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Abstract

Helly and Hadwiger type theorems for transversal m-flats to families of
flats and, respectively, convex sets of dimension n are proved in the case of
general position. The proofs rely on Helly type theorems for "linear partitions"
and "convex partitions", so that a general theory of Helly numbers is also
developed.

1 Introduction

Hadwiger considered in [11] the possibility of a Helly type theorem for transversal
lines to a family of planar convex sets. He observed that an extra hypothesis about
the hitting order of transversal lines to subfamilies of size 3 must be assumed to
conclude the existence of a transversal line to the whole family; such a theorem is
what we understand as a "Hadwiger type theorem". His result was generalized by
Goodman, Pollack and Wegner [9, 14] to one of transversal hyperplanes using the
notion of order type, which generalizes order for lines. These ideas have ramified to
different contexts (see [10] and [16]), in particular by restricting the type of convex
sets considered; but few results, other than [1] or the recent [5], are known for
transversals of dimension and codimension different from 1. This problem, explicitly
posed in [7] (Problem 7.9), is the one we address.
In [2] we proved a Hadwiger type theorem for transversal lines to a family of

convex sets of dimension 1 (detailed bellow). It is closely related to a Helly type the-
orem for transversal lines to a family of lines in projective space (of any dimension);
namely, if each six of them have a transversal line, they all do. In this paper, those
ideas are extended to existence theorems of transversal flats of dimension m to finite
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families of convex sets and of projective flats of dimension n; an extra assumption
is made concerning the "general position" of the families. There is work of Lovász
about transversal flats to families of flats (seemingly, with no extra hypothesis). It
is reported in [8]; but the “Helly number” anounced is binomial, ours is linear.
First, we state the main theorems and sketch their proofs; then, to conclude the

introduction, we see with an example that when considering convex sets of a fixed
dimension greater than 1 some extra hypothesis is always needed.
A projective subspace of a projective space is also called a flat or an n-flat if it

has dimension n. A finite collection X0,X1, · · · , Xk of flats in projective space is in
general position if together they span the biggest possible projective subspace; that
is, if

dim

*
k[
i=0

Xi

+
=

kX
i=0

dimXi + k

where hAi denotes the projective (or linear) span of A. We say that a family of flats
is k-generic if each k+ 1 of them are in general position, or equivalently, if no k+ 1
of them have a transversal (k − 1)-flat (this condition was used in [9], see also [7]).
Thus, for example, they are 1-generic if each pair is disjoint. Likewise, we say that a
family of convex sets in euclidean space is in general position (or k-generic) if their
spanned projective flats are; considering, of course, that they lie in the projective
closure of euclidean space.
Observe that the usual notion of “general position” for points in Pn corresponds

to our notion of being n-generic, for at most n + 1 points in Pn can be in general
position in the sense we have established here. Thus, beware of the slight difference
with usual terminology.
Considering only finite families to avoid routine topological considerations, our

main theorems are:

Theorem 1 An m-generic family of n-flats has a transversal m-flat if every sub-
family of cardinality ¹

1

2
(3n+ 2m+ 7)

º
has a transversal m-flat.

Theorem 2 An m-generic family of convex sets of dimension n has a transversal
m-flat if they correspond to an order type of dimension m such that every subfamily
of cardinality

2n+m+ 3

has a transversal m-flat compatible with that order type.
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The proof of these two theorems follow the same general sketch. First, to establish
the structure of the set T of m-flats transversal to m+2 elements of the family –in
the first case it is (naturally parametrized by) a projective space of dimension n, in
the second, considering the order, it will be a convex set of dimension n. Second,
to prove that every other member of the family is transversal to a subset of T of a
special type: in the first case what we call a linear partition; in the second, a convex
partition. Finally, to prove and use a Helly Theorem for such special subsets.
A linear partition is a subset of projective space which is a union of flats in general

position. Analogously, a convex partition is a subset of euclidean space such that its
connected components are convex sets which, as a family, is in general position. The
two Helly Theorems we have referred to are:

Theorem 3 A family of linear partitions in Pn has nonempty intersection if every¥
3
2
(n+ 1)

¦
of them have nonempty intersection. Furthermore, this is the least pos-

sible such number.

Theorem 4 A family of convex partitions in Rn has nonempty intersection if every
2n + 1 of them have nonempty intersection. Furthermore, this is the least possible
such number.

1.1 An example

In [2] we proved that if a numbered family of intervals in an affine space has the
property that any six of them have a transversal line compatible with the numbering,
then all the intervals have a transversal line. The "magic" number six is trivially
reduced to three if instead of intervals we are talking about points. However, if we
increase the dimension of the convex sets, there is no such "magic" number; some
other assumption has to be made.
To see this, consider a family of close together lines belonging to one of the two

rulings of the symmetric hyperboloid x2 + y2 = z2 + 1 (Figure 1(a)).
Consider a vertical plane (containing the z axis). A planar convex polygon is

spanned by the intersection points of our lines with that plane. For a wide range
of such planes, this polygon is contained outside the hyperboloid, as shown in Fig-
ure 1(b). On the other hand, if we do the same with a horizontal plane (parallel to
the xy plane), then the polygon obtained lies inside the hyperboloid (Figure 1(c)).
Since a line can not cross the hyperboloid in more than two points, we can

construct several such polygons, alternating inside and out, to force the fact that
any transversal line to them must be one of the a priori chosen family.
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Figure 1: Crossing a ruling with horizontal and vertical planes

Moreover, to generate the polygons we are not obliged to take the span of all the
intersection points; we can leave out one or more of them. It is clear then that our
freedom is enough to force any of the lines to intersect only a subset of the polygons.
In particular, we can build up a set of k polygons and k lines in such a way that each
polygon does not intersect exactly one of the lines. In Figure 2, two perspectives of
such an example for k = 9 are shown.

