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Abstract. We prove several colorful generalizations of clasical theorems in
discrete geometry. Moreover, the colorful generalization of Kirchberger’s The-
orem gives a generalization of the theorem of Tverberg on non separated par-
titions,

1. Introduction

A prominent role in combinatorial geometry is played by Helly’s theorem which
states that a finite family of convex sets in Rd has a non-empty intersection if and
only if every subfamily of size d + 1 has a non-empty intersection. Results of the
type “if every subfamily of size k of a family A has some property P, then the whole
family has also the property P” are called Helly-type theorems and have been the
object of active research.
Associated with every Helly-type theorem we have a colorful version. Suppose

in addition that every object of A is painted with at least one of k colors. Assume
that every subset of A of size k, that uses the k different colors, has property P. It
is too much to expect, then, that the whole family A has also property P. What
usually happens, but not always1, is that there is a color i such that the subfamily
of all elements of color i has property P.
In this sense, the first colorful theorem was discovered by Lovász and it is the

colorful version of Helly’s theorem. Independently, searching for a mathematical
game, Bárány found the Colorful Carathéodory Theorem [2]. To be more precise:
if a finite set A ⊂ Rd is colored with d + 1 colors and x ∈ Rd is separated from
every colorful subset of size d + 1, then there is a color such that x is separated
from the set of all points of this color. Here two sets of points A,B are separated
if convA ∩ convB = ∅. In the same spirit, there are colorful versions of several
classical transversal theorems, [1], [5].
In this paper we will prove several generalizations of colorful theorems which we

will call “very colorful” to distinguish them from the older ones. In Section 2 we
will use topology to prove that, in fact, for the colorful version of Carathéodory’s
Theorem, we have as a conclusion that there exist two colors such that x is separated
from the set of all points of some of those colors.
There is a very interesting and less known Helly-type theorem; Kirchberger’s

theorem. Suppose that we have two kinds of points A,B ⊂ Rd say square and
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1The theorem “if every four points in A ⊂ R2 are in convex position then all points of A are

in convex position” has no colorful version.
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round points. Kirchberger’s theorem asserts that if for every subset of A∪B of size
d+ 2, the square points and the round points are separated, then the same is true
for the whole set A ∪B.
In Section 3 we give several generalizations of Kirchberger’s theorem. First of all,

the r-partite version of this theorem is true, where the notion of separability is the
natural one and the “magic” number used for this theorem is the Tverberg number
(r − 1) (d+ 1) + 1. Second, this result has a colorful version. Furthermore, this
colorful version has as an special case Tverberg’s theorem, which is the r-partite
version of Radon’s theorem and one of the most beautiful results in combinatorial
convexity. Its proof has two ingredients. The first is the Colorful Carathéodory
Theorem [2] (only one color in the conclusion). The second, which based on an idea
of Sarkaria [7], is a necessary and sufficient condition for ∩ri=1 convAi = ∅ (where
Ai ⊂ Rd) in terms of well defined tensor product. If we use more of the strength of
the Very Colorful Carathéodory Theorem (two colors in the conclusion), then we
end up with an interesting nontrivial generalization of the theorems of Tverberg
and Radon (Section 4).
In Section 5 we use the Very Colorful Carathéodory Theorem to show that in

the conclusion of the spherical (cone) version of the Colorful Helly Theorem the
existence of two colors can be assured. This is not the case for Lovász’s Colorful
Helly Theorem but we will generalize it in another direction: if one asks that every
subfamily with a large number of colors (not only the colorful ones) is intersecting,
then the number of intersecting colors increases.
Again, take a Helly-type theorem “if every subfamily of size k of a family A has

some property P, then the whole family has also property P” and suppose now
that every object of the family A is painted with at least one of m ≥ k colors.
Suppose also that every colorful subfamily of size k of A has property P. Then
what usually happens is that there is a number of colors with the property that the
set of all elements of these colors also fulfills property P. Every colorful theorem
can be generalized in this way. Usually, this generalization does not follow directly
from the colorful version but can be proved with an easy modification of the original
proof. This is the case for all colorful theorems in sections 2-5.
However, we found that the modifications needed to prove such a generalization

