TRANSVERSALS TO THE CONVEX HULL OF ALL k-SET OF DISCRETE SUBSETS OF \mathbb{R}^n

J.L. AROCHA, J. BRACHO, L. MONTEJANO, AND J.L. RAMÍREZ ALFONSÍN

ABSTRACT. What is the maximum positive integer n such that every set of n points in \mathbb{R}^d has the property that the convex hull of all k-set have a transversal $(d-\lambda)$ -plane? In this paper, we investigate this and closely related questions. We establish a connection with a special *Kneser hypergraph* by using some topological results and the well-known λ -*Helly property*.

1. INTRODUCTION

Let A be a set of eight points in general position in \mathbb{R}^3 . We claim that there is not a transversal line to the convex hull of the 4-sets of A. Otherwise, if we let L be such a transversal line and $x_0 \in A$ a point not lying on L, then the plane H through x_0 and L would contain at most three points of A and so, there would be at least five points of A not in H. Therefore, by the pigeon-hole principle, three of these points would lie on the same side of H. Consequently, the line L would not intersect the convex hull of these three points and x_0 .

On the other hand, if A is a set of six points in \mathbb{R}^3 then there is always a transversal line to the convex hull of the 4-sets of A. For this, if $x_0 \in A$ then every 4-set either contains x_0 or is contained in $A - x_0$. Moreover, the family of 4-sets of $A - x_0$ satisfies the 4-Helly property (recall that a family F of convex sets in \mathbb{R}^d has the λ -Helly property if every subfamily F' of F, with size $\lambda + 1$, is intersecting) and consequently there is a point y_0 in the intersection of the convex hull these 4-sets. Therefore, the line through x_0 and y_0 is a transversal line to the convex hull of the 4-sets of A.

With seven points in \mathbb{R}^3 we may have both options. The suspension of a suitable pentagon with two extra points (one above and one below the pentagon) has a transversal line to the convex hull of the 4-sets, see Figure 1.

The construction of a set of seven points in general position without a transversal line to the convex hull of the 4-sets is more difficult (and tricky). We first notice that if there exists a transversal line L of convex hull of the 4-sets in a set of seven points A in \mathbb{R}^3 then L must contains two points of A. Otherwise, if we let L be such a transversal line and $x_0 \in A$ a point not lying on L, then the plane H through

Date: June 18, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 05A15, 13P10, 20M14.

Key words and phrases. Transversal, k-Helly property, Kneser hypergraphs.

FIGURE 1. $\vec{67}$ is a transversal line of all tetrahedrons.

 x_0 and L would contain at most three points of A (none lying on L). If there were three points in H then there would be four points of A not in H, and so L would not intersect the convex hull of the three points in H and a point out H. If there were two points in H then there would be five points of A not in H and, by the pigeon-hole principle, there would be at least two on the same side of H. The line L would not intersect the convex hull of these two points and the two points in H. Finally, if there was just one point (x_0) in H then there would be six points of Anot in H and, by the pigeon-hole principle, there would be at least three points on the same side of H. The line L would not intersect the convex hull of these three points and x_0 .

We now consider the points of a tetrahedron and those of a suitable triangle placed under the tetrahedron, see Figure 2. We claim that any line containing two of these points has empty intersection with the convex hull of a 4-set. By the symmetry of the configuration, there are just five cases to be checked, see Figure 3.

We define the following two functions. Let $k, d \ge 1$ and $d \ge \lambda \ge 1$ be integers.

 $M(k, d, \lambda) \stackrel{\text{def}}{=}$ the maximum positive integer *n* such that every set of *n* points (not necessarily in general position) in \mathbb{R}^d has the property that the convex hull of all *k*-set have a transversal $(d - \lambda)$ -plane.

and

 $m(k, d, \lambda) \stackrel{\text{def}}{=}$ the minimum positive integer *n* such that for every set of *n* points in general position in \mathbb{R}^d the convex hull of the *k*-sets does not have a transversal $(d - \lambda)$ -plane.

FIGURE 2. Configuration of 7 points without transversal line to the convex hull of the 4-sets.

