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Abstract. We consider nonlinear elliptic systems with Dirichlet bound-
ary condition on a bounded domain in RN which is invariant with respect to
the action of some group G of orthogonal transformations. For every subgroup
K of G we give a simple criterion for the existence of in�nitely many solutions
which are K-invariant but not G-invariant. We include a detailed discussion of
the case N = 3:
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1. Introduction
Consider the elliptic system

(})

�
��u = Fu(x; u) in 

u = 0 on @


where 
 is a bounded smooth domain in RN ; and F : 
� Rd ! R is a C1-function.
A solution to this problem is a vector-valued function u = (u1; :::; ud) : 
! Rd which
satis�es (}):
If 
 is a ball or an annulus and F is radial in x one may ask whether this problem

has in�nitely many nonradial solutions. This question has been extensively studied,
see for example [1, 4, 5, 8, 9, 10, 16, 17, 20, 21, 24, 25, 26]. One can also ask the
question whether the problem has in�nitely many solutions which are nonradial but
which possess some other speci�c type of symmetry. For a single equation and some
special nonlinearities Kajikiya recently gave a characterization of those symmetries
for which this question has a positive answer. [18, 19].
Here we address the following question: Assume that 
 is invariant with respect to

the action of some closed subgroupG of the groupO(N) of orthogonal transformations
of RN , that is, gx 2 
 for every x 2 
; g 2 G: Moreover, assume that

(SG) F (gx; u) = F (x; u) for every g 2 G; x 2 
; u 2 Rd:
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Given a subgroup K of G; are there in�nitely many solutions u of (}) which are
K-invariant but not G-invariant? In other words, are there in�nitely many solutions
u which satisfy u(gx) = u(x) for every g 2 K; x 2 
; but for which there exist g0 2 G;
x0 2 
 with u(g0x0) 6= u(x0)?
If G is not the whole orthogonal group O(N) this turns out to be, in general,

a harder question than the one about existence of K-invariant nonradial solutions.
The existence of in�nitely many nonradial solutions requires careful estimates on the
growth of the energy levels of the radial solutions, which are obtained using ODE-
methods (see for example [1, 18]). These methods do not apply to other symmetry
groups G.
Here we give some positive answers to this question based merely on group the-

oretical methods. Our results provide criteria for the existence of in�nitely many
K-invariant solutions which are not G-invariant, in terms of the groups themselves,
under the usual growth conditions on the nonlinearity F . These criteria are easy to
check. We include a detailled discussion for the case N = 3:
Our methods apply also to other types of elliptic systems, including Hamiltonian

systems. But since the goal of this paper is to study the symmetry breaking phe-
nomenon, we have chosen to restrict ourselves to the simplest type, that of gradient
systems (}); to avoid additional technicalities.

2. Statement of results
Before stating our main results we recall some basic facts about transformation groups
and introduce some notation. Details may be found for example in [6, 14].
Let G be a closed subgroup of the orthogonal group O(N): The G-orbit of a

point x 2 RN is the set Gx = fgx 2 RN : g 2 Gg: It is G-homeomorphic to the
homogeneous space G=Gx; where Gx is the isotropy group Gx = fg 2 G : gx = xg of
x: The isotropy groups of two points in the same orbit are conjugate. The conjugacy
class (Gx) of Gx is called an isotropy class: There exists a unique isotropy class (PG)
such that fx 2 RN : (Gx) = (PG)g is open and dense in RN . Any other isotropy class
satis�es (PG) � (Gx): (PG) is called the principal isotropy class and G=PG is called
the principal orbit type of G:
Given a closed subgroup K of G we denote by NGK = fg 2 G : gKg�1 = Kg the

normalizer of K in G: The Weyl group of K in G is the quotient group

WGK = NGK=K:

For every subgroup � of WGK we writee� := q�1(�)

where q : NGK ! WGK is the natural epimorphism.
We assume the following standard conditions on F :
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(F1) If N � 3 there are constants 2 < p < 2� := 2N
N�2 and c > 0 such that for every

x 2 
; u 2 Rd;
jFu(x; u)j � c(1 + jujp�1):

If N = 2 this assumption can be weakened, if N = 1 it can be omitted.