of the Colorful Hadwiger Theorem [1] are not so easy. So, we dedicate the last
section of this paper to explain how to modify the known proof of the Colorful
Hadwiger Theorem.
We have to emphasize here that below when a set is colored it is allowed for

an element to receive more than one color. This is the same thing that to permit
that elements can be repeated in sets. So, when using operations between sets one
can interpret them as operations between multisets. These are annoying trivialities
and we will talk no more of them. Finally, a few words on terminology. All the
subspaces, hyperplanes, semispaces etc. are always through the origin. If not, then
we will use the adjective “affine”. All colorings are surjective, if B is a subset of a
colored set, then we say that B is colorful if the coloring restricted to it is injective.

2. Carathéodory’s theorem

Theorem 1 (Very Colorful Caratheodory). Let A be a finite set of points in Rd
colored with d + 1 different colors. If every colorful subset A0 with |A0| = d + 1
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is separated from the origin, then there exist two colors such that the subset of all
points of these colors is separated from the origin.

Proof. Let B ⊆ A be the colorful subset with |B| ≤ d such that convB is closest
to the origin. Let α be the closest point to the origin in convB. Denote by Σ the
solid open ball centered at the origin through α. Let Γ be the affine hyperplane
through α tangent to Σ and denote by Γ0 the open affine semispace bounded by Γ
which contains the origin.
Let x ∈ A be such that B0 = B ∪ x is colorful. If x ∈ Γ0 then the segment αx

meets Σ and therefore convB0 is closer to the origin than convB. This implies that
there exists B00 ⊆ B with |B00| ≤ d such that convB00 is closer to the origin than
convB contradicting the minimality of B. So, Γ0 does not contain points of colors
not present in B. The number of such colors is d+ 1− |B|. If |B| < d this proves
the theorem. If |B| = d, then there is exactly one color missing.
Suppose |B| = d and denote B = {b1, . . . , bd}. If for some color of B there is

no point in A ∩ Γ0 of this color, then we are done. So, we can suppose that there
is C = {c1, . . . , cd} ⊆ A ∩ Γ0 such that for every i the point ci has the same color
than bi.
Let L1 be the half-line starting at the origin and containing α. Since there are

d + 1 colors, there is a point, x0 say, of a color not present in B. Let L2 be the
half-line starting at the origin and containing −x0. The situation is shown in Figure
1.
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Figure 1

Let L = L1 ∪ L2. Clearly the homotopy group Πd−2(Rd \ L) is nonzero and the
essential (d − 2)-cycle can be represented by the boundary of the (d − 1)-simplex
convB.
Denote by E = {e1, . . . , ed} the standard orthonormal basis of Rd. Let Ωd−1 be

the boundary of the d-dimensional cross-polytope which is conv {E ∪ −E}. Every
facet of Ωd−1 is a simplex. A subset of d vertices of Ωd−1 spans a facet if and only
if it does not contain antipodal points. For any i we paint ei and −ei with the
color of bi. Therefore, every facet of Ω

d−1 is a colorful (d− 1)-dimensional simplex.
Finally, let U be the interior of the facet convE. So, Ωd−1\U is a (d−1)-dimensional
simplicial complex PL-homeomorphic to a (d− 1)-simplex.
Let f : Ωd−1 \ U → Rd be the piecewise linear map defined on the vertices of