FIGURE 3. Transversals missing a tetrahedron.

The purpose of this paper is to study the above functions. It is clear that $M(k, d, \lambda) < m(k, d, \lambda)$ and, from the above, we have M(4, 3, 2) = 6 and m(4, 3, 2) = 8. In the next section, we prove the following.

Theorem 1. Let $k, d \ge 1$ and $d \ge \lambda \ge 1$ be integers. Then,

$$m(k, d, \lambda) = \begin{cases} d + 2(k - \lambda) + 1 & \text{if } k \ge \lambda, \\ k + (d - \lambda) + 1 & \text{if } k \le \lambda. \end{cases}$$

After discussing some topological results, we will introduce a special Kneser hypergraph and establish a close connection between its chromatic number and both $M(k, d, \lambda)$ and $m(k, d, \lambda)$, in Section 3. We then give an upper bound for the chromatic number of such hypergraphs (Theorem 4) yielding to a lower bound for $M(k, d, \lambda)$. We will end this section by showing that the following conjecture is true when $d = \lambda$ (Theorem 5) and if either $\lambda = 1$ or $k \leq \lambda$ or $\lambda = k - 1$ or k = 2, 3 (Theorem 6).

Conjecture 1. $M(k, d, \lambda) = (d - \lambda) + k + \lfloor \frac{k}{\lambda} \rfloor - 1.$

2. Formula for $m(k, d, \lambda)$

Let $conv(x_1, \ldots, x_n)$ denote the convex hull of the points x_1, \ldots, x_n . We may prove Theorem 1.

Proof of Theorem 1. We first prove that

$$m(k, d, \lambda) \leq \begin{cases} d+2(k-\lambda)+1 & \text{if } k \ge \lambda, \\ k+(d-\lambda)+1 & \text{if } k \le \lambda. \end{cases}$$

We might use essentially the same idea as in the introduction. Let A be a collection of $d + 2(k - \lambda) + 1$ points in general position in \mathbb{R}^d and assume $X^{d-\lambda}$ is a transversal $(d - \lambda)$ -plane for the convex hull of the k-sets of A. We have that $X^{d-\lambda}$ contains at most $(d - \lambda + 1)$ points of A, and so there are at least $(2k - \lambda) > 0$ points of A not lying on $X^{d-\lambda}$. Let $x_1 \in A$ not belonging to $X^{d-\lambda}$ and let $X^{d-\lambda+1}$ be the $(d - \lambda + 1)$ -plane generated by $X^{d-\lambda}$ and x_1 . Again, we have that $X^{d-\lambda+1}$ contains at most $(d - \lambda + 2)$ points of A, and so there are at least $2k - \lambda - 1 > 0$ points of A not lying on $X^{d-\lambda+1}$. Let $x_2 \in A$ not belonging to $X^{d-\lambda+1}$ and let $X^{d-\lambda+2}$ be the $(d - \lambda + 2)$ -plane generated by $X^{d-\lambda+1}$ and x_2 . Note that $conv(x_0, x_1) \cap X^{d-\lambda} = \emptyset$.

Case 1) If $k \geq \lambda$ then we can construct inductively $\{x_0, \ldots, x_{\lambda-1}\} \subset A$ and a (d-1)-plane X^{d-1} containing $X^{d-\lambda}$ such that $\{x_0, \ldots, x_{\lambda-1}\} \subset X^{d-1}$, but where $conv(x_1, \ldots, x_{\lambda-1})$ does not intersect our original transversal $(d-\lambda)$ -plane $X^{d-\lambda}$. Therefore, since X^{d-1} can have at most d points of A then there still are at least $2(k-\lambda)+1$ points of A not lying on X^{d-1} , and so there are at least $(k-\lambda)+1$ points of A in one the open half-spaces determined by X^{d-1} . These $(k-\lambda)+1$ points of A together with $\{x_0, \ldots, x_{\lambda-1}\} \subset A$ give rise to a k-set of A whose convex hull does not intersect $X^{d-\lambda}$.