(F2) There are constants � > 2 and R > 0 such that for every x 2 
; u 2 Rd;
juj � R;

0 < �F (x; u) � u � Fu(x; u)

(S) F (x;�u) = F (x; u) for every x 2 
; u 2 Rd:

If d = 2s we identify Rd � Cs: We say that F is toroidal in u = (z1; :::; zi; :::; zs)
if F (x; z1; :::; zi; :::; zs) = F (x; z1; :::; jzij ; :::; zs) for every x 2 
; zi 2 C; i = 1; :::; s:
The following result gives an easy criterion for the existence of symmetry breaking

solutions.

Theorem 1. Let 
 be G-invariant and let K be a closed subgroup of G: Assume
that F satis�es (F1); (F2); (S) and (SG).
(a) If WGK contains a subgroup � of order 2 such that Pe� � K; then problem

(}) has in�nitely many solutions which are K-invariant but not G-invariant:
(b) If WGK contains a nontrivial subgroup � such that Pe� � K; and if d = 2s

and F is toroidal in u; then problem (}) has in�nitely many solutions which are
K-invariant but not G-invariant:

The criteria given by this theorem depend merely on the subgroups K � G of
O(N) and are easy to check. We shall study the case N = 3 in detail and see which
subgroups K � G of O(3) satisfy this criteria. Notice that a necessary condition
for the existence of solutions which are K-invariant but not G-invariant is that the
K-orbit and the G-orbit of some point in 
 do not coincide. We shall show that this
condition is also su¢ cient if G 6= O(3) and the Weyl groupWGK contains an element
of order 2. More precisely, we shall prove the following.

Theorem 2. Let K � G be proper closed subgroups of O(3) such that Kx 6= Gx
for some x 2 R3: Assume that 
 � R3 is G-invariant and that F satis�es (F1), (F2),
(S) and (SG).
(a) If WGK contains an element of order 2; then problem (}) has in�nitely many

solutions which are K-invariant but not G-invariant.
(b) If WGK is nontrivial, d = 2s and F is toroidal in u, then problem (}) has

in�nitely many solutions which are K-invariant but not G-invariant.

For G = O(3) we obtain the following.
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Theorem 3. Let K be a closed subgroup of O(3) such that K 6= O(3); SO(3);
O(2) � Zc2; O(2); I � Zc2; O � Zc2: Let 
 � R3 be a ball or an annulus, and assume
that F satis�es (F1); (F2); (SNO(3)K) and (S) then problem (}) has in�nitely many
nonradial solutions which are K-invariant.

For d = 1 and F (x; u) = jujp Kajikiya [18] showed that there are in�nitely many
nonradial K-invariant solutions of (}) on a ball or an annulus in RN if and only if
K acts nontransitively on SN�1: That is, if N = 3; problem (}) has in�nitely many
nonradial K-invariant solutions for every K 6= O(3); SO(3): Theorem 3 does not
cover all of Kajikiya�s cases: It does not include the groups K = O(2) � Zc2; O(2);
I � Zc2, O � Zc2. On the other hand, it applies to more general nonlinearities and, as
we shall see below, the proof is quite elementary. Kajikiya�s proof involves delicate
arguments, including a careful analysis of the asymptotic growth of the radial critical
values of the associated functional, which cannot be extended to groups other than
O(N):
Our method provides, in addition, precise information on how the symmetries are

broken (see our remarks in the following section, after the proof of Theorem 1).

3. Intertwining solutions
In this section we prove Theorem 1. We shall obtain it as a consequence of a multi-
plicity result for solutions of (}) having speci�c symmetries.
Let G be a closed subgroup of O(N) and let � be a d-dimensional orthogonal

representation of G, that is, a homomorphism � : G ! O(d): Let 
 � RN be G-
invariant. A function u : 
! Rd which satis�es

u(gx) = �(g)u(x) for all g 2 G; x 2 
;

will be called a �-intertwining function.
As in the previous section, we denote by (PG) the principal isotropy class of G:

We shall prove the following

Theorem 4. Let 
 � RN be G-invariant, and let � : G ! O(d) be an orthogonal
representation such that PG � ker �: Assume that F satis�es (F1),(F2),(S) and

(SG� ) F (gx; �(g)u) = F (x; u) for every g 2 G; x 2 
; u 2 Rd:

Then problem (}) has in�nitely many �-intertwining solutions.