Figure 2: An example of 9 polygons with no transversal line but each 8 of them do
have one.

These examples can be easily generalized to convex sets of bigger dimension as
follows. Suppose we have a family F of convex sets in Rd. In Rd+1, multiply each
of the sets in F by the interval 0 ≤ w ≤ 1 where w is the new coordinate, to obtain
a family F 0 of convex sets one dimension higher. It is not difficult to see that a
subfamily of F has a transversal line if and only if the corresponding subfamily of
F 0 has one.
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Thus, we showed that such general transversal line theorems are possible only
when the convex sets have dimension 0 (trivial) or 1 (the one in [2]).

2 Rulings

We will work in a real projective space of a big dimension as a universal ambient
space; it will be denoted PN but may also be thought as P∞ with only finite di-
mensional subspaces considered. Some subspaces of a specific dimension k will be
relevant as ambient spaces and then are denoted Pk. By X C PN we mean that X
is a flat of PN ; and by Xn C PN we mean, furthermore, that X has dimension n.
Superscripts will always mean dimension and so are used to establish it, but later on
they may be dropped to ease reading.
Given a family F of subsets of PN , an m-transversal to F is an m-flat that

intersects every member of F . Let us denote by Tm (F) the set of all m-transversals
to F , that is,

Tm (F) :=
©
Y m C PN | Y ∩A 6= ∅ for all A ∈ F

ª
LetXn

1 , X
n
2 , . . . , X

n
m+1 be projective flats of dimension n in general position. They

span a projective space of dimension n (m+ 1) +m. Let

Pn∗m = hX1, . . . , Xm+1i ,
where, n ∗m = (n+ 1) (m+ 1)− 1.

Observe that any m-transversal Y m to X1, . . . , Xm+1 is contained in Pn∗m because Y
contains a point in each of the Xi and, by general position, these m+ 1 points span
Y. So that Tm (X1, . . . , Xm+1) is naturally parametrized by the Cartesian product
X1 × · · · ×Xm+1.
Let p ∈ Pn∗m be a generic point, i.e., such that the family p,X1, . . . , Xm+1 is

m-generic. Then, p lies in a unique m-flat transversal to X1, . . . , Xm+1, which we
denote Yp. Indeed, if we let

pi = Xi ∩
D
p,X1, . . . , bXi, . . . , Xm+1

E
,

(where bXi means "omit Xi") which is a well defined point by a simple dimen-
sional argument, then Yp = hp1, . . . , pm+1i. Therefore, if Zk

0 C Pn∗m is such that
{Z0,X1, . . . , Xm+1} is m-generic (and thus, 0 ≤ k ≤ n), then Tm (Z0, X1, . . . , Xm+1)
is naturally parametrized by Z0 (p ↔ Yp), because Z0 consists of generic points.
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Moreover, for each i ∈ {1, . . . ,m+ 1}, the map p 7→ Xi ∩ Yp from Z0 to the k-
dimensional subspace of Xi,

Zi = Xi ∩
D
Z0,X1, . . . , bXi, . . . , Xm+1

E
,

is a projective isomorphism. Observe that Tm (Z0,X1, . . . , Xm+1) coincides with
Tm (Z0, Z1, . . . , Zm+1). The union of these m-flats, which lies in the projective space
hZ1, . . . , Zm+1i of dimension k ∗m, is what we call a (k,m)-ruling and denote it

R (k,m) =
[
p∈Z0

Yp =
[

Y ∈Tm(Z0,X1,...,Xm+1)

Y.

Each Y m ∈ Tm (Z0, Z1, . . . , Zm+1) is called an m-rule of R (k,m); the set of m-rules
is denoted R (k,m), that is, R (k,m) = Tm (Z0, Z1, . . . , Zm+1).
It happens that the (k,m)-ruling R (k,m) can also be expressed as a union of

k-rules: if we define R (k,m) = Tk (R (k,m)), we have

R (k,m) =
[

Z∈R(k,m)

Z

So that Z0, Z1, . . . , Zm+1, which are, by definition, k-rules of R (k,m), extend to a
family of k-flats naturally parametrized by Pm via intersection with any of the m-
rules Y m ∈ R (k,m). In fact, R (k,m) is the algebraic variety Pk×Pm together with
a fixed embedding which is linear in each factor.
To sketch a proof of the assertions we have made, let us ease notation. Assume

that the space Z0 we started with has dimension n. So, let Z0 = X0,X1, . . . , Xm+1 be
m-generic n-flats in Pn∗m, and letR (n,m) be their associated (n,m)-ruling. Consider
Pn∗m as the projective space associated to the vector space V of dimension (n ∗m)+
1 = (n+ 1) (m+ 1), which we write Pn∗m = P (V). For j = 0, . . . ,m + 1, let Vj be
the (n+ 1)-dimensional linear subspace of V such that Xj = P (Vj). Observe that
the m-generic hypothesis is that V is expressed as the direct sum of any m + 1 of
V0, . . . , Vm+1. Consider a basis v0, v1, . . . , vn of Vm+1. Then, for i ∈ {0, . . . , n} and
j ∈ {0, . . . ,m}, we have uniquely defined vij ∈ Vj such that

vi = vi0 + vi1 + · · ·+ vim ;

and moreover, v0j, . . . , vnj is a basis of Vj. The bilinear map

ϕ : Rn+1 ×Rm+1 → V³
(xi)

n
i=0 , (yj)

m
j=0

´
7→

X
i,j

xiyj vij
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governs the ruling R (n,m) which is the projectivization of its image. For example,
we may write

R (n,m) =
©
P
¡
ϕ
¡
x×Rm+1

¢¢
| x ∈ Rn+1 − {0}

ª
,

R (n,m) =
©
P
¡
ϕ
¡
Rn+1 × y

¢¢
| y ∈ Rm+1 − {0}

ª
.

