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Abstract. We prove a colorful version of the Hadwiger’s transversal line the-
orem: if a family of colored and numbered convex sets in the plane has the
property that any three differently colored members have a transversal line
compatible with the numbering, then there exists a color such that all the
convex sets of that color have a transversal line.

1. Introduction

In 1982 (see [1]) Imre Bárány observed that some of the classical theorems in
convexity admit interesting and mysterious generalizations which he called “col-
orful theorems”. For example, the Helly Colorful Theorem says that if a family
(repetitions of the same sets are allowed) of compact convex sets in Rk is colored
(properly) with k + 1 colors and it has the property that any choice of k + 1 dif-
ferently colored sets have non void intersection, then there exists a color such that
all the convex sets of that color have non void intersection. In the case that any
convex set of the family is repeated k+1 times and they are colored with the k+1
colors, we obtain the classical Helly’s Theorem. So, the colorful version is indeed a
generalization. Bárány attributed this theorem to László Lovász (see [2] for his el-
egant proof) and he proved a colorful version of the Carathéodory Theorem. Since
then, several papers have been published on this matter. See, for example [3], [7]
and [5].
However, in the study of colorful theorems there was a missing piece. Does

the Hadwiger Theorem on transversal lines to plane convex sets admits a colorful
version? We will see that the answer is yes. More precisely, the purpose of this
note is to proof the following theorem.

Theorem 1 (Colorful Hadwiger). Let A1, ...An be a finite, ordered family of com-
pact convex sets in the plane colored red, green and blue. If any choice of differently
colored Ai , Aj and Ak with i < j < k have a transversal line consistent with the
order i < j < k, then there is a color such that there is a line transversal to all the
convex sets of this color.

Let us clarify some details. First, the phrase “consistent with the order i <
j < k” means exactly that Aj intersects the convex closure of Ai ∪ Ak. Second,
the coloring must be surjective: any color is present. Finally, it is not supposed
that Ai 6= Aj , i.e. repetitions of the same convex sets are allowed. With the
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same argument as above, we see that it is indeed a generalization of the Hadwiger
theorem (whose first proof in its full generality is due to Wenger [8]).
The proof of the Colorful Hadwiger Theorem has three key parts: a geometric, a

combinatorial and a topological one. We will explain them in that order. In Section
2 we introduce balanced colored sign vectors and expose they key properties to the
proof of the theorem. In Section 3 we prove a property of colored sign vectors
which can be stated and proved without any geometrical interpretation. In the last
section we will explain why the fact that the sphere of dimension 1 is a connected
topological space is the final element for the proof of the theorem.

2. Balanced colored sign vectors

A vector whose coordinates are elements of the set {−, 0,+} is called a sign
vector. Given an ordered family A1, ...An of convex sets in the plane and an ori-
ented line c it is natural to construct the separating sign vector x = (x1, . . . , xn)
whose coordinate xi is zero if c intersects Ai, is positive if Ai lies in the right open
semiplane of c and is negative if Ai lies in the left open semiplane of c.
Let d be a direction in the plane and d⊥ its orthogonal direction (i.e.

¡
d, d⊥

¢
is

an orthonormal positive ordered basis). Chose any oriented line c⊥ in the direction
of d⊥. When we orthogonally project any convex set Ai to the line c

⊥ we obtain an
interval

£
pi, qi

¤
and we can think that pi and qi are real numbers. For the ordered

family A = (A1, ...An) define p = Sup
©
pi
ª
and q = Inf

©
qi
ª
. Let c be the oriented

line in the direction d which meets c⊥ in the point (p+ q) /2. We will call c the
middle line of the family A in the direction d. The separating sign vector of
the line c will be called the middle separating sign vector of the direction d.
It is easy to see that the family has no transversal line in the direction d if

and only if q < p. This is equivalent to the property that the middle separating
sign vector has plus and minus coordinates. So, we will say that a sign vector is
balanced when it has plus and minus coordinates.
The opposite of a sign vector x is the vector −x = (−x1, . . . ,−xm) where the

usual rules (−0 = 0, −+ = − and −− = +) are used. If x is the separating sign
vector of the oriented line c, then −x is the separating sign vector of the same line
with the reversed orientation. If a sign vector is balanced, then his opposite also is.
A colored sign vector is a sign vector together with a coloring {1, . . . , n} →

