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Preface

In 1973, Victor Klee posed the following question:

How many guards are necessary, and how many are sufficient to
patrol the paintings and works of art in an art gallery with n

walls?

This wonderfully näıve question of combinatorial geometry has, since its
formulation, stimulated an increasing number of of papers and surveys. In
1987, J. O’Rourke published his book Art Gallery Theorems and Algorithms
which has further fueled this area of research.

The present book is being written almost 10 years since the publication of
O’Rourke’s book, and the need for an up-to-date manuscript on Art Gallery
or Illumination Problems is evident. Some important open problems stated
in O’Rourke’s book, such as ... have been solved. New directions of research
have since been investigated, including: watchman routes, floodlight illumi-
nation problems, guards with limited visibility or mobility, illumination of
families of convex sets on the plane, guarding of rectilinear polygons, and
others. In this book, we study these results and try to give a complete
overview of all the results known to us. We hope that this book will provide
a renewed source of inspiration towards the study of Art Gallery Problems.

Jorge Urrutia, September 1996.
Ottawa, Canada
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Chapter 1

Art Gallery Problems

1.1 Introduction

Illumination problems have always been a popular topic of study in math-
ematics. For example, it is well known that the boundary of any smooth
compact convex S set on the plane can always be illuminated using three
light sources located in the complement of S. An easy proof of this can be
obtained by enclosing a smooth convex set within a triangle, then placing a
light at each vertex of T ; see Figure 1.1.

S

Figure 1.1: Three lights suffice to illuminate a compact convex set.

One famous—and until recently open—problem on illumination is at-
tributed to Ernst Strauss (see E. G. Strauss and V. Klee [83]), who, in the
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2 CHAPTER 1. ART GALLERY PROBLEMS

early fifties posed the following problem:
Suppose that we live in a two-dimensional room whose walls form a

simple closed polygon P and each wall is a mirror.

1. Is it true that if we place a light at any point of P , all of P will be
illuminated using reflected rays as well as direct rays?

2. Is there necessarily a point from which a single light source will illu-
minate the entire room using reflected rays as well as direct rays?

The first part of Strauss’s problem was recently proved to be false by
G. W. Tokarsky [127]. Tokarsky’s proof is surprisingly simple, using basic
concepts of geometry that are easily understandable. We refer the inter-
ested reader to Tokarsky’s original manuscript which is clearly written and
a pleasure to read. The second part of Strauss’s conjecture, though, remains
open. It would be nice if a “simple” proof for it could be obtained.

More closely related to our topic of interest here is a question posed by
V. Klee during a conference in Stanford in August 1976. Klee’s question
was:

How many guards are always sufficient to guard any polygon
with n vertices?

Soon after, V. Chvátal established what has become known as Chvátal’s
Art Gallery Theorem, namely: that bn

3 c guards are always sufficient and
occasionally necessary to cover a simple polygon with n vertices [28].

Since the publication of this original result, a tremendous amount of
research on illumination or Art Gallery problems has been carried out by
mathematicians and computer scientists. In 1987, J. O’Rourke [104] pub-
lished Art Gallery Theorems and Algorithms, the first book dedicated solely
to the study of illumination problems of polygons on the plane. The pub-
lication of O’Rourke’s book further fueled the study of Art Gallery type
problems, and many variations to the original Art Gallery Theorem have
since been studied. Two thorough survey papers have also been written on
this subject, one in 1992 by T. Shermer [115], and a second one in 1996 by J.
Urrutia [131]. In this book, we present most of the material known to us on
Art Gallery or illumination problems. Following J. O’Rourke’s lead, we have
tried to write this book in a manner that makes the material presented here
accessible to a wide audience. The only background required for this book
is basic knowledge of algorithms, graph theory and data structures. This
should make this book both accessible to senior undergraduate students
and suitable for courses at the master’s level. Numerous open problems are
presented, making the book also useful to researchers working in this area.
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1.2 Basic terminology

A polygon P is an ordered sequence of points p1, . . . , pn, n ≥ 3, called
the vertices of P together with the set of line segments joining pi to pi+1,
i = 1, . . . , n−1 and pn to p1, called the edges of P . P is called simple if any
two non-consecutive edges do not intersect. A simple polygon divides the
plane into two regions, an unbounded one called the exterior region and a
bounded one, the interior. Henceforth to simplify our presentation, the term
polygon will be used to denote simple polygons together with their interior.