Ωd−1\U by sending ei to bi ∈ B, sending −ei to ci ∈ C and then extending linearly.
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Note that f preserves colors. Since f restricted to the boundary of Ωd−1 \U is by
definition the essential (d− 2)-cycle of Πd−2(Rd \L), the image of f can not avoid
L. Therefore, there exist a facet of Ωd−1 \ U whose image by f intersects L. Let
σ = {z1,..., zd} 6= E be a set of vertices of Ωd−1 such that L ∩ conv f(σ) 6= ∅.
If L2∩conv f(σ) 6= ∅, then f(σ)∪x0 is a colorful subset of d+1 points which is not

separated from the origin. This contradicts the hypothesis. If L1 ∩ conv f(σ) 6= ∅,
then there exists a point β ∈ L1 ∩ conv f(σ) which is closer to the origin than α.
This contradicts the minimality of B. ¤

Observe that this theorem is sharp in the sense that one can get only two colors
and no more. This can be seen from the following example. Take d + 2 points
{x0, . . . , xd, y} ⊆ Rd such that {x0, . . . , xd, y, 0} is in general position and 0 ∈
conv {x0, . . . , xd}. Paint each of the xi with the first d− 1 colors and paint y with
the remaining two colors. The conditions of the theorem are fulfilled and only the
colors of y are separated from the origin.

3. Kirchberger’s theorem

Let A and B be two finite sets of points in Rd such that |A| + |B| ≥ d + 2.
Kirchberger’s theorem asserts that convA ∩ convB 6= ∅ if and only if there exist
A0 ⊆ A and B0 ⊆ B with |A0| + |B0| = d + 2 such that convA0 ∩ convB0 6= ∅.
Usually, one asks the sets A and B to be disjoint because if not, then the statement
becomes obvious. However, in the colorful version, which we will state below, the
theorem makes sense even when A = B. Therefore, we will not insist in such a
limitation to Kirchberger’s theorem.
Kirchberger’s theorem follows from Carathéodory’s theorem using the following

construction. Denote ex = µx
1

¶
∈ Rd+1. If x ∈ A, then we code this point by the

vector x = ex and if x ∈ B, then we code this point by the vector x = −ex. It turns
out that convA ∩ convB 6= ∅ if and only if {x | x ∈ A ∪B} is separated from the
origin. This construction is shown for a particular case in Figure 2.
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Figure 2

We will prove this fact in a more general setting when there are r ≥ 2 sets of
points. Let A = {A1, ..., Ar} be a family of finite sets of vectors in Rd. We say that
A is separated if

Tr
1 convAi = ∅.
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Let v1, . . . , vr be vectors in Rr−1 with a unique linear dependence vi+· · ·+vr = 0.
For x ∈ Ai denote ex = µ

x
1

¶
∈ Rd+1 and x = ex ⊗ vi ∈ R(r−1)(d+1). Denote also

X =
Sr
i=1 {x | x ∈ Ai}.

Lemma 2 (Sarkaria [7]). A is separated if and only if 0 /∈ convX.

Proof. We show that A is not separated if and only if 0 ∈ convX. We start
by assuming that 0 ∈ convX, i.e. there exist positive real numbers α (x) withP

α (x) = 1 such that

0 =
rX

i=1

X
x∈Ai

α (x)x =
rX

i=1

X
x∈Ai

α (x) ex⊗ vi =
rX

i=1

ÃX
x∈Ai

α (x) ex!⊗ vi (†)

There exists a unique vector u ∈ Rr−1 which is the solution of the system of linear
equations uv1 = 1, uv2 = −1 and uvi = 0 for i > 2. Multiplying from the right by
u gives X

x∈A1

α (x) ex = X
x∈A2

α (x) ex
and similarly we getX

x∈A1

α (x) ex = X
x∈A2

α (x) ex = · · · = X
x∈Ar

α (x) ex (††)

which is equivalent toX
x∈A1

α (x)x =
X
x∈A2

α (x)x = · · · =
X
x∈Ar

α (x)x

X
x∈A1

α (x) =
X
x∈A2

α (x) = · · · =
X
x∈Ar

α (x) =
1

r

and therefore r
P

x∈A1
α (x)x is a common point of all convAi.