Before giving the proof let us consider some easy consequences of this result. If
� is the trivial representation � � 1 2 O(d), then a �-intertwining solution is just a
G-invariant solution. The trivial representation obviously satis�es PG � ker � = G.
So Theorem 4 supplies, in particular, G-invariant solutions:
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Corollary 5. Let 
 � RN be G-invariant. Assume that F satis�es (F1),(F2),(S) and
(SG): Then problem (}) has in�nitely many G-invariant solutions.

Theorem 4 also supplies noninvariant solutions. For example, if 
 is symmetric
with respect to the origin, that is, x 2 
 i¤ �x 2 
; we may take G = f�1g and
�(�1) = �1: Then f1g = PG = ker �. A �-intertwining solution is just an odd
solution, so we obtain the following.

Corollary 6. Assume that 
 is symmetric with respect to the origin, and that F
satis�es (F1),(F2), and F (�x; u) = F (x; u) = F (x;�u) for every x 2 
; u 2 Rd: Then
problem (}) has in�nitely many even solutions and in�nitely many odd solutions.

If d = 1; looking for odd solutions is a convenient way for obtaining sign changing
solutions, see for example [7].
We may also apply Theorem 4 to obtain solutions which are K-invariant but not

G-invariant. Recall that a representation � : G ! O(d) is said to be �xed point free
if for every 0 6= u 2 Rd there is a g 2 G such that �(g)u 6= u:

Corollary 7. Let 
 be G-invariant and let K be a closed subgroup of G: Assume
that there exists a �xed point free representation � : G! O(d) such that PG � ker �
whose restriction to K is the trivial representation. Assume further that F satis�es
(F1); (F2); (S) and (SG� ): Then problem (}) has in�nitely many solutions which are
K-invariant but not G-invariant.

Proof. By Theorem 4 there are in�nitely many �-intertwining solutions. Let u 6= 0
be such a solution. Then, since �(g) = 1 for every g 2 K; it follows that u is K-
invariant. Moreover, since � is �xed point free, given x0 2 
 such that u(x0) 6= 0 there
is a g0 2 G such that u(g0x0) = �(g0)u(x0) 6= u(x0); that is, u is not G-invariant.
In order to apply Corollary 7 we need to look for �xed point free extensions of

the trivial representation of K: An easy case where such an extension exists is when
the K-�xed point space (RN)K = fx 2 RN : gx = x 8g 2 Kg is nontrivial. Then,
any nontrivial orthogonal involution � of V = (RN)K (that is, any � 2 O(N) such
that � 6= 1; � 2 = 1 and �(x) = x for every x 2 V ?) satis�es g� = �g for every
g 2 K; and the group G = K [ f�g admits a representation � : G ! O(d) which is
trivial on K and �(�) = �1: Thus, if (RN)K 6= f0g; 
 is a ball or an annulus, and F
satis�es (F1); (F2); (S) and (SO(N)) then problem (}) has in�nitely many nonradial
K-invariant solutions.
In general, a natural way to look for �xed point free extensions of the trivial

representation of K is by looking at �xed point free representations of the Weyl
group of K in G. This is the main idea involved in the proof of Theorem 1. As
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in the previous section, for every subgroup � of WGK we write e� := q�1(�); where
q : NGK ! WGK is the natural epimorphism of the normalizer onto the Weyl group.