The unproved assertions of our previous paragraphs follow easily from here.
Summarizing, if X0, . . . , Xm+1 are m-generic n-flats then Tm (X0, · · · ,Xm+1) is

naturally parametrized by a projective space of dimension at most n; namely, by
Z0 = X0 ∩ hX1, · · · ,Xm+1i.

3 Linear partitions

Our interest in linear partitions arises from the following.

Proposition 1 Let X0, · · · ,Xm+1,X be m-generic n-flats. Then

Tm (X0, · · · ,Xm+1,X) ⊂ Tm (X0, · · · ,Xm+1)

is a linear partition; where Tm (X0, · · · ,Xm+1) is considered naturally as a projective
space.

Before we go into the proof, we must give some insight of linear partitions and
establish basic facts about them. As defined in the introduction, a linear partition
is a union of flats in general position. In terms of the vector space covering, a linear
partition corresponds to a union of linear subspaces whose sum is a direct sum.
First observe that the intersection of linear partitions is again a linear partition.

Thus, there is a linear partition closure operator. Given any subset S of projective
space, its LP-closure hSiLP is the minimum linear partition that contains it, or the
intersection of all that do. The subscript is to distinguish it from the linear closure
operator, or projective span, that we are denoting h i. They may clearly be different.
For example, if p1 and p2 are distinct points then hp1, p2iLP = {p1, p2} while hp1, p2i
is the line through them; but if we choose a third point p0 ∈ hp1, p2i− {p1, p2}, then
hp0, p1, p2iLP = hp0, p1, p2i = hp1, p2i. Thus, three points are needed to generate a
line as a linear partition.
A set S of (k+2) points isminimally degenerate if they are not in general position

but every proper subset is (they are k-generic and span a k-flat). We will need the
following characterization of linear partitions.
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Lemma 1 A ⊂ PN is a linear partition if and only if whenever a set of points S ⊂ A
is minimally degenerate then hSi ⊂ A.

The proof is simple and hence we omit it. Formally, it can be traced back to
Tutte [15], where he studied “connectivity in matroids”. In our case, considering
projective space as a matroid in the natural way, our minimally degenerate sets are
the circuits on which Tutte based the notion of connectivity. This general approach
is studied further in [4].
Proof of Proposition 1. Identify Tm (X0, . . . , Xm+1) with a subspace of X0

by intersection. Suppose Y m
0 , . . . , Y m

k+1 ∈ Tm (X0, . . . , Xm+1, X) are such that their
intersection points pi := Yi ∩X0 are minimally degenerate. Let Z0 = hp0, . . . , pk+1i;
it is a subspace of X0 of dimension k, and also of hX1, . . . , Xm+1i; therefore, we may
use the notation of Section 2. By Lemma 1, it is enough to prove that for every
p ∈ Z0 the corresponding Yp ∈ Tm (X0, . . . , Xm+1) is also transversal to X.
For i = 1, . . . ,m + 1, let Zi := {Yp ∩Xi | p ∈ Z0} ⊂ Xi be the corresponding

k-flat in Xi. Then Z0, . . . , Zm+1 generate a (k,m)-ruling R (k,m) in a projective
space of dimension k ∗m, Pk∗m. Observe that Y0, Y1, . . . , Yk+1 are dual generators of
R (k,m).
By hypothesis, we have points qi ∈ Yi∩X, i = 0, . . . , k+1. Let Z = hq0, . . . , qk+1i ⊂

X. If dimZ = k, then Z is a k-rule of R (k,m) (Z ∈ R (k,m)) and is therefore
transversal to all its m-rules which is what we wanted to prove. Otherwise, Z has
dimension k + 1. But then, Z1, . . . , Zm, Z are not in general position because they
are all in Pk∗m and

mX
i=1

dimZi + dimZ +m = mk + k + 1 +m = (k + 1) (m+ 1) > k ∗m.

This contradicts the hypothesis that X0, · · · ,Xm+1,X are m-generic, because then
any collection of their subspaces should also be m-generic.
Observe from the proof that the subspace Z of X is also a k-flat within one of

the n-rules of R (n,m); where, to ease notation, we are assuming that X0 ⊂ Pn∗m
and identifying Tm (X0, . . . , Xm+1) with R (n,m). So that we get a little more. For
each component of the linear partition Tm (X0, . . . , Xm+1, X), there exists an n-rule
Xy ∈ R (n,m) such that Xy ∩X is a flat parametrizing that component. From this
observation, one can construct examples of X that produce any linear partition on
X0; simply lift the components to different "heights" of one m-rule and then take
their linear span.
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4 Helly Theory

We have observed and used that the intersection of linear partitions is a linear par-
tition. We are now interested in proving that they have a Helly number like convex
sets do. However, we will need a similar result for convex partitions and since many
of the arguments are essentially the same, it will be more efficient to work abstractly
in a general setting where Helly numbers make sense. Our point of view is different
from the classic one introduced by Levi [13] and further developed in [12] (see also
[6]) for “abstract convexity spaces”, in the sense that we look at Helly numbers from
within a lattice, not only for the maximal element. However, the main concepts
coincide.
Let Λ be a meet semilattice; that is, it is a partial order such that for any two

elements a and b, there is a well defined intersection, or meet, a ∧ b satisfying that

c ≤ a and c ≤ b ⇒ c ≤ a ∧ b.