A polygon is called orthogonal if all its edges are parallel to either the
x-axis or the y-axis.

Figure 1.2: A simple and an orthogonal polygon.

A graph G consists of a set of elements V called the vertices of G, together
with a set E of pairs of vertices of G called the edges of G. Two vertices
u and v of G are called adjacent if the pair {u, v} is an element of E. The
degree of a vertex v of G is the number of vertices of G adjacent to v. A
graph G is planar if it can be drawn on the plane in such a way that its
vertices are represented by points on the plane, and each edge {u, v} of G is
represented by a simple curve joining points representing u and v. Moreover,
two edges of G may only intersect at their endpoints. In Figure 1.3 we show
two graphs; the first one is planar, and the second one is not.

A path of a graph G is a sequence of distinct vertices v1, . . . , vk such that
vi and vi+1 are adjacent in G, i = 1, . . . , k− 1, k ≥ 2. A cycle of G is a path
v1, . . . , vk together with the edge {vk, v1}, k ≥ 3. A graph G(V,E) is called
connected if for every pair of vertices u and v of G(V,E), there exists a path
u = v1, . . . , vk = v starting at u and ending at v; otherwise G(V,E) is called
disconnected. A graph G is called a tree if it is connected and contains no
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Figure 1.3: Two graphs with five vertices.

cycles.

A triangulation T of a polygon P is a partitioning of P into a set of
triangles with pairwise disjoint interiors in such a way that the edges of
those triangles are either edges or diagonals of P joining pairs of vertices.

The following result is easy to prove:

Theorem 1.2.1 Any polygon can be triangulated; moreover any triangula-
tion of a polygon P with n vertices contains exactly n− 2 triangles.

Triangulations of polygons play a central role in the study of art gallery
problems. The problem of finding efficient algorithms to triangulate poly-
gons has received much attention in computational geometry. In 1978,
Garey, Johnson, Preparata and Tarjan [60] obtained the first O(n lnn) time
triangulation algorithm. This result was improved in 1988 by Tarjan and
van Wyk to O(n ln lnn) [126]. Finally Chazelle [20] proved in 1990:

Theorem 1.2.2 There is a linear time algorithm to triangulate simple poly-
gons.

The algorithmic details of Chazelle’s triangulation algorithm are beyond
the scope of this book, and will not be studied here.

Given a triangulation T of a polygon P , we can define a graph GT (P )
such that the vertices of GT (P ) are the vertices of P , and two vertices of
GT (P ) are adjacent if they are connected by an edge of T .

The dual of a triangulation T of a polygon P is obtained by placing a
vertex in the interior of each triangle of T , and connecting two vertices if
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their corresponding triangles share a common edge in T . It is easy to see
that the dual graph of a triangulation of a polygon P is always a tree. In
Figure 1.4 we show a polygon together with a triangulation T and its dual.

A coloring of the vertices of a graph G is an assignment of colors to
its vertices in such a way that adjacent vertices receive different colors.
The chromatic number of a graph G is the smallest integer k such that a
coloring of G exists. In this case, we say that G has chromatic number k.
The following result can be easily proved:

Theorem 1.2.3 Let P be a polygon and T a triangulation of P . Then
GT (P ) has chromatic number 3.

Figure 1.4: A triangulation of a polygon together with its dual.

Given two points p and q of a polygon P , we say that p is visible from q

if the line segment joining p to q is totally contained in P .