Reciprocally, if r
P

x∈A1
α (x)x is a common point of all convAi, then for every

x in every Ai exists a positive scalar α (x) such that equalities (††) hold. Tensorially
multiplying the equality vi+ · · ·+ vr = 0 from the left by

P
x∈A1

α (x) ex we obtain
the equalities (†) and therefore 0 ∈ convX. ¤

For two families of sets A = {A1, ..., Ar} and B = {B1, ..., Br} we will say that
A is smaller than B if for all i ∈ {1, . . . , r} the inclusion Ai ⊆ Bi holds. If A is
smaller than B then we will write A ¹ B.
For a family of sets A = {A1, ..., Ar} we will denote by tA the disjoint union of

the Ai, i.e. tA is
Sr
1Ai but points may be repeated. If tA is colored, then we will

say that A0 ¹ A is colorful if the coloring restricted to tA0 is injective. Moreover,
for any set of colors ∇ let A [∇] denote the family {A01, ..., A0r} where A0i is the set
of all elements of Ai whose color is in ∇.

Theorem 3 (Very Colorful Kirchberger). Let A = {A1, ..., Ar} be a family of finite
sets of points in Rd. Denote n = (r − 1) (d+ 1). Suppose that tA is colored with
n + 1 different colors. If every colorful smaller family A0 ¹ A with |tA0| = n + 1
is separated, then there are two colors α and β such that A [α, β] is separated.
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Proof. For x ∈ tA denote x as Sarkaria’s lemma. The color of x is the same as
that of x. By Sarkaria’s lemma, every family A0 ¹ A is separated if and only
if tA0 = {x | x ∈ tA0} is separated from the origin. Applying the Very Colorful
Carathéodory Theorem to the colored set of points tA ⊆ Rn finishes the proof. ¤

Observe that, if one has to show the existence of just one color, then it is enough
to apply the Colorful Carathéodory Theorem [2] instead of Theorem 1. This will
be the case in applications Corollary 4 and Theorem 5

Corollary 4 (Multipartite Kirchberger). Let A = {A1, ..., Ar} be a partition of a
finite set X of points in Rd. The partition A is not separated if and only if there
is X 0 ⊆ X with |X 0| = (r − 1) (d+ 1) + 1 such that {A1 ∩X 0, ..., Ar ∩X 0} is not
separated.

Proof. One implication follows from Theorem 3 taking (r − 1) (d+ 1)+1 colors and
painting each point in X with all colors. The other implication is obvious. ¤

We mention that the Multipartite Kirchberger theorem was proved first by Attila
Pór [6] in his university thesis.

4. Tverberg’s theorem

The Very Colorful Kirchberger Theorem is a powerful theorem and some of its
particular cases deserve extra discussion. Let A = {A1, ..., Ar} where A1 = A2 =
· · · = Ar = A and A = {a1, . . . , an+1} is some set of n + 1 = (r − 1) (d+ 1) + 1
points in Rd. We paint the point ai with color i in every set Aj . It is clear
that the family A [i] is non-separated for every color i. So by the Very Colorful
Kirchberger Theorem (one color in the conclusion) there must be a colorful family
B with B = {B1, ..., Br} ¹ A with |tB| = n + 1 which is not separated. By its
properties, B is a partition of A and no Bi can be empty. Rephrasing this case we
obtain Tverberg’s theorem:

Theorem 5 (Tverberg). Every set of (r − 1) (d+ 1) + 1 points in Rd has a non-
separated partition into r parts.

The above proof of Tverberg’s Theorem uses little of the strength of the Very
Colorful Kirchberger Theorem in particular, the latter concludes that there exists
a set ∇ of not only one but two colors such that A [∇] is separated. This is not
used in Tverberg’s Theorem. To remedy this situation we consider a more general
particular case. Let ∆n denote the n-dimensional simplex.

