On distributions determined by their upward, space-time Wiener-Hopf factor

Loïc Chaumont

The characteristic function φ of any probability distribution μ on \mathbb{R} can be decomposed as

$$1 - s\varphi(t) = [1 - \kappa_+(s, t)] \cdot [1 - \kappa_-(s, t)], \quad s \in [0, 1), \ t \in \mathbb{R},$$

where κ_+ and κ_- are respectively the upward and downward space-time Wiener-Hopf factors of μ . The latter factors are defined by

 $\kappa_+(s,t) = \mathbb{E}(s^{T_+}e^{itS_{T_+}}) \text{ and } \kappa_-(s,t) = \mathbb{E}(s^{T_-}e^{itS_{T_-}}),$

where (S_n) is a random walk with step distribution μ , starting at 0 and T_+, T_- are the first passage times above and below 0 by (S_n) , that is $T_+ = \inf\{n \ge 1 : S_n > 0\}$ and $T_- = \inf\{n \ge 1 : S_n \le 0\}$.

We prove that μ can be characterized by the sole data of the upward factor $\kappa_+(s,t)$, $s \in [0,1), t \in \mathbb{R}$ in many cases including the case where 1) μ has some positive exponential moments, 2) the function $t \mapsto \mu(t, \infty)$ is completely monotone on \mathbb{R}_+ , 3) the density of μ in \mathbb{R}_+ satisfies some conditions of analycity... We conjecture that any probability distribution is characterized by its upward factor. This conjecture is equivalent to the following: Any probability measure μ on \mathbb{R} whose support is not included in \mathbb{R}_- is determined by its convolution iterations μ^{*n} , $n \geq 1$ restricted to \mathbb{R}_+ . In many instances, the sole knowlege of μ and μ^{*2} restricted to \mathbb{R}_+ is actually sufficient to determine μ .

This talk is based on a joint work with Ron Doney (Manchester University):

L. Chaumont and R. Doney: On distributions determined by their upward, spacetime Wiener-Hopf factor. Preprint arXiv:1702.00067, (2017).