We will always assume that our partial orders have a minimum element, denoted
∅ to which we refer to as the empty set. This is strictly the case for our relevant
examples, which are: convex sets, C; linear partitions, LP; convex partitions, CP;
projective subspaces, L; and finite sets. All of them with set inclusion as order and
intersection as meet.
For any a ∈ Λ, a 6= ∅, define its Helly number h (a) , or hΛ (a) to be explicit, as

the minimum k such that if a0, . . . , ak ≤ a satisfy that

a0 ∧ · · · ∧ bai ∧ · · · ∧ ak 6= ∅ for every i = 0, . . . , k,

then a0 ∧ · · ·∧ ak 6= ∅. When h (a) > 1, it clearly coincides with the maximum k for
which there exist a1, . . . , ak ≤ a with

a1 ∧ · · · ∧ ak = ∅,
and a1 ∧ · · · ∧ bai ∧ · · · ∧ ak 6= ∅ for every i = 1, . . . , k;

in this case, we call a1, . . . , ak ≤ a a Helly family for a. If h (a) < ∞, then a
satisfies a Helly theorem for finite families; namely, a (finite) family of elements of
a≤ := {b ∈ Λ | b ≤ a} intersects (i.e., has non-empty intersection) if every h (a) of
them do. If hΛ (a) <∞ for every a ∈ Λ, we say that hΛ is the Helly function of Λ,
and that Λ is a Helly semilattice.
The upper-rank, r (a), may be defined as the maximum k such that there exist

a0 < a1 < · · · < ak = a. And if r (a) < ∞ for every a ∈ Λ, one says that Λ has an
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upper-rank function. It is the rank function if the length of maximal chains depend
only on the extremes.
Convex sets, C, do not have an upper-rank function because they have infinite

strict chains; but they are a Helly lattice with hC = dim+1 by Helly’s Theorem. It
is not difficult to see that projective subspaces, L, and finite sets have both a rank
function and a Helly function and that they coincide.

Lemma 2 If Λ is a meet semilattice with upper-rank function r, then it is a Helly
semilattice and

hΛ ≤ r

Proof. Atoms (which have no smaller element other than ∅) have upper-rank and
Helly functions well defined as 1. So we may inductively assume for k > 1 that if
r (a) < k then h (a) ≤ r (a). Suppose that a ∈ Λ has r (a) = k, and let a0, a1, . . . , ak
be elements of a≤ such that for every j = 0, . . . , k, we have that

V
i6=j ai 6= ∅. If we

prove that then
Vk

i=0 ai 6= ∅, we may conclude that h (a) ≤ k and we are done.
We may assume that one of the ai is different from a, otherwise their intersection

is a 6= ∅. Suppose a0 < a, so that r (a0) < r (a) = k and, by induction, we have that
h (a0) < k.
For i = 1, . . . , k, let bi := ai ∧ a0, so that b1, . . . , bk ∈ (a0)≤. For each j = 1, . . . , k

and i running in {1, . . . , k}, we have that

^
i 6=j

bi =
^
i6=j
(ai ∧ a0) = a0 ∧

Ã^
i6=j

ai

!
6= ∅

because we are only missing an index. Therefore, since h (a0) < k, we have thatVk
i=1 bi 6= ∅. But

Vk
i=1 bi =

Vk
i=0 ai and the proof is complete.

Observe that we essentially proved that

hΛ (a) ≤ max {hΛ (b) | b < a}+ 1 (1)

so that if strict chains are not infinite (an upper-rank function exists) there is a Helly
number bounded by the upper-rank.
The intersection lattice of linear partitions LP has a rank function and thus,

by the lemma, a Helly function. To see that rLP (Pn) = 2n + 1, consider points in
general position p0, p1, . . . , pn ∈ Pn. Then, the chain of linear partitions

∅ < {po} < {po, p1} < · · · < {po, . . . , pn} < hp0, p1i ∪ {p2, . . . , pn} <
< hp0, p1, p2i ∪ {p3, . . . , pn} < · · · < hp0, . . . , pn−1i ∪ {pn} < hp0, . . . , pni = Pn
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gives that rLP (Pn) ≥ 2n + 1. A moment’s thought makes this chain the largest
possible. But, as we will shortly see, the Helly function of LP is, in general, strictly
smaller.
Suppose furthermore that Λ is a lattice, that is, it also has join: well defined

minima a ∨ b such that a, b ≤ a ∨ b. This is the case for our lattices of interest
because they all have an associated closure operator defined on any set.
For any pair of elements a, b ∈ Λ, there is a natural morphism

a≤ × b≤ → (a ∨ b)≤
(a0, b0) 7→ a0 ∨ b0

where × denotes the standard Cartesian product. When this morphism is a lattice
isomorphism, we say that a∨b is a direct join and denote it aYb. It is easy to see that
a∨b is a direct join if and only if for every c ≤ a∨b one has that c = (a ∧ c)∨ (b ∧ c).
Observe that ifA is a linear partition whose connected components areA0, A1, . . . , Ak

then, in LP: A = A0 YA1 Y · · · YAk.

Lemma 3 If Λ is a Helly lattice, then

h (a Y b) = h (a) + h (b) .

Proof. Let k1 = h (a), k2 = h (b) and k = k1 + k2. To show that h (a Y b) ≤ k, we
must prove that if c0, c1, . . . , ck ≤ a∨b are such that every k of them have non empty
intersection then they all have nonempty intersection.
Let ai = a∧ ci for i = 0, . . . , k. If ∅ 6=

Vk
i=0 ai ≤

Vk
i=0 ci we are done. So supposeVk

i=0 ai = ∅. Then, because the Helly number of a is k1, there exist k1 indices, say
I ⊂ {0, . . . , k} with `I = k1, such that

V
i∈I ai = ∅.