Proof of Theorem 1. If there exists a �xed point free representation � : �!
O(d) then e� = � � q : e�! O(d) is a �xed point free representation whose restriction
to K is trivial. Our hypotheses imply that the assumptions of Corollary 7 hold for
G = e�: Hence we need only to show the existence of such a �. If � = f1; �g the
representation � : �! O(d) given by �(�) = �1 is �xed point free. If � contains an
element � of order n; we may assume that � is the cyclic group f1; �; :::; �n�1g which
admits a �xed point free unitary representation � : �! U(s): �

Note that the solutions given by Theorem 1 are K-invariant but not (NGK)-
invariant. In fact, they are not e�-invariant, for some cyclic subgroup � �= Zn of the
Weyl group WGK: Moreover, they are e�-intertwining for e� = � � q where � : Zn !
O(d) may be chosen to be any sum of nontrivial irreducible representations of Zn:

Proof of Theorem 4. Assumptions (F1),(F2) and (S) guarantee that

�(u) =
1

2

Z



jruj2 dx�
Z



F (x; u)dx

is a well de�ned even functional of class C1 on H1
0 (
;Rd) and that it satis�es the

Palais-Smale condition and all other conditions of the symmetric mountain pass the-
orem of Ambrosetti and Rabinowitz [2, 23]. The critical points of this functional are
the solutions of problem (}): As usual, H1

0 (
;Rd) is endowed with the scalar product

hu; vi =
dX
i=1

Z



rui � rvi dx:

We de�ne an action of G on H1
0 (
;Rd) as follows:

(gu)(x) = �(g)u(g�1x); u 2 H1
0 (
;Rd):

This is an orthogonal action, that is, hgu; gvi = hu; vi for every g 2 G; u; v 2
H1
0 (
;Rd): The �-intertwining solutions of (}) belong to the G-�xed point set

H1
0 (
;Rd)G� = fu 2 H1

0 (
;Rd) : gu = u for every g 2 Gg
= fu 2 H1

0 (
;Rd) : u(gx) = �(g)u(x) for every g 2 Gg:

Assumption (SG� ) guarantees that the functional � is G-invariant, that is, �(gu) =
�(u) for every g 2 G; u 2 H1

0 (
;Rd): Therefore r�(gu) = gr�(u): In particular,
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r�(u) 2 H1
0 (
;Rd)G� if u 2 H1

0 (
;Rd)G� : This implies that the critical points of the
restriction

� : H1
0 (
;Rd)G� ! R

of � toH1
0 (
;Rd)G� are the �-intertwining solutions of (}) (this property is usually ref-

ered to as the principle of symmetric criticallity [22]), and that � : H1
0 (
;Rd)G� ! R

satis�es the Palais-Smale condition. We shall show that H1
0 (
;Rd)G� is in�nite dimen-

sional. Then the symmetric mountain pass theorem of Ambrosetti and Rabinowitz
[23, Theorem 9.12] asserts the existence of an unbounded sequence of critical values
of � : H1

0 (
;Rd)G� ! R:
Let P = PG be the principal isotropy class of G: The set 
(P ) = fx 2 
 : (Gx) = (P )g
is open and dense in 
: Moreover, the projection ' : 
(P ) ! b
(P ) onto its orbit spaceb
(P ) = fGx : x 2 
(P )g is a smooth �bre bundle with �bre G=P [14, Theorem I.5.14].
Let � 2 b
(P ) and let � > 0 be small enough so that this bundle is trivial over the
open ball B = B�(�) of radius � centered at � in b
(P ): Since P � ker �; the function

C1c (B;Rd)! C1c (B � (G=P ) ;Rd)G� �= C1c ('
�1(B);Rd)G�

given by w 7! ew; ew(�; gP ) = �(g)w(�); is well de�ned and a linear isomorphism.
Therefore, H1

0 ('
�1(B);Rd)G� is in�nite dimensional and, since H1

0 ('
�1(B);Rd)G� is a

subspace of H1
0 (
;Rd)G� ; this last space is also in�nite dimensional. This concludes

the proof of Theorem 4. �

As we have just seen, condition (SG� ) guarantees that � is G-invariant and allows
us to reduce our problem to �nding the critical points of the restriction of � to the
G-�xed point space H1