Theorem 6 (Generalized Tverberg). Denote n = (r − 1) (d+ 1). Suppose that
f1, . . . , fr : ∆

n → Rd are linear maps such that for every edge σ1 ⊆ ∆n, the
equality f1

¡
σ1
¢
∩ · · ·∩ fr

¡
σ1
¢
6= ∅ holds. Then there exist disjoint faces φ1, . . . , φr

of ∆n such that f1 (φ1) ∩ · · · ∩ fr (φr) 6= ∅ and
P
dimφi = n+ 1− r.

Proof. Let A = {A1, ..., Ar} where Ai = {ai,1, . . . , ai,n+1} ⊆ Rd. For every i ∈
{1, . . . , r} we color aij with the color j. So, the set Ai can be interpreted as a
function fi : {1, . . . , n+ 1} → Rd. The vertices of ∆n are can be identified with
the n+ 1 colors. Then ∆n is the simplex of colors. Extend linearly fi : ∆

n → Rd.
A separated family A0 ¹ A is just a choice of r faces φ1, . . . , φr of the simplex
of colors such that f1 (φ1) ∩ · · · ∩ fr (φr) = ∅. If A0 is colorful, then the faces
φ1, . . . , φr are disjoint. If |tA0| = n + 1, then

P
dimφi = n + 1 − r. Finally, the
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statement of the Very Colorful Kirchberger Theorem translates into the existence
of an edge (spanned by two colors) σ1 ⊆ ∆n such that f1

¡
σ1
¢
∩ · · · ∩ fr

¡
σ1
¢
= ∅.

Now if the statement of the Very Colorful Kirchberger Theorem fails for every edge
σ1 ⊂ ∆n, then its condition has to fail for some colorful and separated family
A0 ¹ A, finishing the proof. ¤

At first sight, the hypothesis of Theorem 6 seems to be to strong. For instance
when d > 2, f1(σ

1) and f2(σ
1) are disjoint for generic affine maps f1, f2. Yet the

conditions are not overly strong, at least in the sense of the following example.
When r = 2 and d = 2, Theorem 6 is a generalization of Radon’s theorems in
the plane: if ¤,O : ∆3 → R2 are linear maps such that for every edge σ ⊆ ∆3,
the images ¤ (σ) and O (σ) intersect, then there exist a partition α, β of ∆3 such
that ¤ (α) and O (β) intersect. In figure 3 there are two such images of ∆3 (whose
vertices are numbered by {1, 2, 3, 4}). One whose vertices are labeled by squares
and the other by circles.

1

2 3

4

1

2

3

4

Figure 3

Observe that in this example, all edges σ ⊆ ∆3 but {1, 2} are such that ¤ (σ) ∩
O(σ) 6= ∅. However, there is no partition of {1, 2, 3, 4} into two parts α, β such
that ¤ (α) ∩O(β) 6= ∅.
If we set f1 = · · · = fr = f in Theorem 6, then we obtain Tverberg’s Theorem

and therefore, the linearity of f can be replaced by continuity according to the
Topological Tverberg Theorem which is proved only for for prime numbers [3] and
for powers of prime numbers [8].
It is easy to see that the topological version of Theorem 6 is false even when

the functions coincide on all vertices. Therefore, contrary to Tverberg’s theorem,
Theorem 6 can distinguish linear maps from continuous ones.

5. Helly’s theorem

Any point p ∈ Rd can be associated to the open semispace whose normal vector
is
−→
0p. The following fact is very well known (see [4]).

The origin is in the convex closure of a set of points in Rd if and
only if the corresponding set of open semispaces is not intersecting.

Therefore the Very Colorful Carathéodory Theorem is equivalent to the following:
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Proposition 7 (Very Colorful Helly for semispaces). Let A be a finite family of
open semispaces in Rd colored with d+1 different colors. If every colorful subfamily
A0 with |A0| = d+1 is intersecting, then there are two colors such that the subfamily
of all sets of these colors is intersecting.

This proposition does not generalize to convex sets in Rd. This can be seen
from Figure 4 where a yellow triangle, three red and three blue intervals fulfill the
hypothesis but only one color class is intersecting.