Let bi = b ∧ ci for i = 0, . . . , k. Because h (b) = k2, to see that ∅ 6=
Vk

i=0 bi ≤Vk
i=0 ci, it is enough to prove that for any given J ⊂ {0, . . . , k} with `J = k2, we

have
V

i∈J bi 6= ∅. We claim that^
i∈J

bi ≥
^

i∈I∪J
bi 6= ∅

Let c =
V

i∈I∪J ci. Because ` (I ∪ J) ≤ k1 + k2, we know that c 6= ∅ by hypothesis.
We also have that a∧c =

V
i∈I∪J (a ∧ ci) =

V
i∈I∪J ai ≤

V
i∈I ai = ∅. So that, because

a ∨ b is a direct join, b ∧ c =
V

i∈I∪J bi = ∅ implies that c = (a ∧ c) ∨ (b ∧ c) = ∅
which is a contradiction. Therefore,

V
i∈I∪J bi 6= ∅ proving that h (a Y b) ≤ k.

To see that h (a Y b) = k, let a1, . . . , ak1 ≤ a be a Helly family for a, and let
b1, . . . , bk2 ≤ b be a Helly family for b. Define ci = ai ∨ b for i = 1, . . . , k1 and
ci = a ∨ bi−k1 for i = k1 + 1, . . . , k. It is easily seen that c1, . . . , ck is a Helly family
for a Y b.
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4.1 Helly for linear partitions

We turn our attention to the lattice of Linear Partitions LP. Observe that by
Lemma 3, once we know the Helly number of the flats, hLP (Pn), we know the Helly
function because any linear partition is the direct join of its connected components.
Thus, the Helly function of LP is determined by the following theorem which is a
reformulation of Theorem 3.

Theorem 5 hLP (Pn) =
¥
3
2
(n+ 1)

¦
.

Proof. By definition, hLP (P0) = 1. Suppose inductively that hLP (Pm) = b3 (m+ 1) /2c
for m < n > 0, and let k = b3 (n+ 1) /2c. To see that hLP (Pn) ≥ k, consider
b(n+ 1) /2c lines in general position in Pn and choose three different points in each
of them; for n even, choose yet another point in general position with the lines. Label
these points p1, p2, . . . , pk, and let Ai := hpj | j 6= iiLP = hp1, . . . , bpi, . . . , pkiLP . We
clearly have that ∅ 6= {pi} =

T
j 6=iAj and

T
iAi = ∅; so k ≤ hLP (Pn).

We are left to prove that hLP (Pn) < k+1. Suppose A0, A1, . . . , Ak are linear par-
titions in Pn such that every k of them intersect (observe we are using this shorthand
for "have non empty intersection"). We must prove that they all intersect.
For every i = 0, . . . , k, choose a point pi ∈

T
j 6=iAj, and let A0i := hpj | j 6= iiLP .

Observe that A0i ⊂ Ai so that if the A0i intersect, so do the original ones. To ease
notation, we may assume that Ai = A0i. We will call p0, . . . , pk the special points:
S = {p0, . . . , pk}.
By induction, we may assume that for every proper flat Xm C Pn we have that

` (S ∩X) ≤ hLP (X
m) = b3 (m+ 1) /2c , (2)

because if not, it is easy to find an intersection point of all the Ai in X.
If A0 = hp1, . . . , pkiLP = Pn, then p0 ∈ A0 and so

Tk
i=0Ai ⊃ {p0} 6= ∅ completing

the proof. Therefore, assume A0 breaks into flat components. All of them cannot be
points because k > n + 1 and two special points cannot be equal by (2); this takes
care of the case n = 1. So, we may consider a flat component X of A0 which is not
a point. Let I = {i | pi ∈ X, 1 ≤ i ≤ k} so that X = hpi | i ∈ IiLP . Let Y be the
linear span of the other components of A0, so that A0 ⊂ X ∪Y . Using (2) one easily
sees that X and Y span Pn and that p0 /∈ X ∪ Y ; so that we have a well defined
point q = X ∩ hY, p0i. We will prove that q ∈

Tk
i=0Ai to conclude the theorem.

For j /∈ I we have that q ∈ X = hpi | i ∈ IiLP ⊂ hp0, . . . , bpj, . . . , pkiLP = Aj.
Fix i ∈ I. We have that hpj | j ∈ I − {i}i = X; indeed, because X is not a point,
if hpj | j ∈ I − {i}i was a proper subspace of X, then pi would be a component of
hpi | i ∈ IiLP . Let Ii ⊂ I − {i} be a minimal set that generates q ∈ X, that is, such
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that q ∈ hpj | j ∈ Iii. On the other hand, let J be a minimal set that generates q in
hY, p0i, that is, J ∩ I = ∅ and q ∈ hpj | j ∈ Ji. Then {pj | j ∈ Ii ∪ J} is minimally
degenerate. Therefore, by Lemma 1 we have that

q ∈ hpj | j ∈ Ii ∪ Ji = hpj | j ∈ Ii ∪ JiLP ⊂ hp0, . . . , bpi, . . . , pkiLP = Ai

and the proof is complete.
We now have all the ingredients to prove our first theorem.

Proof of Theorem 1. Let F be an m-generic family of n-flats such that every
b(3n+ 2m+ 7) /2c of them have a transversal m-flat. We will prove that they all
have a transversal m-flat.
Consider X0, . . . , Xm+1 ∈ F and the ruling they define. Identify the m-rules

(their transversal m-flats) naturally with a subspace of Pn ∼= X0. For every X ∈ F ,
let TX = Tm (X0, . . . , Xm+1,X) ⊂ Pn which is a linear partition by Proposition 1.
Observe that ¹

3(n+ 1)

2

º
+m+ 2 =

¹
3n+ 2m+ 7

2

º
so that, by hypothesis, every subfamily with

¥
3
2
(n+ 1)

¦
elements of FLP = {TX |

X ∈ F} intersects. Since hLP (Pn) =
¥
3
2
(n+ 1)

¦
by Theorem 5, all the members

of FLP have non empty intersection. Each point there corresponds to a transversal
m-flat to F .

5 The convex case

We first establish the Helly number for convex partitions including Theorem 4. Then
we prove Theorem 2.

