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Abstract� The purpose of this paper is to give a complete clas�
si�cation of Zindler Carrousels with �ve chairs� This classi�cation
theorem gives enough evidence to show the non existence of �gures�
di�erent from the disk� that �oat in equilibrium in every position
for the corresponding perimetral densities�

�� Introduction and Carrousels

Zindler Carrousels are analytic dynamical systems� The initial mo�
tivation for their study was the following� Auerbach ��� proved that
Zindler curves bound �gures� di�erent from the disk� that �oat in equi�
librium in every position for the density �	
 � In general� for �gures
that �oat in equilibrium in every position some remarkable facts fol�
low� namely� that the �oating chords have constant length� that the
curve of their midpoints has the corresponding chords as tangents� and
that these chords divide the perimeter in a �xed ratio � �the perime�
tral density� Suppose that � is rational� Then� for every point p in
the boundary of one of this �gures� we have an inscribed equilateral
n�gon which moves� as a linkage with rigid rods� as p moves along the
boundary� in such a way that the midpoints of the sides move parallel
to them� So� this is the main motivation for the following de�nition�

A Carrousel �with n chairs is a system which consists of n smooth
�not necessarily closed curves f���t� ���t� ���� �n�tg in R� satisfying
the following properties for every t � R and for all i � �� ���� n� where
�i�n�t � �i�t� � The length of the interval with end points �i�t
and �i���t� j�i���t� �i�tj� is a non�zero constant 
 The curve of

midpoints� mi�t �
�i�t���i���t�

�
� of the segments from �i�t to �i���t�

has tangent vector� m�

i�t� parallel to �i���t� �i�t�

A carrousel with n chairs f���t� ���� �n�tg is a Zindler carrousel if
all the curves �i�t are reparametrizations of the same closed curve�
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Observe as an example� that the circle yields a Zindler carrousel with
n chairs� because we can inscribe in it an equilateral n�gon such that�
when rotating� its vertices describe the original circle and the midpoints
of its sides describe a smaller concentric circle� Zindler curves studied in
��� are essentially Zindler carrousels with two chairs� which� according
to ���� are in one to one correspondence with curves of constant width�

The purpose of this paper is to give a complete classi�cation of
Zindler Carrousels with �ve chairs� This classi�cation theorem gives
enough evidence to show the non existence of �gures� di�erent from the
disk� that �oat in equilibrium in every position for perimetral densities
�
�
and �

�
� Although the main properties of carrousels were studied in ����

for completeness we summarize them� in this section� without proofs�

De�nition �� Let � be a �gure �region bounded by a simple closed
curve�� A chord system fC�pg for � is a continuous selection of an
oriented chord C�p� starting at p� for every point p in the boundary of
��

There are three natural kinds of chord systems for a �gure ��

� The system fCa�pg of chords which divide the area in a �xed ratio
��

 The system fCp�pg of chords which divide the perimeter in a �xed
ratio ��
� The system fCl�pg of chords of constant length � �

Note that for non�convex �gures the chord system fCa�pg is not
necessarily well de�ned� for all ��

Let � be a �gure of area A and let us suppose that the chord system
which divides the area of � in a �xed ratio �� fCa�pg� is well de�ned�
Let G be the mass center of � and g�p the mass center of the regions
of �� bounded by Ca�p� of area �A� Then� according to Archimedes
Law� we have the following de�nition

De�nition �� We say that the �gure � �oats in equilibrium in a given
position p� if the line through G and G�p is orthogonal to C�p� A

�gure � that �oats in equilibrium in every position will be called an
Auerbach �gure�

In ���� Auerbach ��� proved the following theorem�

THEOREM �� A �gure � is an Auerbach �gure if and only if the sys�
tem of chords fCa�pg is well de�ned and it is also of the type fCl�pg
of constant length�
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For the prove he used the following facts which will be used later�

A� If a system of interior non�concurrent chords� fCi�pg� is of any of
the two types i � fa� p� l� g� then it is also of the third type�

B� The area A�p� of the region of a �gure �� left to the right by the
chord C�p of a chord system fC�pg� is constant if and only if every
chord C�p is tangent to the curve described by the midpoints of C�p�

This motivates the following de�nition�

De�nition �� If � is an Auerbach �gure for the density �� we say that
� has perimetral density � if the chord system which divides the area
of � in the ratio �� fCa�pg� is well de�ned and divides the perimeter
of � in a �xed ratio ��

In what follows� when studying Auerbach �gures� we will classify
them according with their perimetral density�

De�nition �� Let � � R� � � � � �� We say that a �gure � is an
��Zindler curve� if the system of chords fCp�pg� which divides the
perimeter in a �xed ratio �� is also a fCl�pg system of �xed length � �

Observe� that the classic Zindler curves ��� are �
�
�Zindler� The next

two theorems relates ��Zindler curves� Zindler Carrousels and Auer�
bach �gures�

THEOREM �� f��� ���� �ng is a Zindler Carrousel with n chairs if
and only if there exists an � � q�n �with q�n an irreducible fraction
�� for some q � Z� � � q � n

�
� such that each �i�t is an ��Zindler

curve�

THEOREM �� Let � be a closed smooth curve such that the system
of chords of �xed perimeter � is interior� Then � is an ��Zindler
curve if and only if the �gure bounded by the curve � is an Auerbach
curve for some density ��

Note now that the existence of Zindler carrousels with interior chords
give rise to 
�dimensional bodies that �oat in equilibrium in every po�
sition�

Given a carrousel f���t� ���� �n�tg� by the �rst carrousel law ����
��

i���t is a re�ection of ��

i�t along the line generated by �i���t��i�t�
So we may assume that all the curves �i�t are parametrized by arc
length and furthermore that j�i���t� �i�tj � 
�

Let �i�t denote the angle between the vectors ��

i�t and �i���t �
�i�t� and let 	i�t be the angle between the x�axis and the vector
�i���t� �i�t� then by the second carrousel law ���� 	�i�t � sin ��i�t�
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Next theorem exhibits the di�erential equations of carrousels� where
xi �t denotes the angle between the vectors �i���t��i�t and �i���t�
�i�t�

THEOREM �� Let f���t� ���� �n�tg be a carrousel with n�chairs�
Then� the interior angles xi�t� i � �� ���� n� satisfy the following system
of constrained di�erential equations

x�i�t � sin��i���t� sin��i�t���

If n is odd then

�i�t � xi���t � xi���t � ���� xi��n����t� �
k � �




��


where k is the integer number such that
Pn

i�� xi�� � k
�

Conversely� if n is odd and we have functions xi�t� i � �� ���� n� sat�
isfying the system of di�erential equations ��� �
� and such that the
initial conditions �x���� ���� xn�� are the interior angles of an equilat�
eral n�gon with sides of length 	� Then� there exists a carrousel of n
chairs f���t� ���� �n�tg� with the property that xi�t is the angle between
�i���t� �i�t and �i���t� �i�t�

The following two corollaries will be used in the next section�

COROLLARY �� Let X�� be an n�gon with interior angles
�x���� ���� xn�� n odd� Then there exist a unique carrousel
f���t� ���� �n�tg up to orientation� with initial condition X���

COROLLARY �� Let f���t� ���� �n�tg be a carrousel with n�chairs�
n odd� If there exists t� � R such that xi�t� � xi���� �i � �� � � � � n��
then the curves ���t������n�t are congruent�

An interesting propertie of carrousels is given by the following theo�
rem

THEOREM �� Let f���t� ���� �n�tg be a carrousel with n�chairs� n
odd� Let X�t be the n�gon with vertices f���t� ���� �n�tg� Then� the
area A�t of X�t is constant and the mass center H�t of X�t is a
�xed point�


� Carrousels with Five Chairs

For the study of the carrousel with � chairs� we shall consider the
space� P�� of all equilateral pentagons in the plane� one of whose sides
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is the distinguished interval ����� �� ��� ��� and all the other sides have
length two�

If X � P� is a pentagon� we can write it as X � �z�� ���� z�� where
zj � eixj is a complex number and the �ve real numbers �x�� ���� x�
are the interior angles of the equilateral pentagon X� Clearly� the xi�s
satisfy the following equation�

u�� � u�
 � x� � u�

 � �x� � x	 � ����

�u��
 � �x� � x	 � x� � x� � ��

where u�	 � �cos 	� sin 	�

We know ��� that P� is an oriented surface of genus �� embedded in
S��S��S��S��S� where S� is the sphere of dimension �� So� we can
think of Euclidean spaceR� as the covering space of S��S��S��S��S�

with its natural projection P � R� � S� � S� � S� � S� � S� which
sends �x�� ���� x� to the corresponding �z�� ���� z��

It is clear that �P� � P���P� is also a surface� and �x�� ���� x� is a

member of �P� if it satis�es the following three equations� a
P�

i�� xi �

�
 � 

k� where k is an integer�
b cos�x� � cos�x�� cos�x� � x	� cos�x� � x� � ��
c sin�x�� sin�x� � sin�x� � x	� sin�x� � x� � ��

Now� consider the function

�f � �P � � R� � R

which determines the area of a pentagon�

�f�x�� ���� x� � sin�x� � sin�x�� sin�x� � x� � sin�x��

and at the same time let us call f the corresponding area function

f � P� � R�

LEMMA �� The area function f � P� � R has 
� non�degenerate
critical points� 	 maxima �which correspond to the area of the pos�
itively oriented regular convex pentagon and the negatively oriented
regular pentagram�� 	 minima �which correspond to the area of the
negatively oriented regular convex pentagon and the positively oriented
regular pentagram� and 
 saddle points�

Proof� Let us take the following function

F � �f�� f�� f	� f� � R
� �� R��
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where

f��x�� � � � � x� �� x� � x� � x	 � x� � x��

f��x�� � � � � x� �� cos�x� � cos�x�� cos�x� � x	� cos�x� � x��

f	�x�� � � � � x� �� sin�x�� sin�x� � sin�x� � x	� sin�x� � x��

f��x�� � � � � x� �� sin�x� � sin�x�� sin�x� � x� � sin�x��

By calculating the determinants of all the �� � sub matrices of the
matrix dFp and taking the restriction to �P� we obtain the following
system of equations� whose solution give us the set of critical points of
the area function �f � �P� � R�

������
�����

sin�x	 � x�� sin�x� � x� � �
sin�x� � x�� sin�x	 � x� � �
sin�x� � x�� sin�x� � x� � �
sin�x� � x	� sin�x� � x� � �
sin�x� � x�� sin�x� � x	 � �

������
�����

�
��

Since P � �P� � P� is a covering space and the map �f � �P� � R is
a lift of f � P� � R� then the critical points of f can be obtained by
projecting the critical points of �f �

So� we obtain that the pentagons with interior angles �x�� ���� x�
which solve the system of equations �
�� are precisely the two regular
convex pentagons� oriented and unoriented� X �

�

and �X �

�

� respectively�

with interior angles of the form 	�
�
� 

k� k an integer� the regular

pentagrams� X �

�

and �X �

�

with interior angles of the form �
�
� 

k� k

an integer� and �� pentagons which are like a triangle� with interior
angles of the form� xi � xi�� � xi�� � 
�� � 

k�� xi�	 � 

k� and
xi�� � 

k	� k�� k�� k	 integers and i � �� ���� �� �i� � � i�

Then the function f � P� � R has �� non�degenerate critical points�

 local maxima� given by X �

�

and �X �

�

� 
 local minima given by X �

�

and �X �

�

and �� more critical points� that by the Euler characteristic�

are saddle points and are given by the �� pentagons which look like a
triangle�

Next� we shall study the Morse Theory of the area function f �
P� � R� First note that it has the following � critical values�
f�m��b��n� n� b�mg� where m is the area of the oriented regular pen�
tagon X �

�

� n is the area of the regular oriented pentagram X �

�

and b

is the area of the pentagons which look like a triangle� The set� P�
o �

of oriented pentagons without intersections on their sides is given by



ZINDLER CARROUSELS �

f����b�m�� which is a connected surface with only one critical point� a
maxima� and hence topologically homeomorphic to an open disc� Simi�
larly� the set� P�

u� of unoriented pentagons without intersections on their
sides is given by f�����m��b� which is a connected surface with only
one critical point� a minima� and hence topologically homeomorphic
to an open disc� f�����b� b is an open surface that consists of three
connected components� the set� R�� of all pentagons with exactly one
intersection on their sides� the set� Q�

o� of oriented pentagrams �with �
intersections and the set� Q�

u� of unoriented pentagrams� Since there
are only two critical points in f�����b� b� then Q�

o and Q
�
u are home�

omorphic to open discs and R� is homeomorphic to an open cylinder�
Finally� we summarize the situation of the �bers as follows�

a if x � ��m��b � ��n� n � �b�m� then f���x consists of a simple
closed curve�
b if x � ��b��n � �n� b� then f���x consists of two simple closed
curves�
c if x � f�m��n� n�m� g� then f���x consists of a single point� and
d if x � f�b� bg� then f���x� consists of a chain of � simple closed
curves in which two consecutive curves have one point in common�
Each one of these closed curves represents pentagons in which two
consecutive sides coincide�

Note that for the area function �f � �P� � R� the kernel Ker�dFp �

Ker�d �fp� coincides with the system of constrained di�erential equa�
tions given in Theorem ���� for n � �� Hence� Ker�dfp is the set of
tangent vectors to the curves f���A�

For a pentagon in �z�� ���� z� � P
�
o �P

�
u�Q

�
o�Q

�
u�R

�� respectively� we
identify �z�� ���� z� with �x�� ���� x� � �P�� where zj � eixj and

P�
i�� xi �

�
� �
� 
� �
� �
� respectively� Furthermore� f���A is parametrized by
�x��t �����x��t� satisfying the system of di�erential equations ����
�
with initial conditions �x���� ���� x��� � P�

o �P
�
u�Q

�
o�Q

�
u�R

�� respec�
tively� which are the interior angles of an equilateral pentagon with
sides of length 
� area A and

P�
i�� xi�� � �
� �
� 
� �
� �
� respec�

tively� Moreover� for every one of this curves� there exists a carrousel
of n chairs f���t� ���� �n�tg� with the property that xi�t is the angle
between �i���t � �i�t and �i���t � �i�t� Consequently� carrousels
are classi�ed� by real numbers in ��m�m��

Our next purpose is to study P�
� � First of all� observe that for

every A � �b�m� there exists tA in R such that� for every t�
xi�t � tA � xi���t� because f

���A consists of a simple closed curve
and if �x���� x���� x	��� x���� x��� is in the curve f���A then�
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�x���� x	��� x���� x���� x��� is also in f���A� By Corollary ����
for the corresponding carrousel f���t� ���� �n�tg� we conclude that the
curve �i�t� tA is congruent to �i���t�

LEMMA �� Let A � �b�m and suppose the curve f���A is
parametrized by �x��t� ���� x��t� satisfying the system of constrained
di�erential equations ��� �
� Let tA� �A � R� be the minimum positive
numbers such that for every t � R�

xi�t� tA � xi���t and xi�t� �A � xi�t�

Then�

�tA � 
�A�

Proof� Observe that in P�
o � f����b�m� which by convention can be

thought as a subset of R�� the projection to the �rst two coordinates is
one to one because these equilateral pentagons are determined by two
of their angles� Let gA � R� be the simple closed curve which is the
projection of f���A in R��

First of all we can see that gA is a simple closed curve symmetric with
respect to the line x � y� because if the pentagon �x�� x�� x	� x�� x� is
in f���A then� the symmetric one� �x�� x�� x�� x�� x	� is also in f

���A�
Therefore� gA intersects the line x � y in exactly two points� lets
say �d� d and �a� a� Then there exists a pentagon P� of the form
�a� a� b� c� b � f���A� Let P� � �a� b� c� b� a� P	 � �b� c� b� a� a� P� �
�c� b� a� a� b and P� � �b� a� a� b� c� They are also in f���A� Hence� the
projection of these �ve points� q� � �a� a� q� � �a� b� q	 � �b� c� q� �
�c� b and q� � �b� a belong to gA� Again� since the curve gA is a simple
closed symmetric curve and since for pentagons of the form �a� a� b� c� b
in these region we have that if a � b then c � a and if b � a� then
a � c� we have that there exist only two possibilities for the cyclic
order of the points fqig in the curve gA� Either fq�� q�� q�� q	� q�g or
fq�� q�� q�� q�� q	g� We shall now prove that the �rst cyclic order is not
possible�

Suppose the curve f���A is parametrized by P �t � �x��t� ���� x��t�
where the fxi�tg

�
� satisfy the system of constrained di�erential equa�

tions ��� �
� Suppose� without loss of generality� that P �� �
P� � �x���� ���� x���� Hence P �itA � Pi�� � �x��itA� ���� x��itA�
i � �� �� 
� �� ��

If the cyclic order of the points fqig in the curve gA is
fq�� q�� q�� q	� q�g� then the cyclic order of the points fPig in the curve
f���A is fP ��� P �tA� P ��tA� P �
tA� P ��tAg� which implies that
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there exists s� � R� tA � s� � 
tA such that P �
tA � s� � P ��tA�
Thus� P �s� � P �
tA� which is impossible because tA is the minimum
positive number such that� for every t� xi�t� tA � xi���t�

If the cyclic order of the points fPig in the curve f���A is
fP ��� P ��tA� P �tA� P ��tA� P �
tAg� then there exists � � �A � tA
such that xi�t � �A � xi�	�t for every t � R� Then� xi�t � ��A �
xi�t� �A and xi�t� ���A � xi�t� �tA � xi�t� 
�A� Consequently
�tA � 
�A and 
�A � tA�

From now on� let � � �A � tA be the minimum real number such
that xi�t� �A � xi�	�t� for every t � R� Note that 
�A � tA�

Remark� The corresponding result for A � �n� b and f���A � Q�
o is

that �tA � �A�

�� The Classification

In this section we shall classify Zindler carrousels for n � �� So we
need to study �rst some parameters associated to carrousels� and the
small pieces of curves that describe them�

Let us do the case in which A � �b�m and suppose the curve f���A
is parametrized by �x��t� ���� x��t� satisfying the system of constrained
di�erential equations ��� �
 with initial conditions �x���� ���� x��� �
P�
o � which are the interior angles of an equilateral pentagon with sides

of length 
� area A and
P�

i�� xi�� � �
� By theorem ���� there exists
a carrousel f���t� ���� �n�tg� with the property that xi�t is the angle
between �i���t��i�t and �i���t��i�t and� by Lemma 
�
� such that
xi�t��A � xi�	�t� for every t � R� where 
�A � tA� Consequently� the
curves �i�t� �A and �i�	�t are congruent� Furthermore� by Theorem
���� assume that the mass center of the pentagons is the origin� Hence�
there exists a rotation R�A of an angle A such that� for every t � R�

�i�t� �A � R�A�i�	�t�

Let us call A� the basic angle of this carrousel� That is� for every
t � R�

A � 		�t� �A� 	��t�

where 	i�t denotes the angle between the x�axes and the vector
�i���t� �i�t�
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We shall classify Zindler carrousels in terms of their basic angles�
which in turn� depend on the area A of the carrousel� For that purpose
the following de�nitions are important�

The period� �A� of the carrousel is the minimum real positive num�
ber such that xi�t� �A � xi�t� for every t � R and i � �� ���� �� Note
that the pentagons at the time � and �A are congruent� So we de�ne
the rotational angle� �A� of the carrousel as the angle between them�
that is�

�A � 	i��A� 	i��� i � �� ���� ��

Remember that 	�i�t � � sin�xi���t � xi���t� hence

�A � �

Z �A

�

sin�x��t � x��tdt �

The next Lemma relates the value of the basic angle A and the
rotational angle �A of a carrousel�

LEMMA �� Let A � �b�m� Then�

�A � �
 � �A�

Proof� Using the fact that 		�t � 	��t � 

 � �x��t � x	�t� and
that for i � �� �� 
� �� ��

A � 		��i� ��A� 	��i�A �

� �

Z �i����A

i�A

sin�x��t � x��tdt� �		�i�A� 	��i�A�

we obtain� adding this �ve equalities� we obtain the result�

De�nition �� Let us call the i�track of the carrousel� the curve seg�
ment f�i�sj� � s � �Ag� i � �� ���� ��

LEMMA �� It is possible to reconstruct the curves �i�t� t � R� by
pasting one after the other� the �ve i�tracks�

Proof� Let us take some t � R� then we can write t � m�A � �� where
m � Z and � � � � �A� So �i�t � �i�m�A � � � Rm

�A
�k�� where

k � i� �m mod���

Besides� we are interested in �nding the index of Zindler carrousels
around the mass center� because if the index of the curve has absolute
value greater than one� then the curve intersects itself and therefore it
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is not a �gure which �oats in equilibrium with perimetral density �
�
�

For that purpose we need to know the angular length of the i�tracks�

De�nition �� Let us suppose that the mass center of the pentagons
is in the origin� Then we de�ne the angular length of the i�track as
follows

Ci �� the angle between �i�� and �i��A�

and we call

�i �� the angle between �i�� and �i�����

The following theorem classi�es �
�
�Zindler carrousels

THEOREM �� Any �
�
�Zindler carrousel of index d has basic angle

A � r��
m

� with m � �s � 
� s a natural number� and � � r � m�
satisfying for some K the integer equation

���s� � � r � � �mK � d�

and conversely� if a carrousel with area A � �b�m has basic angle A
satisfying the above integer equation� then it is a �

�
�Zindler carrousel�

Proof� Let us suppose we have a Zindler Carrousel� So� after a certain
time� the curve �i reaches and follows the curve �i��� That is� �i�t �
� � �i���t� for every t � R� So xi�t�� � xi���t� which implies that
� � m�A� where m � �s � 
� for s a natural number� Let � � � � �A�
so we have �i�m�A � � � Rm

�A
�i���� � �i����� Therefore� R

m
�A

must

be the identity and hence A � r��
m
� for � � r � m�

Since R�A sends the ��track to the set f����A � tj� � t � �Ag� then
A � �� � �� � C� � 
l
 for some integer l� We already know that A
must be of the form r��

m
� with m � �s�
� therefore� C� must be of the

form

C� � �� � �� � �	 � �
r

m
� k�

�

for some k� � Z�
Similarly

Ci � �i � �i�� � �i�� � �
r

m
� ki

�

Then� Ci�Ci�	� ����Ci�	�m��� � �i���s��

� r

��ki� ki�	�
����ki�	�m���

� where Ci�Ci�	� ����Ci�	�m��� is the angular length
of the curve f�i�tj� � t � m�Ag�
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For a Zindler carrousel with index d we have that
�X

i��

�Ci � Ci�	 � ���� Ci�	�m��� � 

d�

that is

���s� � � r �mK � d� ��

where K �
P�

i�� ki�

Therefore� the integer solutions of the preceding equation with � �
r � m give rise all the possible angles A for �

�
�Zindler carrousels with

index d and� by construction� if a carrousel with �ve chairs has basic
angle determined by this equation� then it is a �

�
�Zindler carrousel�

With this discussion we have �nished the proof�

COROLLARY �� Any �
�
�Zindler carrousel of index 
 has basic angle

of the form �s��
�s��


� for s � �� a natural number and conversely� if a

carrousel with area A � �b�m has basic angle A � �s��
�s��


� for s � � a

natural number� then it is a �
�
�Zindler carrousel�

Proof� The natural solutions of the equation ���s� � � r �mK � ��
with m � �s� 
 and � � r � m are precisely the natural numbers for
which �r

m
��s��

�s��
�

Figure � and 
 shows carrousels with basic angles 
�
�
and ���

��
respec�

tively� the basic angles �s��
�s��


 tends to ��
�
� when s tends to in�nity�

which correspond to the basic angle of the carrousel shown in Figure
�� Figure � corresponds to the carrousel of area zero whose center of
mass is at in�nity�

THEOREM 	� A �
�
�Zindler carrousel with index � and interior

chords must have a period �A � 
����
�

Proof� Let us suppose we have a �
�
�Zindler carrousel parametrized by

�x��t� ���� x��t� satisfying the system of constrained di�erential equa�
tions ��� �
 with initial conditions �x���� ���� x��� � P

�
o � which are

the interior angles of an equilateral pentagon of area A � �b�m� andP�
i�� xi�� � �
� Let us assume that our carrousel has basic angle

A � �s��
�s��


� with s a natural number greater than zero� Suppose that
all chords are interior� Then for � � t � ��s� 
�A� we have that