Case 2) If $k \leq \lambda$ then $k + (d - \lambda) \leq d$ and hence we can construct inductively $\{x_0, \ldots, x_k\} \subset A$ such that $conv(x_1, \ldots, x_k)$ does not intersect our original transversal $(d - \lambda)$ -plane $X^{d-\lambda}$.

We may now prove that

$$m(k, d, \lambda) \ge \begin{cases} d+2(k-\lambda)+1 & \text{if } k \ge \lambda, \\ k+(d-\lambda)+1 & \text{if } k \le \lambda. \end{cases}$$

Case 1) If $k - \lambda \geq 0$ then we shall construct a collection of $d + 2(k - \lambda) = (d - \lambda + 1) + (2k - \lambda - 1)$ points in $\mathbb{R}^d = \mathbb{R}^{d-\lambda} \oplus \mathbb{R}^{\lambda}$ with the property that the convex hull of its k-sets have a transversal $(d - \lambda)$ -plane.

A classic result of Gale [4] states that there are a set of 2k' + d' points in general position in $S^{d'}$, such that every open half-space has at least k points. In particular, this implies that the origin lies in the interior of the convex hull of every (k'+d'+1)set, otherwise there would be an open half-space with less than k points. Therefore, if we put $k' = k - \lambda$ and $d' = \lambda - 1$, we obtain a finite set A of $2(k - \lambda) + (\lambda - 1) =$ $2k - \lambda - 1$ points in general position in $\mathbb{R}^{\lambda} - \{0\}$ with the property that the origin lies in the interior of the convex hull of all k-sets of A. Now, let B be a set of $(d - \lambda + 1)$ points in general position in $\mathbb{R}^{d-\lambda}$. So, by suitably moving the points of A we may obtain a set of points A' such that $A' \cup B$ is a set of $(d - \lambda + 1) + (2k - \lambda) - 1$ points in general position in $\mathbb{R}^d = \mathbb{R}^{d-\lambda} \oplus \mathbb{R}^{\lambda}$. Furthermore, A' has the property that $\mathbb{R}^{d-\lambda} \oplus \{0\}$ is a transversal $(d - \lambda)$ -plane for the convex hull of all k-sets of $A \cup B$.

Case 2) If $k \leq \lambda$ then $k + (d - \lambda) \leq d$. Hence, a collection $A = \{a_1, \ldots, a_{k+d-\lambda}\}$ of $k + (d - \lambda)$ points in general position in \mathbb{R}^d is a simplex, and so the $(d - \lambda)$ -plane generated by $\{\sum_{i=1}^k \frac{1}{k}a_i, a_{k+1}, \ldots, a_{k+d-\lambda}\}$ is transversal to all k-set of A. \Box

3. TOPOLOGICAL'S RESULTS AND KNESER HYPERGRAPHS

Let $G(d, \lambda)$ be the Grassmanian space of all λ -planes in \mathbb{R}^d and let $G_0(d, \lambda)$ be the Grassmanian space of all λ -planes through the origin in \mathbb{R}^d . A system Ω of λ -planes in \mathbb{R}^d is a continuous selection of a unique λ -plane in every direction of \mathbb{R}^d . More precisely, it is a continuous function $\Omega : G_0(d, \lambda) \to G(d, \lambda)$ with the property that $\Omega(H)$ is parallel to H, for every $H \in G_0(d, \lambda)$.

If $\gamma^{d,\lambda} : E^{d,\lambda} \to G_0(d,\lambda)$ is the standard vector bundle of all λ -planes through the origin in \mathbb{R}^d , then a system of λ -planes is just a section $s : G_0(d, d - \lambda) \to E^{d,d-\lambda}$, for the vector bundle $\gamma^{d,d-\lambda}$. That is: $G(H) = H + s(H^{\perp})$.