5.1 Helly for convex partitions

Observe that there is a convex partition closure operator which we denote h iCP . It
can be thought of as first applying the linear partition closure (in the projective
compactification) and then, back in euclidean space, taking the usual convex closure
within each flat component.

Theorem 6 If C is a convex partition whose connected components are K1, . . . ,Kr

of dimensions n1, . . . , nr respectively, then

hCP (C) =
rX

i=1

(2ni + 1)

13



Proof. Observe that as a particular case we have Theorem 4, which simply states
that hCP (Rn) = 2n+ 1.
First, let us give an example proving that hCP (Rn) ≥ 2n + 1; it will turn out

to be a Helly family. Let e1, . . . , en be the canonical basis of Rn. Let p0 be the
origin, and for i = 1, . . . , n, let p2i−1 := ei and p2i := 2ei. For j = 0, . . . , 2n, let
Cj := hp0, . . . , bpj , . . . , p2niCP . Observe that, for n > 1, C0 is the convex hull of the
basis and their "doubles" (a simplex of dimension n truncated at a vertex), and that
every other Cj consists of a point component in a coordinate axis and a simplex
(of dimension n − 1) in its orthogonal complement. Each 2n of them intersect in
the corresponding common point pj, but all of them have empty intersection, thus
hCP (Rn) ≥ 2n+1. Since this example can essentially be built within any convex set
K of dimension n, we also have that hCP (K) ≥ 2n+ 1.
Assume inductively that ifK is a convex set of dimensionm < n, then hCP (K) =

2m+ 1; which is true for a point to start the induction with.
To see that hCP (Rn) ≤ 2n+ 1, let C0, . . . , C2n+1 be convex partitions in Rn such

that each 2n + 1 of them intersect; we must prove that they all intersect. If they
are all connected, that is, if they are all convex sets, then by Helly’s classic theorem
(used with ample margin) they do intersect. Assume that one of them, say C0,
is not connected. Suppose it has connected components K1, . . . ,Kr of dimensions
n1, . . . , nr respectively. We have that

Pr
i=1 ni + (r − 1) ≤ n and r ≥ 2.

Since C0 = K1 ∪ · · · ∪Kr is a direct join in the lattice of convex partitions, by
Lemma 3 and induction (ni < n) we have that

hCP (C0) =
rX

i=1

hCP (Ki) =
rX

i=1

(2ni + 1) =
rX

i=1

2ni + r ≤ 2n− (r − 2) ≤ 2n.

Then the convex partitions (C0 ∩ C1) , (C0 ∩ C2) , . . . , (C0 ∩ C2n+1) in (C0)≤ intersect
because each 2n of them do by hypothesis (such an intersection is an intersection of
2n+ 1 of the originals). This proves that hCP (Rn) = 2n+ 1.
To complete the induction process, consider any convex set K of dimension n.

K ⊂ Rn implies hCP (K) ≤ hCP (Rn) and we have seen that hCP (K) ≥ 2n + 1,
therefore hCP (K) = 2n+ 1.
The theorem now follows from Lemma 3.

5.2 Hadwiger for convex sets

For the rest of this section we turn our attention to Theorem 2. We first establish
the setting we will be working in. From it, we construct a family of convex partitions
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in an affine flat by first analyzing the order types of the m-rules in an appropriate
ruling, and then conclude the proof of the theorem.

5.2.1 Setting

Let F = {Ki}i∈Γ be a family of convex sets in RN such that {Xi}i∈Γ is a correponding
family of m-generic n-flats in PN , with Ki ⊂ Xi for every i ∈ Γ. We are thinking
of PN as the projective closure of RN . Denote by H∞ the hyperplane at infinity, so
that RN = PN − H∞. Then, for every flat F C PN we may refer to its affine flat
F −H∞ = F − (F ∩H∞), provided that F 6⊂ H∞. Observe that convexity and order
type make implicit reference to these affine flats.
We also have a given order type of dimension m for the same index set, that

is, a family of points Q = {qi}i∈Γ ⊂ Rm which we will call the abstract points.
Our hypothesis is that for a certain k (for the moment we only need to know that
k > m + 2), we have that for any I ⊂ Γ with `I ≤ k, there exists an affine m-flat
Y in RN for which there are points yi ∈ Y ∩ Ki (i ∈ I), such that {qi}i∈I ⊂ Rm

and {yi}i∈I ⊂ Y define the same oriented matroid, order type or separoid. More
precisely, and using the simple terminology of separoids [3]: for every index partition
α ∪ β = I with α ∩ β = ∅, there exists a hyperplane L C Rm that separates {qi}i∈α
from {qi}i∈β if and only if there exists a hyperplane L0 C Y that separates {yi}i∈α
from {yi}i∈β. (For further reference, the combinatorial information of all the index
partitions that do separate is called a separoid ; it defines the order type.)
Our aim is to prove that F has a transversal m-flat.
First observe that the abstract points Q are m-generic. If not so, there exist

q0, . . . , qm ∈ Q contained in a hyperplane of Rm. By hypothesis, their corresponding
convex setsK0, . . . ,Km have a transversalm-flat Y that intersects them in y0, . . . , ym
respectively, such that they define the same separoid than q0, . . . , qm. Therefore,
y0, . . . , ym lie in a hyperplane of Y , so that K0, . . . ,Km have a transversal flat of
dimension m−1. But then they are not m-generic contradicting the hypothesis, and
proving the claim.