A collection H of points of P illuminates or guards P if every point
u of P is visible from a point p in H. The term illuminates follows the
notion that if we place a light source that emits light in all directions on
each element of H, P is totally illuminated. The use of the term guard
follows the notion that if we station a guard at each element of H, all of P

is guarded. The reader may easily verify that to illuminate the orthogonal
polygon in Figure 1.2 we need four lights. We remark at this point that
the terms illumination and guarding will be used interchangeably in this
manuscript. Our choice of whether to “guard” or “illuminate” an object
depends mainly on the term used in the original paper in which a particular
result was proved.
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The visibility graph V G(P ) of P is the graph whose vertex set is the set
of vertices of P , two vertices u and v being adjacent in V G(P ) if they are
visible in P . Visibility graphs were first introduced by Avis and ElGindy [6].

Avis and ElGindy gave an optimal (worst case) O(n2) time algorithm to
compute the visibility graph of a polygon. Their result was later improved
by Hershberger [72], who gave an O(| E |) time algorithm, where | E | is
the number of edges of the visibility graph of P . One of the most impor-
tant open problems in computational geometry is that of characterizing and
recognizing visibility graphs.

For the case of planar graphs, we will use the following result by T.
Nishizeki extensively:

Theorem 1.2.4 (Nishizeki [97]): Any planar 2-connected graph G with n ≥
14 vertices and minimum vertex degree greater than or equal to 3 has a
maximum matching with at least bn+4

3 c edges. When n ≤ 14, the number of
edges in such a matching is bn

2 c.

The proofs of these results are not of concern in this work; the interested
reader can find them in many books on graph theory.

1.3 Exercises

Ex. 1.1 Prove that any tree with n vertices contains exactly n− 1 edges.

Ex. 1.2 Prove Theorem 1.2.3.

Ex. 1.3 Prove that the graph GT (P ) obtained from a triangulation of a
polygon P has at least two vertices of degree two.

Ex. 1.4 Prove that any polygon can be triangulated, and that any triangu-
lation of a polygon with n vertices has exactly n− 2 triangles.

Ex. 1.5 Let H be a tree such that the degree of all its vertices is at most 3.
Show that there is a polygon P and a triangulation T of P such that
the dual of GT (P ) is H. Moreover, show that there is a polygon P

such that P has a unique triangulation T whose dual is H.

Ex. 1.6 Show that every convex polyhedron in R3 can be decomposed into
a set of convex tetrahedrons.
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Ex. 1.7 Find a convex polyhedron with n vertices that can be decomposed
into tetrahedrons in two different ways such that the first decomposi-
tion has a linear number of tetrahedrons, and the second partition has
a quadratic number.
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Chapter 2

Guarding Polygons

In this chapter, we study the problem of illuminating simple polygons on the
plane. In section 2.1 we study illumination problems for simple polygons.
In section 2.2 we study illumination of orthogonal polygons.

2.1 Chvátal’s Art Gallery Theorem

We now give a proof of Chvátal’s Art Gallery Theorem due to S. Fisk [56].

1

2

3

1

3

2

3

2

1

2

. . .

Figure 2.1: Illustration of proof of Chvátal’s Art Gallery Theorem.

Theorem 2.1.1 bn
3 c stationary guards are always sufficient and occasion-

ally necessary to illuminate a polygonal art gallery with n vertices.

Proof: Let P be a simple polygon with n vertices. Triangulate P by
adding n− 2 interior diagonals. (See Figure 2.1.)

9



10 CHAPTER 2. GUARDING POLYGONS

By Theorem 1.2.3 we can color the vertices of P using three colors
{1, 2, 3} such that any two vertices joined by an edge of P or a diagonal
in our triangulation receive different colors. This partitions the vertex set of
P into three chromatic classes C1, C2 and C3. Clearly one of our chromatic
classes, say C1 has at most bn

3 c vertices. Since the vertices of each triangle
receive different colors, each of them has a vertex with color 1. It now fol-
lows that if we place a guard at all vertices with color 1, they guard all of
P .