For example, the diametral lines of a strictly convex body $K \subset \mathbb{R}^d$ is a system of 1-planes or a system of lines in \mathbb{R}^d , although the standard system of lines in \mathbb{R}^d is the collection of lines through a fixed point p_0 in \mathbb{R}^d . It is not difficult to verify that two systems of lines in \mathbb{R}^d agree in some direction. In particular this is the reason why there is a diametral line of K through any point p_0 of \mathbb{R}^d . In the plane, the lines that divide the area or the perimeter of K in half are system of lines, therefore there is always a line that divide the area and the perimeter of K in half and through every point there is a line that divide the perimeter of K in half. In 3-space the planes that divide the volume or the surface of K in half are system of 2-planes or system of planes. This time it is a little more difficult to verify that three systems of planes (independently of the dimension of \mathbb{R}^d) agree in some direction. So, for example, through every point of \mathbb{R}^3 there is a plane that divide de volume and the surface of K in half or through every line of \mathbb{R}^3 there is a plane that divide de volume K in half. In general, we have the following. **Theorem 2.** [2, 3] Given $\lambda + 1$ systems of λ -planes in \mathbb{R}^d ; $\Omega_0, \ldots, \Omega_\lambda : G_0(d, \lambda) \to G(d, \lambda)$, they all agree in at least on direction. In other words, there is $H \in G_0(d, \lambda)$ such that $\Omega_0(H) = \cdots = \Omega_\lambda(H)$.

We say that a system Ω of λ -planes is *transversal* to a given family F of convex sets in \mathbb{R}^d if every λ -plane of Ω is a transversal λ -plane for the family F. Notice that if $\lambda \leq d$ and the family F has λ -Helly property, then F has a transversal system Ω_F of $(d - \lambda)$ -planes. Indeed, for a given $(d - \lambda)$ -plane $H \in G_0(d, d - \lambda)$, we may project orthogonally the family F into the λ -plane H^{\perp} . By Helly's Theorem, there is a $(d - \lambda)$ -plane $\Omega_F(H)$, parallel to H, and transversal to F. Furthermore, it is easy to see that we can chose continuously $\Omega_F(H)$.

Given a family F of convex sets in \mathbb{R}^d , we say that a coloration of F is λ -admissible if the every subfamily of F, consisting of all convex sets of F with the same color, has the λ -Helly property. We denote by $\chi^{\lambda}(F)$ the minimum positive integer r such that there is a λ -admissible coloration of the convex sets of F with r colors.

Proposition 1. Let F be a family of convex set in \mathbb{R}^d and suppose that F has a λ -admissible coloration with $d - \lambda + 1$ colors, $\lambda \leq d$. Then, F admits a transversal $(d - \lambda)$ -plane. In other words, if $\chi^{\lambda}(F) \leq d - \lambda + 1$ then there is a transversal $(d - \lambda)$ -plane to all convex sets of F.

Proof. For every color $i \in \{1, \ldots, d - \lambda\}$, there is a system Ω_i of $(d - \lambda)$ -planes for the subfamily of convex sets of color i. By Theorem 2, there is a $(d - \lambda)$ -plane transversal to subfamily of convex sets of every color.

3.1. Kneser Hypergraphs. Let $n \ge k \ge 1$ be integers. We denote by [n] the set $\{1, \ldots, n\}$ and let $\binom{[n]}{k}$ denote the collection of k-subsets of [n]. The well known Kneser graph has vertex set $\binom{[n]}{k}$ and two k-subsets are connected by an edge if they are disjoint. We shall consider a generalization of this graph in terms of hypergraphs. A hypergraph is a family is a set family $S \subseteq 2^N$ where the set N is its ground set. Let $\lambda \ge 1$ be an integer. We define the Kneser hypergraph $KG^{\lambda+1}(n,k)$ as the hypergraph whose vertices are $\binom{[n]}{k}$ and a collection of vertices $\{S_1, \ldots, S_\rho\}$ is a hyperedge of $KG^{\lambda+1}(n,k)$ if and only if $2 \le \rho \le \lambda + 1$ and $S_1 \cap \cdots \cap S_\rho = \phi$. We remark that $KG^{\lambda+1}(n,k)$ is the Kneser graph when $\lambda = 1$. Let $s \ge 1$ be an integer. In [1] is defined a Kneser hypergraph KG(n,k,r,s) in which the vertices are all the k-subsets of [n] and a collection of cardinality smaller than an integer $s \ge 1$. Notice that our Kneser hypergraph is different from that defined in [1]. For, we notice that KG(n,k,r,s) is a r-uniform hypergraph, that is, each hyperedge contains exactly r elements which is not always the case for $KG^{\lambda+1}(n,k)$.