� � 	��t � 	���� Writing 	���A in terms of A � 		��A� we obtain�

		��A � x��� � x��� � 	���A�
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		��A � x��� � x��� � x��� � x	�� � 	��
�A�

�		��A � x��� � x��� � x��� � x	�� � x��� � x��� � 	����A�

and so on� Therefore� taking A � �s��
�s��


 � 		��A� we have that

x����x��� �

s��
�s��


� x��� �
	s��
�s��


 and x��� �
	s

�s��

� Since this

follows for every initial condition� we have the following inequalities�

xi�t � xi���t �
�s� 


�s� 


� and

�s

�s� 


 � xi�t �

�s� 


�s� 


�

which in turn give rise to the following inequality� for s � 


� sin�
�s

�s� 


 � ��sin�xi�t � xi���t � � sin�

�s� �

�s� 


�

Using now Lemma ���� we obtain� for s � �� the following bound for
�A�



sec s��
�s��




��s� 

� �A �



sec� s��
�s��




��s� 

� 
����
�

Finally� the carrousels with basic angle 
�
�
and ���

��
are shown in the

�gures � and 
� respectively� In both of them their chords are not
interior�

The case �
�
can be studied in a similar way� One proves that� for A �

�n� b� �A� �
 � �A� It is also possible to obtain a classi�cation of �
�
�

Zindler carrousels of index d� In particular� we have the corresponding
theorem�

THEOREM 
� Any �
�
�Zindler carrousel of index � has basic angle of

the form 
s��
�s�	


� for s a natural number�

COROLLARY �� A �
�
�Zindler carrousel with index � must have a

period �A � 
���

Proof� Is easy to see that for X � �x�� ���� x� � Q
�
o� we have sin�x	 �

x� � sin�� arcsin��
�
 � ����
��� which implies that� for any A � �n� b�

the rotational angle of a carrousel is �A � �����A� Therefore� a �
�
�

Zindler carrousel with basic angle A � 
s��
�s�	


� must have a period
�A � 
���
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�� Some Consequences of the Theory

Using the fact that f���m�where f � P� � R� is an isolated singular
point of the vector �eld and a non�degenerate center� that is� the linear
part of the vector �eld has eigenvalues 	i�� � � �� we may prove� using
the Classical Poincar�e�Lyapunov Center Theorem �
������ that the limit
of the period function � � �b�m � R� when A � m� is 

�� which�
after the corresponding calculations� gives ��m � 

�� 
 
����
�

CONJECTURE �� The period function � � �b�m � R is an de�
creasing function� In fact� ��A � ��m� for every A � �b�m�

There is clear evidence of this fact given by the computer� The
graph ��a shows the values� obtained with a computer� for �A and
A� Note that A � 
����
 and �A � 
����
� for every A � �b�m�
In ��� it was proved that there are no �gures that �oat in equilibrium
in every position with perimetral density �

	
and �

�
� although there are

with perimetral density �
�
� This time we show that there are no �gures

that �oat in equilibrium in every position with perimetral density �
�
and

�
�
� di�erent from the circle�

To see this� let us suppose that there exist a �gure that �oat in
equilibrium in every position with perimetral density �

�
� which give rise

to a �
�
�Zindler carrousel� If the index is �� by Theorem ���� �A � 
����
�

which is a contradiction� The same ideas can be analogously applied
to study �

�
�Zindler carrousels of index �� to conclude that there are

no �gures that �oat in equilibrium in every position with perimetral
density �

�
�

Furthermore� by Corollary ���� a �
�
�Zindler carrousel of index � must

have a period �A � 
��� It is possible to verify� using the previous
discussion of the Poincar�e�Lyapunov Center Theorem and graph ��b�
that the period of any carrousel with area A � �n� b is greater than

��� Therefore� there are no �

�
�Zindler carrousels of index � and an

analogous discussion shows the same for index ���
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Figure �
The Zindler Carrousel with basic angle �
��
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Figure 

The Zindler carrousel with basic angle ��
��
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Figure �
The unique carrousel of area zero and center of mass at in�nity
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�

Figure �
Carrousel with area 
���
� and basic angle �
��
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