5.2.2 The ruling and order types

Consider (m+ 2) n-flats X0, . . . , Xm+1 in the family and their generated (n0,m)-
ruling with n0 ≤ n, where, recall, n0 = dim (X0 ∩ hX1 ∩ · · · ∩Xm+1i). The case
n0 < n is basically the same than the one n0 = n, with minor adjustments that,
however, complicate notation needlessly (we should replace n by n0 and Xi for X 0

i =

Xi∩
D
X0 ∩ · · · bXi · · · ∩Xm+1

E
bellow). So let us assume that X0, . . . , Xm+1 generate
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a (n,m)-ruling R (n,m). Identify the m-rules by their intersection with X0: so that
for x ∈ X0, let Yx ∈ R (n,m) be such that x = Yx ∩X0.
By intersection with them-rules we have naturally given projective isomorphisms

between the n-rules that we refer to as projections –dually, the m-rules are projec-
tively identified by intersection with the n-rules. Our main problem to be solved
is that, for i = 1, . . . ,m + 1, the convex sets Ki ⊂ Xi project to the affine part of
X0 to sets that may have two connected components. Indeed, the image of a con-
vex set under a projectivity is either convex or the union of two unbounded convex
components: we will have to choose the appropriate one.
For i = 0, . . . ,m + 1, let Hi := {x ∈ X0 | Yx ∩Xi ∈ H∞} ⊂ X0, which is the

hyperplane at infinity of Xi (Xi ∩H∞) projected to X0 by the ruling; observe that
H0 is the hyperplane at infinity of X0. Each Hi is a hyperplane because the Xi come
from affine n-flats (they have non-empty convex sets defined on them). The Hi cut
the affine X0 −H0 into convex regions.

Claim 1 m-rules in different regions of X0−
¡
∪m+1i=0 Hi

¢
intersect the n-rules X0, . . . ,

Xm+1 in points with a different order type.

Let x and x0 in X0 −
¡
∪m+1i=0 Hi

¢
be such that the affine segment σ from x to x0

intersects some of the Hi. More precisely, let

α = {i | σ ∩Hi 6= ∅} .

We are assuming that α 6= ∅; and know that 0 /∈ α because affine segments do not
cross infinity.
Let Y = Yx and Y 0 = Yx0 be the m-rules at x and x0, and let yi = Y ∩Xi (resp.,

y0i = Y 0 ∩Xi) so that x = y0 (resp., x0 = y00). We must prove that the order types
{y0, . . . , ym+1} in Y −H∞ and

©
y00, . . . , y

0
m+1

ª
in Y 0 −H∞ are different.

Denote by ϕ : Y 0 → Y the projective isomorphism defined by the ruling R (n,m)
so that ϕ (y0i) = yi. Let L = ϕ (Y 0 ∩H∞) ⊂ Y ; it is a hyperplane because x0 ∈ Y 0 6⊂
H∞.
We first prove that L separates α from its complement ᾱ, which shall be written

α |L ᾱ . Since 0 ∈ ᾱ, it is enough to prove that the segment from y0 to yi (in Y )
intersects L if and only if σ intersects Hi.
The lines c := hx, x0i ⊂ X0 and η := hy0, yii ⊂ Y define a (1, 1)-rulingH contained

in R (n,m). Indeed, R (n,m) may be naturally identified with X0×Y ; then H is the
(1, 1)-ruling identified with the inclusion c×η ⊂ X0×Y . The standard hyperboloidH
lies in a projective space P3, and we have two cases to consider: when it is transversal
or tangent to the plane at infinity.
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If H is transversal to H∞ there is a natural projective identification of c and η
given by

c 3 s←→ t ∈ η ⇔ ηs ∩ ct ∈ H∞

where, for s ∈ c, ηs is the other rule passing through s, and analogously, ct is the rule
"parallel" to c passing through t ∈ η. Observe that x ∈ c corresponds to the point
at infinity of η, ∞η := η ∩ H∞, because ηx = η; that x0 ∈ c corresponds to L ∩ η;
that ∞c := c ∩H∞ corresponds to y0 ∈ η, and that Hi ∩ c corresponds to yi ∈ η:

x x0 ∞c Hi ∩ c (∈ c)
l l l l
∞η L ∩ η y0 yi (∈ η)

From this information it follows that Hi ∩ c is in the affine segment σ from x to x0

(i ∈ α) if and only if L∩ η is in the affine segment from y0 to yi (L separates y0 from
yi). See Figure 3 for a rough sketch.
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Figure 3:

If H∞ is tangent to H, then H has two rules at infinity, one in each ruling. So
that, with notation as above, ∞c = Hi ∩ c and ∞η = L ∩ η. Then i ∈ ᾱ and L
leaves y0 and yi on the same side. Completing the proof that L separates α from its
complement.
Now the Claim follows from:

Lemma 4 Let y0, . . . , ym+1 be m-generic points in Rm ⊂ Pm, and let L be a hyper-
plane in Rm that separates {yi}i∈α from {yi}i∈ᾱ, where ∅ 6= α Ã {0, . . . ,m+ 1}.
If f : Pm → Pm is a projectivity that sends L to the hyperplane at infinity then
{y0, . . . , ym+1} and {f (y0) , . . . , f (ym+1)} define different order types in Rm.
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Proof. FromRadon’s classic Theorem, and the general position hypothesis, there ex-
ists a unique β Ã {0, . . . ,m+ 1}, β 6= ∅, such that the simplices ∆β := hyi | i ∈ βiC
and


yi | i ∈ β̄

®
C (where h iC denotes the convex hull) intersect in a point, y say,

in their interior. Furthermore, β, β̄ is the only such Radon partition in the order
type of {y0, . . . , ym+1}. Then, we have that {α, ᾱ} 6=

©
β, β̄

ª
because α |L ᾱ. We

may assume that α ∩ β 6= ∅ 6= ᾱ ∩ β. This implies that L intersects the simplex
∆β. Therefore, we have that f (∆β) 6= hf (yi) | i ∈ βiC because f (∆β) has points at
infinity. Then

hf (yi) | i ∈ βiC ∩

f (yi) | i ∈ β̄

®
C = ∅

because the flats hf (yi) | i ∈ βi and

f (yi) | i ∈ β̄

®
(which contain, respectively, the

above simplices) intersect in the unique point f (y) which is in f (Interior (∆β)) and
outside of hf (yi) | i ∈ βiC. Therefore, β separates from its complement in the order
type of {f (y0) , . . . , f (ym+1)}, completing the proof of the Lemma.