0 (
;Rd)G� . The crucial step in the proof of Theorem 4 is to
show that this space is in�nite dimensional. This is guaranteed by the fact that
PG � ker �: Conditions (F1),(F2) and (S) are the standard ones which are used to
prove the existence of in�nitely many solutions for the gradient system (}).
Thus, similar results may be obtained for other types of elliptic systems under

appropriate growth conditions on the nonlinearity. For example, one may consider
Hamiltonian systems (see for example [15] and the references therein), or systems
where the symmetries are perturbed either by adding to the nonlinearity a noneven
lower order term, or by a nonhomogeneus boundary condition (see for example [13, 12]
and the references therein).
One may also replace condition (S) by a condition which involves the action of

another group T on Rd as in [13] where F is required to be e�-invariant in u with
respect to a representation e� : T ! O(d) of a torus, a p-torus or a cyclic p-group T .
In this case one should also assume that the representation � : G! O(d) commutes
with e�; that is, �(g)e�(t)x = e�(t)�(g)x for each g 2 G; t 2 T; x 2 Rd:
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4. The case N = 3

Now we shall investigate which subgroups K � G of O(3) satisfy the hypotheses of
Theorem 1. We recall some well known facts on the subgroups of O(3): Details may
be found in [3, Section 8.2], [11], and the references therein.
The orthogonal group O(3) consists of all 3�3 matrices g such that gt = g�1: The

special orthogonal group SO(3) is the subgroup of those matrices whose determinant
is 1: The center of O(3) is the group Zc2 = f�1g: We identify O(3) with SO(3)� Zc2
via the isomorphism

SO(3)� Zc2 �= O(3); (g; t) 7! t � g:

As usual, we think of O(2) as being the subgroup of SO(3) generated by the matrices

� =

0@ cos � � sin � 0
sin � cos � 0
0 0 1

1A ; � =

0@ 1 0 0
0 �1 0
0 0 �1

1A ;

� 2 [0; 2�); and denote by Zm the cyclic group with m elements and by Dm the
dihedral group with 2m elements.
The subgroups of O(3) are well known. Up to conjugacy they fall into three

classes:
I) Subgroups of SO(3): The proper subgroups of SO(3) are the planar groups

O(2); SO(2); Dm (m � 2); and Zm (m � 1); and the oriented symmetry groups I
of the icosahedron, O of the octahedron and T of the tetrahedron. I is isomorphic
to the alternating group A5; O to the symmetric group S4 and T to the alternating
group A4: Their normalizers and Weyl groups in O(3) are as follows:

K NO(3)K WO(3)K

SO(3) O(3) Z2
O(2) O(2)� Zc2 Z2
SO(2) O(2)� Zc2 Z2 � Z2
Dm;m � 3 D2m � Zc2 Z2 � Z2
D2 O � Zc2 D3 � Z2
Zm;m � 2 O(2)� Zc2 O(2)� Z2
I I � Zc2 Z2
O O � Zc2 Z2
T O � Zc2 Z2 � Z2

II) Subgroups of O(3) which contain �1: These are of the form K = H � Zc2
where Zc2 = f�1g: Their normalizers are NO(3)K = NO(3)H:
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III) Subgroups of O(3) not contained in SO(3) which do not contain �1: These
are determined by their intersection K \ SO(3) with SO(3) and their projection
 (K) � SO(3) where  : O(3) ! SO(3) is given by  (�1 � g) = g for every
g 2 SO(3). Their normalizers and Weyl groups in O(3) are as follows.

K  (K) K \ SO(3) NO(3)K WO(3)K

O(2)� O(2) SO(2) O(2)� Zc2 Z2
Dd
2m(m � 2) D2m Dm D2m � Zc2 Z2

Dz
m(m � 2) Dm Zm D2m � Zc2 Z2 � Z2

Z�2m(m � 1) Z2m Zm O(2)� Zc2 O(2)
O� O T O � Zc2 Z2

We shall need the following lemmas.

Lemma 8. If G is a �nite subgroup of O(N) then its principal isotropy class is
PG = 1:

Proof. dimker(g�1) � N�1 for every g 2 G; g 6= 1: SinceG is �nite, [fker(g�1) :
1 6= g 2 Gg 6= RN : In other words, there is an x 2 RN such that gx 6= x for every
g 2 Gnf1g:

Lemma 9. The principal isotropy class of a subgroup G of O(3) is
(a) PG = 1 if G 6= O(3); SO(3); O(2)� Zc2; and O(2)�;
(b) PO(2)�Zc2 = P O(2)� = f1;�1 � �g;
(c) PSO(3) = SO(2) and
(d) PO(3) = SO(2)� Zc2.