Figure 4

Later in this section we will come back to this phenomenon. The intersection of
an open semispace with the unit sphere is an open hemisphere. Clearly, a set of open
semispaces is intersecting if and only if the set of corresponding open hemispheres
is intersecting too. Therefore, Proposition 7 can be restated replacing semispaces
for hemispheres.
Contrary to the affine case, this proposition does generalize to spherical convex

set. A spherical convex set is a subset C of the sphere such that if x, y ∈ C, then C
contains all geodesics between x and y. It is well known (and actually quite easy to
check) that an open spherical convex set is the intersection of a collection of open
hemispheres. A closed spherical convex set is the (topological) closure of an open
spherical convex set or is the whole sphere.

Theorem 8 (Very Colorful Helly on the sphere). Let A be a finite family of closed,
spherical convex sets in Sd−1 colored with d + 1 different colors. If every colorful
subfamily A0 with |A0| = d + 1 is intersecting, then there are two colors such that
the subfamily of all sets of these colors is intersecting.

Proof. Let A be a family contradicting the theorem. We can suppose that none
of the elements of A is the whole sphere. For any colorful subfamily A0 with
|A0| = d+ 1 we pick a point in the intersection

T
A∈A0

A, thus obtaining a finite set

of points P . For each set A ∈ A denote by AP the set of all points in P which we
picked for the colorful subfamilies containing A. It is clear that {conv hAP i | A ∈ A}
is also a family contradicting the theorem. The convex sets in this new family are
spherical polytopes i.e. they are spanned by a finite set of vertices,
Suppose now the elements of A are spherical polytopes. For each A ∈ A and

ε > 0 choose an open spherical polytope Aε which contains A and is contained
in the ε-neighborhood of A. It is clear that for small enough ε, the family Aε =
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{Aε | A ∈ A} also contradicts the theorem. Namely, there are no two colors such
that the subfamily of all sets of these colors is intersecting. In other words, it is
enough to prove the theorem for open spherical polytopes.
Now, let A be a family of open spherical polytopes contradicting the theorem.

For every A ∈ A let HA be the finite set of open hemispheres such that A is the
intersection of them. We color every hemisphere in HA with the color of A.
By Proposition 7 there are two colors such that all hemispheres of these colors

intersect. However, this implies that all A ∈ A of these two colors also intersect. ¤

We come back to the affine case now. As we saw before, we can not obtain two
intersecting colors. Lovász’s Colorful Helly Theorem is sharp in this sense.

Theorem 9 (Colorful Helly [2]). Let A be a finite family of compact convex sets in
Rd colored with d+1 different colors. If any colorful subfamily A0 with |A0| = d+1
is intersecting, then there is a color such that the subfamily of all sets of this color
is intersecting.

We remark that using the presence of two colors in Theorem 8 one can give a
new and simple proof of the Colorful Helly Theorem:

(1) Add a new compact convex set containing all sets in A and paint it with a
new color.

(2) Lift the family to the sphere Sd in Rd+1 using the projection from the
center.

(3) Apply Theorem 8.

We shall further generalize the Colorful Helly Theorem in another direction. The
following result is exactly the Colorful Helly Theorem in the case that m = d+ 1.

Theorem 10 (Very Colorful Helly). Assume m ∈ {1, . . . , d+ 1}. Let A be a finite
family of compact convex sets in Rd colored with d + 1 different colors. If every
subfamily A0 with |A0| = d+ 1 and with at least m different colors is intersecting,
then there are d+2−m colors such that the subfamily consisting of all sets of these
colors is intersecting.

Proof. Let us call rainbow any subfamily A0 ⊆ A with |A0| = d+1 and with at least

m different colors. For a subfamily B ⊆ A we denote bB = TA∈B A. The hypothesis

of the theorem says that, for every rainbow subfamily A0, the set cA0 is not empty.
Suppose the theorem is not true. Let A be the set of all families A contradicting

the theorem such that |A| is minimal. For A and B in A we define the partial order
relation A ¹ B if there exists a bijection ϕ : A → B such that for all A ∈ A the
inclusion A ⊆ ϕ (A) holds.