A coloring of a hypergraph $\mathcal{S} \subseteq 2^N$ with *m* colors is a function $c: N \to [m]$ that assigns colors to the ground set so that each hyperedge $S \in \mathcal{S}$ is heterochromatic,

that is, all elements in S have different colors¹. The chromatic number $\chi(S)$ of a hypergraph is the smallest number m such that a coloring of S with m colors exists. The so-called Kneser's conjecture [5], first proved by Lovász [6] states.

Theorem 3. [6] Let $n \ge 2k \ge 4$. Then, $\chi(KG^2(n,k)) = n - 2k + 2$.

A subset $A \subset N$ is *independent* if $|S \cap A| \leq 1$ for all hyperedge $S \in S$. We notice that in a *m*-coloring of a hypergraph the vertices of each color class is independent. Thus, a collection of vertices $\{S_1, \ldots, S_{\xi}\}$ of $KG^{\lambda+1}(n, k)$ is independent if and only if either $\xi \leq \lambda + 1$ and $S_1 \cap \cdots \cap S_{\xi} \neq \phi$ or $\xi > \lambda + 1$ and any $(\lambda + 1)$ -subfamily $\{S_{i_1}, \ldots, S_{i_{\lambda+1}}\}$ of $\{S_1, \ldots, S_{\xi}\}$ is such that $S_{1_1} \cap \cdots \cap S_{i_{\lambda+1}} \neq \phi$ (satisfies the λ -Helly property). Therefore, if A is any finite set with n points in \mathbb{R}^d and F is the family of convex hull of k-sets of A then $\chi(KG^{\lambda+1}(n, k)) = \chi^{\lambda}(F)$.

Proposition 2. If $\chi(KG^{\lambda+1}(n,k)) \leq d - \lambda + 1$ then $n \leq M(k,d,\lambda)$.

Proof. If $\chi(KG^{\lambda+1}(n,k)) \leq d - \lambda + 1$ then, by Proposition 1, there is a transversal $(d-\lambda)$ -plane to the convex hull of all k-set of A where A is any subset of n points in \mathbb{R}^d and therefore $n \leq M(k, d, \lambda)$.

Theorem 4. Let $n \ge k + \lceil \frac{k}{\lambda} \rceil$ and $\lambda \ge 1$. Then, $\chi(KG^{\lambda}(n,k)) \le n - k - \lceil \frac{k}{\lambda} \rceil + 2$.

Proof. Let $\alpha \geq 1$ be an integer. We first claim that if $A_1 \cup \cdots \cup A_\alpha \subset X$ where |X| = m and $|A_j| = k$ then $|\bigcap_{j=1}^{\alpha} A_j| \geq \alpha k - (\alpha - 1)m$. We prove it by induction on α . It is clearly true for $\alpha = 1$. We suppose that it is true for $\alpha - 1$ and prove it for α . Consider the subsets A_α and $A' = \bigcap_{j=1}^{\alpha-1} A_j$ of X. Note that $|A_\alpha| = k$ and $|A'| \geq (\alpha - 1)k - (\alpha - 2)m$. So, $|\bigcap_{j=1}^{\alpha} A_j| = |A' \cap A_\alpha| \geq (\alpha - 1)k - (\alpha - 2)m + k - m = \alpha k - (\alpha - 1)m$.

