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Consider the following system of SDEs

dλi = σi(λi)dBi +

(
bi(λi) +

∑
j 6=i

Hij(λi, λj)

λi − λj

)
dt, i = 1, . . . , p, (1)

describing ordered particles λ1(t) ≤ . . . ≤ λp(t), t ≥ 0 on R. Here Bi denotes a collection
of one-dimensional independent Brownian motions.
Let Sym(p × p) be the vector space of symmetric real p × p matrices. The SDEs

systems (1) contain the systems describing, for the starting point having no collisions,
the eigenvalues of the Sym(p×p)-valued process Xt satisfying the following matrix valued
stochastic di�erential equation

dXt = g(Xt)dWth(Xt) + h(Xt)dW
T
t g(Xt) + b(Xt)dt,

where the functions g, h, b act spectrally on Sym(p× p), and Wt is a Brownian matrix of
dimension p× p. Thus the systems (1) contain Dyson Brownian Motions, Squared Bessel
particle systems, Jacobi particle systems, their β-versions and other particle systems cru-
cial in mathematical physics and physical statistics([5],[6]).

Note that the functions
Hij(λi, λj)

λi − λj
describe the repulsive forces with which the par-

ticle λi acts on the particle λj. On the other hand the singularities
1

λi − λj
make the

SDEs system (1) di�cult to solve, especially when the starting point Λ(0) has a collision
λi(0) = λj(0). The most degenerate case λ1(0) = . . . = λp(0) is of great importance in
applications.
In some particular cases (Dyson Brownian Motions, some Squared Bessel particle sys-

tems), the existence of strong solutions of (1) has been established by Cépa and Lépingle,
using the technique of Multivalued SDEs([1], [7]).

We prove the existence of strong and pathwise unique non-colliding solutions of (1),
with a degenerate colliding initial point Λ(0) in the whole generality, under natural
assumptions on the coe�cients of the equations in (1). Our approach is based on
the classical Itô calculus, applied to elementary symmetric polynomials in p variables
X = (x1, . . . , xp)

en(X) =
∑

i1<...<in

xi1xi2 . . . xin ,

as well as to symmetric polynomials of squares of di�erences between particles

Vn = en(A), where A = {aij = (λi − λj)2 : 1 ≤ i < j ≤ p}.
In the case of Squared Bessel particle systems

dλi = 2
√
λidBi +

(
α +

∑
j 6=i

λi + λj
λi − λj

)
dt,

1
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describing the eigenvalues of the matrix Squared Bessel process

dXt =
√
XtdWt + dW T

t

√
Xt + αIdt,

we use our stochastic approach in order to determine the so-called Wallach set of permis-
sible parameters α, known before only by harmonic analysis methods. We also determine
the admissible starting points of such processes for α = 1, . . . , p− 2.
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