Let A be a minimal element of this order relation and denote eA = convSA∈AA.

Let p ∈ eA be a point such that p /∈ conv( eA \ p) i.e. p is an extreme point of eA.
We claim that there exists a rainbow subfamily B ⊆ A such that bB = p. Indeed,

suppose this is not the case. Then for every rainbow subfamily B there exists a
point q (B) ∈ bB \ p ⊆ eA \ p. For every A ∈ A denote A0 the convex closure of the
points q (B) such that B is a rainbow subfamily containing A. It is clear that the
family {A0 | A ∈ A} = A0 ¹ A also contradict the theorem. Moreover, A0 6= A
because no set in A0 contains the point p. This contradicts the minimality of A.
Now we prove that there exists C ⊆ B with |B \ C| = 1 such that bC = p. Indeed,

suppose this is not the case. Then for every C ⊆ B with |C| = d there exists a
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point q (C) ∈ bC \ p ⊆ eA \ p. Since p is an extreme point, then there exists an affine
hyperplane H separating p from the set of all q (C). This means that for any C ⊆ B
with |C| = d we have that bC intersects both affine open semispaces defined by H and

therefore bC intersects H. Applying Helly’s theorem (the classical one in dimension

d− 1) we obtain that bB intersects H. This contradicts the definition of B.
Let ∇ be the set of colors of C. We know that |∇| ≥ m− 1. If |∇| ≥ m, then for

any A not in C the subfamily C ∪ {A} is rainbow and intersecting. Therefore, all
elements of A contain the point p. If |∇| = m−1, then for every A ∈ A whose color
is not in ∇ the subfamily C ∪ {A} is rainbow and intersecting. Therefore, there are
d + 1− |∇| = d + 2−m colors such that all elements of A of these colors contain
the point p. In both cases there is a contradiction. ¤

Observe that Helly’s theorem can be derived from this theorem in several ways,
in particular setting m = 1. Therefore, if one does not want to use Helly’s theorem
in the proof, then an induction on the dimension can be applied.

6. Hadwiger’s theorem

The purpose of this last section is to prove the following:

Theorem 11 (Very Colorful Hadwiger). Let A1, ..., An be a finite, ordered family
of compact convex sets in the plane colored with at least m ≥ 3 different colors. If
for any choice of differently colored Ai , Aj and Ak with i < j < k the condition
Aj ∩ hAi ∪Aki 6= ∅ holds, then there are m − 2 colors such that there is a line
transversal to all the convex sets of these colors.

This theorem was proved in [1] for the particular case m = 3. This case does
not imply the general one in an easy way. However, the proof given in [1] can be
modified to prove Theorem 11. Since the needed modifications are technical, then
there is no sense to repeat the paper [1]. Therefore, the proof given here is not self
contained. We will only modify the definitions of the following concepts from [1]:

• Middle line of a colored family.
• Middle colored separating sign vector.
• Balanced colored sign vector.

and prove the lemmas 3 and 4 from [1] in this more general context. This will be
enough to conclude the proof of Theorem 11.
Before proceeding, we remark that Theorem 11 is sharp in the sense that one

can not find a transversal line to the sets of more than m− 2 colors. This can be
seen from the example in figure 5.
Now, we start to discuss the promised modifications of [1]. Let d be a direction

in the plane and d⊥ its orthogonal direction. Chose any oriented line c⊥ in the
direction of d⊥. When we orthogonally project any convex set A to the line c⊥

we obtain an interval [i (A) , j (A)] and we can think that i (A) and j (A) are real
numbers. Let A1, ..., An be a colored family of plane convex sets. For any color
c define qc = Sup {i (Ai) | Ai is colored c} and pc = Inf {j (Ai) | Ai is colored c}.
Moreover, if K is any subset of colors, then we define qK = Sup {qc | c ∈ K} and
pK = Inf {pc | c ∈ K}. It is easy to see that there is a line transversal in the
direction d to all the sets colored with the colors in K if and only if qK ≤ pK .
Denote by C the set of all colors and suppose |C| = m ≥ 3. Then, we