Thus, by setting $\alpha = \lambda + 1$, we have that the family of k-sets of a set X with cardinality m has the λ -Helly property if and only if $(\lambda+1)k - \lambda m > 0$ or equivalently if and only if $k + \frac{k}{\lambda} > m$. Therefore, by taking $m = k + \lceil \frac{k}{\lambda} \rceil - 1$, we have that the family of k-sets of $B = \{1, \ldots, k + \lceil \frac{k}{\lambda} \rceil - 1\}$ has the λ -Helly property. Let $C_j = \{S \in {\binom{[n]}{k}} \mid k + \lceil \frac{k}{\lambda} \rceil + j \in S\}$ for each $j = 0, \ldots, n - (k + \lceil \frac{k}{\lambda} \rceil)$. Notice that each C_j has also the λ -Helly property. So, the family of k-sets (corresponding to vertices of $KG^{\lambda+1}(n,k)$) of B and the families of k-sets (also corresponding to vertices of $KG^{\lambda+1}(n,k)$) of each C_i with $j = 0, \ldots, n - (k + \lceil \frac{k}{\lambda} \rceil)$ are independent. These sets of independent vertices give rise to an admissible coloration for $G^{\lambda+1}(n,k)$ with $n - k - \lceil \frac{k}{\lambda} \rceil + 2$ colors. \Box

We have the following corollaries.

Corollary 1. $d - \lambda + k + \lfloor \frac{k}{\lambda} \rfloor - 1 \leq M(k, d, \lambda).$

Proof. By combining Theorem 4 and Proposition 2.

¹This coloring definition is different from the classic one in which is required that no hyperedge is *monochromatic*, that is, every hyperedge $S \in S$ contains two elements i, j with $c(i) \neq c(j)$.

Corollary 2.

$$\chi(KG^{\lambda+1}(n,k)) > \begin{cases} n-2k+\lambda & \text{if } k \ge \lambda, \\ n-2k & \text{if } k \le \lambda. \end{cases}$$

Proof. By Proposition 2, we have that if $M(k, d, \lambda) < n$ then $d - \lambda + 1 < \chi(KG^{\lambda+1}(n, k))$. The result follows by setting $n = m(k, d, \lambda)$ and by using Theorem 1.

As an immediate consequence of Corollary 2 and Theorem 4 (with $\lambda = 1$) we obtain Theorem 3.

3.2. Results on $M(k, d, \lambda)$. Let us first notice that Conjecture 1 is equivalent to the following one (by setting $d = \alpha + \lambda$).

Conjecture 2. There is a set A with $\alpha + k + \lceil \frac{k}{\lambda} \rceil$ points in $\mathbb{R}^{\alpha+\lambda}$ such that the convex hull of the k-sets does not admit a transversal α -plane.

Theorem 5. $M(k, \lambda, \lambda) = k + \lceil \frac{k}{\lambda} \rceil - 1.$

Proof. We shall show that $M(k, \lambda, \lambda) < k + \lceil \frac{k}{\lambda} \rceil$. The result follows since, by Corollary 1 (with $\lambda = d$), we have that $k + \lceil \frac{k}{\lambda} \rceil - 1 \leq M(k, \lambda, \lambda)$. So, by Conjecture 2, it is enough to prove that there is a set A with $k + \lceil \frac{k}{\lambda} \rceil$ points in \mathbb{R}^{λ} such that the family of convex hull of the k-sets of A does not have a common point in the intersection. We have two cases.

Case 1) If $k > \lambda$ then $k = p\lambda + j - 1$ for some integers $p \ge 1$ and $2 \le j \le \lambda$, and so

$$k + \left\lceil \frac{k}{\lambda} \right\rceil = p\lambda + j - 1 + \left\lceil \frac{p\lambda + j - 1}{\lambda} \right\rceil = p(\lambda + 1) + j - 1 + \left\lceil \frac{j - 1}{\lambda} \right\rceil = p(\lambda + 1) + j.$$

We shall then prove that there is an embedding of $p(\lambda + 1) + j$ points with the property that the convex hull of the $(p\lambda + j - 1)$ -sets has not a common point. To this end, we take in \mathbb{R}^{λ} a simplex with $\lambda + 1$ vertices. We split the vertices of the simplex into j red vertices and $\lambda + 1 - j$ blue points. In every red point we put p + 1 points and in every blue point we put p points. So, in each facet we have at least $p(\lambda + 1 - j) + (p + 1)(\lambda - (\lambda + 1 - j)) = p(\lambda + 1) + j = k$ points. Therefore, for each facet we can form a k-set, and clearly the intersection of the convex hull of each of such k-sets has not a common point.