{red, green, blue} of the indices of its coordinates. Of course, all the separating
sign vectors of a colored family of convex sets are naturally colored with the same
coloring. We will need to extend the concepts of middle separating sign vectors and
balanced sign vectors to the colored case.
Suppose our ordered family A = (A1, ...An) is now colored. Let d be a direc-

tion and let the line c⊥ and the intervals
£
pi, qi

¤
be defined as above. Denote

pR = Sup
©
pi | Ai is red

ª
and qR = Inf

©
qi | Ai is red

ª
. In the same way we define

the real numbers pG, qG and pB, qB for the green and blue convex sets.
The numbers pR, pG and pB can be in any order. They can even coincide. Denote

by p1 one of the smallest of them. Denote by p3 one of the greatest of the remaining
two. Finally denote by p2 the remaining number. So, we have p1 ≤ p2 ≤ p3 and
{p1, p2, p3} = {pR, pG, pB}. In the same way we can define q1, q2 and q3 such that
q1 ≥ q2 ≥ q3 and {q1, q2, q3} = {qR, qG, qB}. Let c be the oriented line in the
direction d which meets c⊥ in the point θ = (p2 + q2) /2. We will call c the middle
line of the colored family A in the direction d. The colored separating sign
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vector of the line c will be called the middle colored separating sign vector of
the direction d.
The following two results are easy to check and we will omit their proofs.

Lemma 1. The map that to any direction of the plane assigns the middle line of
the colored family in that direction is continuos.

Lemma 2. If two directions are opposite, then their middle colored separating sign
vector are opposite.

A colored sign vector will be called balanced if for any two colors, there is a
plus of some of the two colors and a minus of the other color.

Lemma 3. If the colored family A has the property that any monochromatic sub-
family has no transversal line in the direction d, then the middle colored separating
sign vector of that direction is balanced.

Proof. Let pR, pG, pB, p1, p2, p3, qR, qG, qB, q1, q2 ,q3 and θ be as above. Since
there is no transversal line to the red convex sets in the direction d, then we have
pR > qR. Analogous arguments give pG > qG and pB > qB. We shall see that
p2 > q2. Indeed, if q2 ≥ p2, then q1 ≥ q2 ≥ p2 ≥ p1 and this contradicts the fact
that there is a bijection ϕ : {1, 2, 3}→ {1, 2, 3} such that pi > qϕ(i) for i ∈ {1, 2, 3}.
Denote by x the middle colored separating sign vector of the direction d. If x

is not balanced, then there are two colors say red and green such that all non zero
red and green coordinates are (say) pluses. This implies that qR ≥ θ and qG ≥ θ.
Moreover, since p2 > q2, then θ > q2. But qR > q2 and qG > q2 contradict the
definition of q2. ¤

3. The sign of colored sign vectors

Among all n-dimensional sign vectors there is a natural partial order relation ¹
defined by x = (x1, . . . , xn) ¹ x0 = (x01, . . . , x0n) if and only if (xi 6= 0)⇒ (xi = x0i).
The minimum element of this order relation is the zero vector. For the case that
x and x0 are the separating sign vectors corresponding to the oriented lines c and
c0 the relation x ¹ x0 means that c separates less sets than c0. This relation is
important because if the convex sets are compact and c0 is in a sufficiently small
neighborhood of c, then c separates less sets than c0 i.e. the relation x ¹ x0 always
hold. We will use the relation x ¹ y among colored sign vectors only if their
colorings are the same.
A colored sign vector x will be called Hadwiger if for any choice i < j < k of

indices with different colors we have that (xi, xj , xk) 6= (+−+) and (xi, xj , xk) 6=
(−+−). If x is the separating sign vector of the colored family A1, ...An and the
oriented line c, then the property that x is not Hadwiger means that there exist
differently colored i < j < k such that c separates Aj from the convex closure of
Ai ∪ Ak. Therefore, if the hypothesis of the Colorful Hadwiger Theorem holds for
the family A1, ...An , then any its colored separating sign vector is Hadwiger.
The sign of a sign vector is zero if all it coordinates are zero and in the other

cases is equal to the sign of its leading coordinate, this is, the non zero coordinate
with the smallest index.