Proof. For the �nite subgroups of O(3) the result follows from Lemma 8. The
in�nite ones are O(3); SO(3); SO(2); SO(2) � Zc2; O(2); O(2) � Zc2 and O(2)� for
which the assertion can be easily veri�ed.

Proof of Theorem 3. By Theorem 1 it su¢ ces to show that for every such
K there is a subgroup � of WO(3)K of order two such that Pe� � K:
If K is in Class I then, by assumption, K 6= SO(3); O(2). If K = Dm; I; O or T its
normalizer is �nite and, by Lemma 8, any subgroup � of WO(3)K satis�es Pe� = 1: If
K = SO(2) the epimorphism

q : O(2)� Zc2 ! Z2 � Z2
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of the normalizer onto the Weyl group is given by q(�) = (1; 1); q(�) = (�1; 1);
q(�1) = (1;�1): By Lemma 9 any subgroup � not containing q(�1 � �) = (�1;�1)
satis�es Pe� = 1: If K = Zm the epimorphism

qm : O(2)� Zc2 ! O(2)� Z2

is given by qm(�) = (�
m; 1); qm(�) = (�; 1); qm(�1) = (1;�1): So any subgroup � not

containing qm(�1 � �) = (�;�1) satis�es Pe� = 1:
If K is in Class II then, by assumption, K 6= O(2)� Zc2; I � Zc2; O � Zc2. The groups
K = Dm�Zc2 and T �Zc2 have a �nite normalizer so again any subgroup � ofWO(3)K
satis�es Pe� = 1: For K = SO(2) � Zc2 we take � = Z2; and for K = Zm � Zc2 we
may take any subgroup � of order two of O(2): In both cases e� � O(2) and, hence,
Pe� = PO(2) = 1:
If K is in Class III and K = Dd

2m; D
z
m or O�; then it has a �nite normalizer and

any subgroup � of WO(3)K satis�es Pe� = 1: For K = O(2)� we take � = Z2: Thene� = O(2) � Zc2 and, by Lemma 9, Pe� = f1;��g � O(2)�: Finally, for K = Z�2m the
projection

q�m : O(2)� Zc2 ! O(2)

is given by q�m(�) = �m; q�m(�) = �; q�m(�1) = �. By Lemma 9 any subgroup � not
containing q�m(�1 � �) = �� will satisfy Pe� = 1: �
Note that the groups K excluded by Theorem 3 are precisely those which satisfy

that Kx = (NO(3)K)x for every x 2 R3: This is a necessary condition for applying
Theorem 1. Indeed, recall that the solutions provided by Theorem 1, and hence those
given by Theorem 3, are K invariant but not (NO(3)K)-invariant.

Proof of Theorem 2. Let K � G  O(3): If NGK 6= SO(3); O(2) �
Zc2; O(2)� then, by Lemma 9, every subgroup � of WGK sati�es Pe� = 1: If WGK
contains an element � of order 2 we take � = f1; �g: In any case WGK contains a
nontrivial subgroup, so Theorem 1 gives the result.
Observe that NGK = NO(3)K \G: So we are left with the cases NO(3)K = O(2)�Zc2
and G = O(2)�Zc2 or O(2)�: If G = O(2)�Zc2 = NO(3)K then NGK = NO(3)K = G
and Theorem 3 gives the result. If G = O(2)� and NO(3)K = O(2) � Zc2 then
NO(2)�K = O(2)� and K = SO(2) or Zm: Since K = SO(2) has the same or-
bits as G = O(2)� this case should be excluded. For K = Zm the quotient map
qm : NO(2)�Zm = O(2)� ! O(2)� = WO(2)�Zm satis�es qm(�1 � �) = �1 � �: So
Pe� = 1 if � = f1; �g: �
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iewicz University, Poznań, Poland. E-mail address: marzan@main.amu.edu.pl