5.2.3 The convex partitions

The abstract points q0, . . . , qm+1 corresponding to our flats X0, . . . , Xm+1 define
a separoid S on {0, . . . ,m+ 1}. By Claim 1 and the fact that the convex sets
K0, . . . ,Km+1 have transversal m-flats compatible with that order type (k ≥ m+2),
there exists a unique open connected component R ⊂ X0 −

¡
∪m+1i=0 Hi

¢
for which the

m-rules Yx with x ∈ R intersect the Xi in points that define the separoid S. This
region defines a positive hemispace H+

i ⊃ R in X0 − H0 for each hyperplane Hi,
i = 1, . . . ,m+ 1.
Let C0 := K0 ⊂ X0. For i ∈ {1, . . . ,m+ 1}, we have that the convex set Ki ⊂ Xi

projects by the ruling to a setK 0
i inX0 which consists of one or two connected convex

components in the affine X0−H0, according to whether the hyperplane H0 misses or
hits K 0

i. In the first case, let Ci := K 0
i ⊂ X0 −H0. In the second case, observe that

the hyperplane Hi (which corresponds to the plane at infinity in Xi) separates the
two components of K 0

i, then let Ci ⊂ X0−H0 be the component of K 0
i −H0 lying in

the positive side H+
i . In any case, Ci is a convex set in the affine X0 −H0.

Now, we define Cj ⊂ X0 for the general j ∈ Γ − {0, 1, . . . ,m+ 1}. Suppose
first that the n-flat Xj is a rule in R (n,m). Replacing j instead of m + 1 in
the above discussion, we obtain a hyperplane Hj C X0 with a distinguished pos-
itive side H+

j satisfying the property that if an m-rule Y ∈ R (n,m) is such that
{Xi ∩ Y | i = 0, . . . ,m, j} ⊂ Y −H∞ defines the same order type than {q0, . . . , qm, qj}
in Rm, then we have that Y ∩X0 ∈ H+

j . Then we define Cj as above (the component
of Kj projected to X0 that lies in H+

j ).
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IfXj is not a rule inR (n,m), then Tm (X0, . . . , Xm+1,Xj) viewed inX0, is a linear
partition Z = Z1 ∪ · · · ∪ Zr where each Zi is a flat. By the proof of Proposition 1
(see the observation that follows it), we have rules Xj,i ∈ R (n,m), i = 1, . . . , r, such
that Z 0i := Xj,i ∩Xj is a flat that is projected unto Zi under the ruling identification
Xj,i → X0. Let Kj,i := Xj,i ∩ Kj, and proceeding as in the case above, define
Cj,i ⊂ X0 −H0, observing that Cj,i ⊂ Zi. Finally, define Cj := Cj,1 ∪ · · · ∪ Cj,r and
observe that it is a convex partition because each component lies in the corresponding
component of the linear partition Z.
We have defined the corresponding family of convex partitions {Ci}i∈Γ in X0−H0

with the property that if Y ∈ Tm (K0, . . . ,Km+1,Kj) hits them compatibly with the
order type Q, then Y passes through ∩m+1i=0 Ci ∩ Cj.

5.2.4 Finale

We are left to prove that if the number k, for which there exist compatible m-flat
transversals, is

k = 2n+m+ 3 = (m+ 2) + (2n+ 1) ,

then the whole family F = {Ki}i∈Γ has a transversal m-flat.
Let I0 := {0, 1, . . . ,m+ 1} ⊂ Γ be the index subset we have been working with.

Given I ⊂ Γ with `I = 2n+ 1, we will prove that ∩i∈ICi 6= ∅. Since ` (I ∪ I0) ≤ k,
the family of convex sets {Ki | i ∈ I ∪ I0} has a transversal m-flat Y that hits them
compatibly with the order type. But Y ∈ R (n,m) = Tm (X0, . . . , Xm+1) so Y passes
through each Ci (i ∈ I) by the construction of Ci, therefore ∩i∈ICi 6= ∅. By Helly’s
Theorem for Convex Partitions (Thm. 4), we have that ∩i∈ΓCi 6= ∅; if we take
x ∈ ∩i∈ΓCi, Yx is an m-flat transversal to {Ki}i∈Γ.
Observe that no claim is made about the order type of {Yx ∩Ki}i∈Γ in Yx −

H∞, because the construction only gives information about the subsets of type
{0, 1, . . . ,m, j} ⊂ Γ.

6 Concluding remarks

That there exists a Helly number for flat transversals to flats is due to Lovász, see
[8]. Here, we establish that there do exist Hadwiger type theorems for transversal
m-flats to families of convex sets of a fixed dimension n, and that, in general, extra
hypothesis (such as being m-generic) are also needed. But in both cases, there seems
to be ample room for improvement. Not only in the type of extra hypothesis used,
but also, keeping it, in the numbers given. In particular, we know that for m = 1
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and n = 2 in which Theorem 2 gives 8 as the "magic" number, it can be reduced to
7 to agree with Theorem 1. We believe that our numbers may be reduced; only for
m = 1 = n is there a proof, by explicit examples in [2], that they are best possible.
To have new critical examples would be helpful to establish the best possible "magic"
numbers. It should also be noted that in the case m = 0, which is easy and classical,
our statements are far from best possible.
Finally, observe that the proofs of Theorems 1 and 2 work for the more general

case of families of linear partitions and, respectively, convex partitions of a fixed
dimension. But the statements and arguments in such generality would have made
the presentation quite awkward.
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