can denote by u1, u2, . . . , um real numbers such that u1 ≤ u2 ≤ . . . ≤ um and
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{u1, u2, . . . , um} = {pc | c ∈ C}. In the same way we define v1, v2, . . . , vm such that
v1 ≥ v2 ≥ . . . ≥ vm and {v1, v2, . . . , vm} = {qc | c ∈ C}.
Let c be the oriented line in the direction d which meets c⊥ in the point θ =

(u2 + v2) /2. We will call c the middle line of the colored family A in the direction
d. The colored separating sign vector of the line c will be called the middle colored
separating sign vector of the direction d.
A colored sign vector will be called balanced if the following conditions hold:

(1) The number of different colors of non-cero coordinates is at least three
(2) The number of different colors of positive coordinates is at least two
(3) The number of different colors of negative coordinates is at least two

Lemma 12 ([1].3). If the m-colored family A has the property that for any subset
of colors K with |K| = m− 2 the subfamily of all sets colored with the colors in K
has no transversal line in the direction d, then the middle colored separating sign
vector of A in the direction d is balanced.

Proof. We shall see that u2 < v2. If not, then um ≥ . . . ≥ u2 ≥ v2 ≥ . . . ≥ vm. Let
P be the set of colors such that {u2, . . . , um} = {pc | c ∈ P} and Q be the set of
colors such that {u2, . . . , um} = {qc | c ∈ Q}. Let K = P ∩Q, we have |K| ≥ m−2
and pK ≥ pP ≥ qQ ≥ qK . This implies that there is a line transversal in the
direction d to all sets colored with the colors in K contradicting the hypothesis.
So, u1 ≤ u2 < θ < v2 ≤ v1 which means that there are positive coordinates

of two different colors (those corresponding to v1 and v2) and there are negative
coordinates of two different colors. If the number of different colors of non-cero
coordinates is exactly two, then the line c would be transversal to all the sets
colored with the other m− 2 colors. ¤
Lemma 13 ([1].4). If x ¹ y are both balanced and Hadwiger colored sign vectors,
then they have the same sign.

Proof. Assume that x and y contradict the lemma. Say that the sign of x is plus
and the sign of y is minus. Denote by a and b the indices of the leading coordinates
of x and y respectively. As it is shown in [1] we can suppose that b = 1 and a = 2.
Since x ¹ y, then x2 = y2 = +. We also know that x1 = 0 and y1 = −. We

divide the proof into two cases: the colors of coordinates 1 and 2 coincide or not.
Suppose they coincide. Since y is balanced, then there must be a coordinate (say

i) of a second color such that yi = − and a coordinate (say j) of a third color such
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that yj = +. If i < j then (y2, yi, yj) = (+−+) otherwise (y1, yj , yi) = (−+−)
and in both cases we contradict that y is Hadwiger.
Suppose the first coordinate is red and the second is blue. If there exists a

coordinate (say i) of another color such that xi = yi = −, then (y1, y2, yi) =
(−+−) and this contradicts that y is Hadwiger. So, every color different from red
and blue has positive coordinates.
Since x is balanced and x ¹ y, then there must exist:

A coordinate (say i) of a third color such that xi = yi = +;
A red coordinate (say j) such that xj = yj = −;
A blue coordinate (say k) such that xk = yk = −.

If j < i, then (y2, yj , yi) = (+−+). Hence, i < j. If k < i, then (yk, yi, yj) =
(−+−) otherwise (y1, yi, yk) = (−+−) and in all cases we obtain a contradiction.

¤
This concludes the required modifications of the proof in [1].

Remark. During the preparation of this paper János Pach notified us that he and
Andreas Holmsen simultaneously and independently discovered theorems 1 and 8.
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Ciudad Universitaria,
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