. In the plane, the lines that
divide the area or the perimeter of K in half are system of lines, therefore there is
always a line that divide the area and the perimeter of K in half and through every
point there is a line that divide the perimeter of K in half. In 3-space the planes
that divide the volume or the surface of K in half are system of 2-planes or system
of planes. This time it is a little more difficult to verify that three systems of planes
(independently of the dimension of Rd) agree in some direction. So, for example,
through every point of R3 there is a plane that divide de volume and the surface of
K in half or through every line of R3 there is a plane that divide de volume K in
half. In general, we have the following.
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Theorem 2. [2, 3] Given λ+1 systems of λ-planes in Rd; Ω0, . . . , Ωλ : G0(d, λ) →
G(d, λ), they all agree in at least on direction. In other words, there is H ∈ G0(d, λ)
such that Ω0(H) = · · · = Ωλ(H).

We say that a system Ω of λ-planes is transversal to a given family F of convex
sets in Rd if every λ-plane of Ω is a transversal λ-plane for the family F . Notice that
if λ ≤ d and the family F has λ-Helly property, then F has a transversal system
ΩF of (d − λ)-planes. Indeed, for a given (d − λ)-plane H ∈ G0(d, d − λ), we may
project orthogonally the family F into the λ-plane H⊥. By Helly’s Theorem, there
is a (d − λ)-plane ΩF (H), parallel to H, and transversal to F . Furthermore, it is
easy to see that we can chose continuously ΩF (H).

Given a family F of convex sets in Rd, we say that a coloration of F is λ-admissible
if the every subfamily of F , consisting of all convex sets of F with the same color,
has the λ-Helly property. We denote by χλ(F ) the minimum positive integer r such
that there is a λ-admissible coloration of the convex sets of F with r colors.

Proposition 1. Let F be a family of convex set in Rd and suppose that F has a
λ-admissible coloration with d− λ + 1 colors, λ ≤ d. Then, F admits a transversal
(d − λ)-plane. In other words, if χλ(F ) ≤ d − λ + 1 then there is a transversal
(d− λ)-plane to all convex sets of F .

Proof. For every color i ∈ {1, . . . , d − λ}, there is a system Ωi of (d − λ)-planes
for the subfamily of convex sets of color i. By Theorem 2, there is a (d − λ)-plane
transversal to subfamily of convex sets of every color. �

3.1. Kneser Hypergraphs. Let n ≥ k ≥ 1 be integers. We denote by [n] the set

{1, . . . , n} and let
(

[n]
k

)
denote the collection of k-subsets of [n]. The well known

Kneser graph has vertex set
(

[n]
k

)
and two k-subsets are connected by an edge if they

are disjoint. We shall consider a generalization of this graph in terms of hypergraphs.
A hypergraph is a family is a set family S ⊆ 2N where the set N is its ground set.
Let λ ≥ 1 be an integer. We define the Kneser hypergraph KGλ+1(n, k) as the

hypergraph whose vertices are
(

[n]
k

)
and a collection of vertices {S1, . . . , Sρ} is a

hyperedge of KGλ+1(n, k) if and only if 2 ≤ ρ ≤ λ + 1 and S1 ∩ · · · ∩ Sρ = φ. We
remark that KGλ+1(n, k) is the Kneser graph when λ = 1. Let s ≥ 1 be an integer.
In [1] is defined a Kneser hypergraph KG(n, k, r, s) in which the vertices are all
the k-subsets of [n] and a collection of r vertices forms a hyperedge if each pair
of the corresponding k-sets have intersection of cardinality smaller than an integer
s ≥ 1. Notice that our Kneser hypergraph is different from that defined in [1].
For, we notice that KG(n, k, r, s) is a r-uniform hypergraph, that is, each hyperedge
contains exactly r elements which is not always the case for KGλ+1(n, k).

A coloring of a hypergraph S ⊆ 2N with m colors is a function c : N → [m] that
assigns colors to the ground set so that each hyperedge S ∈ S is heterochromatic,
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that is, all elements in S have different colors1. The chromatic number χ(S) of a
hypergraph is the smallest number m such that a coloring of S with m colors exists.
The so-called Kneser’s conjecture [5], first proved by Lovász [6] states.

Theorem 3. [6] Let n ≥ 2k ≥ 4. Then, χ(KG2(n, k)) = n− 2k + 2.

A subset A ⊂ N is independent if |S ∩A| ≤ 1 for all hyperedge S ∈ S. We notice
that in a m-coloring of a hypergraph the vertices of each color class is independent.
Thus, a collection of vertices {S1, . . . , Sξ} of KGλ+1(n, k) is independent if and only
if either ξ ≤ λ + 1 and S1 ∩ · · · ∩ Sξ 6= φ or ξ > λ + 1 and any (λ + 1)-subfamily
{Si1 , . . . , Siλ+1

} of {S1, . . . , Sξ} is such that S11∩· · ·∩Siλ+1
6= φ (satisfies the λ-Helly

property). Therefore, if A is any finite set with n points in Rd and F is the family
of convex hull of k-sets of A then χ(KGλ+1(n, k)) = χλ(F ).

Proposition 2. If χ(KGλ+1(n, k)) ≤ d− λ + 1 then n ≤ M(k, d, λ).

Proof. If χ(KGλ+1(n, k)) ≤ d− λ + 1 then, by Proposition 1, there is a transversal
(d− λ)-plane to the convex hull of all k-set of A where A is any subset of n points
in Rd and therefore n ≤ M(k, d, λ). �

Theorem 4. Let n ≥ k + d k
λ
e and λ ≥ 1. Then, χ(KGλ(n, k)) ≤ n− k − d k

λ
e+ 2.