Case 2) If $k \leq \lambda$ then $k + \lceil \frac{k}{\lambda} \rceil = k + 1$. In this case, we consider a simplex with k + 1 vertices embedded in \mathbb{R}^{λ} . It is clear that the family of k-faces of the simplex has empty intersection.

Theorem 6. Conjecture 1 is true if either (a) $\lambda = 1$ or (b) $k \leq \lambda$ or (c) $\lambda = k - 1$ or (d) k = 2, 3.

Proof. Part (a) follows by Theorem 3. For parts (b) and (c), we remark that, by Theorem 1 and Corollary 1,

$$d-\lambda+k+\left\lceil\frac{k}{\lambda}\right\rceil-1 \le M(k,d,\lambda) < m(k,d,\lambda) = \begin{cases} d+2(k-\lambda)+1 & \text{if } k \ge \lambda, \\ k+d-\lambda+1 & \text{if } k \le \lambda. \end{cases}$$
(1)

So, if $\lambda \geq k$ then $d - \lambda + k \leq M(k, d, \lambda) < k + d - \lambda + 1$, and therefore, $M(k, d, \lambda) = k + d - \lambda$, giving Conjecture 1. If $\lambda = k - 1$ then $d + 2 \leq M(k, d, \lambda) < d + 3$, and therefore, $M(k, d, \lambda) = d + 2$, giving also the Conjecture 1. We may then suppose that $\lambda < k$. Finally for part (d), if k = 2 then $\lambda = 1$ and it follows by part (a), and if k = 3 then either $\lambda = 1$ or 2, and it follows by parts (a) and (c).

We notice that, by using (1), Conjecture 1 is also true if k = 4 when $\lambda = 1$ or 3 but it does not yield to the validatity of the conjecture if $\lambda = 2$. This case is more complicated and we leave it for a future work. In fact, we investigate (work in process) a general improved upper bound for $M(k, d, \lambda)$ giving the conjectured value for k = 4 and 5.

Acknowledgement

Part of this work was done while the third author was visiting Equipe Combinatoire et Optimisation, Paris 6.

References

- N. Alon, P. Frankl and L. Lovász, The chromatic number of Kneser hypergraphs, Trans. Amer. Math. Soc., 298(1) (1986), 359-370.
- [2] J. Bracho and L. Montejano, , , **79** (19), .
- [3] V.L. Dol'nikov, Transversals of families of sets in \mathbb{R}^n and a connection between the Helly and Borsuk theorems, *Russian Acad. Sci. Sb. Math.*, **79**(1) (1994), 93-107.
- [4] D. Gale, Neighboring vertices on a convex polyhedron, in *Linear Inequalities and Related Systemas* (eds. H.W. Kuhn and A.W. Tucker) Princeton University Press, Princeton, (1956).
- [5] M. Kneser, Aufgabe 300, Jahresbericht der Deutschen Mathematiker-Vereinigung, 2. Abeteilung 58 (1955), 27.
- [6] L. Lovász, Kneser's conjecture, chromatic number and homotopy J. Combinatorial Theory Ser. A 25 (1978), 319-324.

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., 04510, Mexico

E-mail address: arocha@math.unam.mx

INSTITUTO DE MATEMÁTICAS,, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, CIUDAD UNIVERSITARIA, MÉXICO D.F., 04510, MEXICO *E-mail address*: jbracho@math.unam.mx

INSTITUTO DE MATEMÁTICAS,, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, CIUDAD UNIVERSITARIA, MÉXICO D.F., 04510, MEXICO

E-mail address: luis@math.unam.mx

EQUIPE COMBINATOIRE ET OPTIMISATION, UNIVERSITÉ PIERRE ET MARIE CURIE, PARIS 6, 4 PLACE JUSSIEU, 75252 PARIS CEDEX 05 *E-mail address*: ramirez@math.jussieu.fr