Lemma 4. If x ¹ y are both balanced and Hadwiger colored sign vectors, then they
have the same sign.
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Proof. Assume that x and y contradict the lemma. Say the sign of x is plus and
the sign of y is minus. Denote by a and b the indices of the leading coordinates
of x and y respectively. Since x ¹ y, then we have b < a. Let us eliminate all
coordinates i such that i < b and b < i < a thus obtaining sign vectors x0 and
y0. In this process the signs and the order relation are preserved. Both x0 and y0

are Hadwiger and x0 is balanced. Since x0 ¹ y0 the vector y0 is balanced too and
therefore x0 and y0 also contradict the lemma. So, without loosing generality we
can suppose that b = 1 and a = 2.
The coordinate 2 is of some color, say blue and since x ¹ y, then x2 = y2 = +.

We also know that x1 = 0 and y1 = −. We divide the proof into two cases: the
coordinate 1 is blue or not.
Suppose the first coordinate is blue. Since y is balanced there must be a green

coordinate (say i) such that yi = − and a red coordinate (say j) such that yj = +.
If i < j then (y2, yi, yj) = (+−+) otherwise (y1, yj , yi) = (−+−) and in both
cases we contradict that y is Hadwiger.
Suppose the first coordinate is red. If there exist a green coordinate (say i)

such that xi = yi = −, then (y1, y2, yi) = (−+−) and this contradicts that y is
Hadwiger. So, there is no such coordinate. Since x is balanced and x ¹ y there
must exist a green coordinate (say i) such that xi = yi = +, a red coordinate (say
j) such that xj = yj = − and a blue coordinate (say k) such that xk = yk = −. If
j < i, then (y2, yj , yi) = (+−+). Hence, i < j. If k < i, then (yk, yi, yj) = (−+−)
otherwise (y1, yi, yk) = (−+−) and in all cases we obtain a contradiction. ¤

4. The proof

Suppose that the Colorful Hadwiger Theorem is not true and let A1, ...An be an
ordered colored family of compact convex sets in the plane which contradict the
theorem. Let P (respectively N) be the set of the directions of the plane such that
their middle colored separating sign vector has positive sign (respectively negative
sign). All middle colored separating sign vectors are Hadwiger and by Lemma 3
are balanced. Since balanced sign vectors have non zero sign, then P ∪N is the set
of all directions in the plane, which is homeomorphic to the sphere of dimension
1 denoted by S1. By Lemma 2 both sets P and N are non empty and by their
definition they are disjoint. By Lemma 1, the observation at the beginning of
Section 3 and Lemma 4 both sets P and N are open sets. This is a contradiction
because S1 is a connected topological space.
This conclude the proof of the theorem. We shall finish this note with two

remarks. First, observe that hidden along the lines of this note there is a very
simple proof (it seems to be new) of the classical Hadwiger Theorem. In this
case, the sign vectors are not colored; the definition of Hadwiger sign vectors does
not require that coordinates are differently colored; the definition of a balanced
sign vector is that there exist plus and minus coordinates; the Lemma 4 becomes
obvious and we need the sign of middle separating sign vectors (not colored) to
construct the open sets P and N.
Second, observe that it is easy to formulate a colorful version of the Goodman-

Pollak-Wenger Theorem on transversal hyperplanes (see [4] and [6]). However, the
known proof seems to be not adaptable to the colorful version. All the data we have
(for example, it is true for families of disjoint convex sets in R3) point to conjecture
that the colorful version of this theorem is true.
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