Proof. Let α ≥ 1 be an integer. We first claim that if A1 ∪ · · · ∪ Aα ⊂ X where
| X |= m and | Aj |= k then | ∩α

j=1Aj |≥ αk − (α− 1)m. We prove it by induction
on α. It is clearly true for α = 1. We suppose that it is true for α− 1 and prove it
for α. Consider the subsets Aα and A′ = ∩α−1

j=1 Aj of X. Note that | Aα |= k and
| A′ |≥ (α−1)k−(α−2)m. So, | ∩α

j=1Aj |=| A′∩Aα |≥ (α−1)k−(α−2)m+k−m =
αk − (α− 1)m.

Thus, by setting α = λ + 1, we have that the family of k-sets of a set X with
cardinality m has the λ-Helly property if and only if (λ+1)k−λm > 0 or equivalently
if and only if k + k

λ
> m. Therefore, by taking m = k + d k

λ
e − 1, we have that

the family of k-sets of B = {1, . . . , k + d k
λ
e − 1} has the λ-Helly property. Let

Cj = {S ∈
(

[n]
k

)
| k + d k

λ
e + j ∈ S} for each j = 0, . . . , n − (k + d k

λ
e). Notice

that each Cj has also the λ-Helly property. So, the family of k-sets (corresponding
to vertices of KGλ+1(n, k)) of B and the families of k-sets (also corresponding to
vertices of KGλ+1(n, k)) of each Ci with j = 0, . . . , n − (k + d k

λ
e) are independent.

These sets of independent vertices give rise to an admissible coloration for Gλ+1(n, k)
with n− k − d k

λ
e+ 2 colors. �

We have the following corollaries.

Corollary 1. d− λ + k + d k
λ
e − 1 ≤ M(k, d, λ).

Proof. By combining Theorem 4 and Proposition 2. �

1This coloring definition is different from the classic one in which is required that no hyperedge
is monochromatic, that is, every hyperedge S ∈ S contains two elements i, j with c(i) 6= c(j).
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Corollary 2.

χ(KGλ+1(n, k)) >

{
n− 2k + λ if k ≥ λ,
n− 2k if k ≤ λ.

Proof. By Proposition 2, we have that if M(k, d, λ) < n then d−λ+1 < χ(KGλ+1(n, k)).
The result follows by setting n = m(k, d, λ) and by using Theorem 1. �

As an immediate consequence of Corollary 2 and Theorem 4 (with λ = 1) we
obtain Theorem 3.

3.2. Results on M(k, d, λ). Let us first notice that Conjecture 1 is equivalent to
the following one (by setting d = α + λ).

Conjecture 2. There is a set A with α + k + d k
λ
e points in Rα+λ such that the

convex hull of the k-sets does not admit a transversal α-plane.

Theorem 5. M(k, λ, λ) = k + d k
λ
e − 1.

Proof. We shall show that M(k, λ, λ) < k + d k
λ
e. The result follows since, by Corol-

lary 1 (with λ = d), we have that k+d k
λ
e−1 ≤ M(k, λ, λ). So, by Conjecture 2, it is

enough to prove that there is a set A with k + d k
λ
e points in Rλ such that the family

of convex hull of the k-sets of A does not have a common point in the intersection.
We have two cases.

Case 1) If k > λ then k = pλ + j − 1 for some integers p ≥ 1 and 2 ≤ j ≤ λ, and
so

k +

⌈
k

λ

⌉
= pλ + j − 1 +

⌈
pλ + j − 1

λ

⌉
= p(λ + 1) + j − 1 +

⌈
j − 1

λ

⌉
= p(λ + 1) + j.

We shall then prove that there is an embedding of p(λ + 1) + j points with the
property that the convex hull of the (pλ + j − 1)-sets has not a common point. To
this end, we take in Rλ a simplex with λ + 1 vertices. We split the vertices of the
simplex into j red vertices and λ+1− j blue points. In every red point we put p+1
points and in every blue point we put p points. So, in each facet we have at least
p(λ+1− j)+ (p+1)(λ− (λ+1− j)) = p(λ+1) + j = k points. Therefore, for each
facet we can form a k-set, and clearly the intersection of the convex hull of each of
such k-sets has not a common point.

Case 2) If k ≤ λ then k + d k
λ
e = k + 1. In this case, we consider a simplex with

k + 1 vertices embedded in Rλ. It is clear that the family of k-faces of the simplex
has empty intersection. �

Theorem 6. Conjecture 1 is true if either (a) λ = 1 or (b) k ≤ λ or (c) λ = k − 1
or (d) k = 2, 3.

Proof. Part (a) follows by Theorem 3. For parts (b) and (c), we remark that, by
Theorem 1 and Corollary 1,
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d−λ+k+

⌈
k

λ

⌉
−1 ≤ M(k, d, λ) < m(k, d, λ) =

{
d + 2(k − λ) + 1 if k ≥ λ,
k + d− λ + 1 if k ≤ λ.

(1)

So, if λ ≥ k then d−λ+k ≤ M(k, d, λ) < k+d−λ+1, and therefore, M(k, d, λ) =
k + d − λ, giving Conjecture 1. If λ = k − 1 then d + 2 ≤ M(k, d, λ) < d + 3, and
therefore, M(k, d, λ) = d + 2, giving also the Conjecture 1. We may then suppose
that λ < k. Finally for part (d), if k = 2 then λ = 1 and it follows by part (a), and
if k = 3 then either λ = 1 or 2, and it follows by parts (a) and (c). �

We notice that, by using (1), Conjecture 1 is also true if k = 4 when λ = 1 or
3 but it does not yield to the validatity of the conjecture if λ = 2. This case is
more complicated and we leave it for a future work. In fact, we investigate (work
in process) a general improved upper bound for M(k, d, λ) giving the conjectured
value for k = 4 and 5.
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