To see that bn
3 c guards are sometimes needed, consider the comb polygon

Combm with n = 3m vertices presented in Figure 2.1. It is easy to see that
to guard Pm we need at least m guards.

Chvátal’s proof of Theorem 2.1.1 more complicated than Fisk’s. Nev-
ertheless it is intersting to study it, as it exposes some intrinsic properties
of triangulations of polygons that are not evident in Fisk’s proof. Chvatal’s
proof also starts by triangulating a polygon P , and then selects a subset S

of its vertices with at most bn−3
3 c elements such that each triangle in our

triangulation has a vertex in S. Chvátal’s proof is based in the following
following result:

Lemma 2.1.1 Any triangulation of a polygon with n vertices has a diagonal
d that splits P into two polygons P1 and P2, such that P1 has 5, 6, or 7
vertices, n ≥ 6.

The proof of this Lemma is left as an excercise. We now proceed by
induction on the number of vertices of P . Observe first that if P has 3, 4
or 5 vertices, it can always be guarded with a single vertex. Suppose then
that P has at least six vertices. Let T be any triangulation of P .

By Lemma we can find a diagonal d in T that splits P into two subpoly-
gons P1 and P2 such that P1 has at least 5 and at most 7 vertices. Several
cases arise:

Case 1: We can choose d such that P1 has five vertices. In this case, P1 can
be guarded with a single vertex, and since P2 has n − 3 vertices it can be
guarded with with bn−3

3 c guards. This produces a total of bn
3 c guards that

guard P .
Case 2 Suppose next that P1 has six vertices labelled u, v, w, x, y, z

in the clockwise direction such that u and v are the endvertices of d, see
Figure ??. If any vertex of P1 guards all of it, then this vertex together with
any guarding set of P2 with at most bn−4

3 c vertices produces a guarding set
of P with at most bn−3

3 c guards.
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Let t be the triangle of T contained in P1 that contains d. Notice that
the third vertex of t cannot be w (or z), for in this case the diagonal uw

cuts P into two subpoligons, one of which has five vertices u, w, x, y, z

(resp. v, w, x, y, z).

Suppose then that the third vertex of t is x. Observe that in this case,
x is not adjacent to z, for otherwise x would guard all of P . It now follows
that u guards the quadrilateral with vertices u, x, y, z.

Observe that P2 ∪ t is a polygon with n − 3 vertices, and by induction
it has a subset S with at most n − 3 of its vertices that guards it. By
induction,we also have that one of the vertices of t is in S. Observe that if
either of v or x is in S, then S together with u guards P . If u belongs to S,
then S ∪ {x} also guard P . Our result follows.

The case when P1 has seven vertices follows in a similar way and is left
as an excercise.

The cases when P1 has 6 and 7 vertices can be solved in a similar way,
and are left as excercises.

The proof of this result will be studied later. This result gives rise to
the study of algorithms that somehow take advantage of the structure of
a polygon to obtain a better bound on the number of vertices required to
guard them. For example, convex polygons can be guarded with one guard.

A vertex of a polygon P is called reflex if the internal angle of P at v is
greater than π. We now prove:

Theorem 2.1.2 Le P be a polygon with r reflex vertices, r ≥ 1. Then r

guards are always sufficient and occasionally necessary to guard P .

The following result will be useful to prove Theorem 2.1.2.

Lemma 2.1.2 Any polygon with r reflex vertices can be partitioned into at
most r + 1 convex polygons with disjoint interiors.

Proof: Let {r1, . . . , rk} be the reflex vertices of P . For i = 1, . . . , k
extend a ray starting at ri that bisects the internal angle of P at ri until it
hits the boundary of P or a previously drawn ray; see Figure 2.2. An easy
inductive argument can now be used to show that this set of rays divides P

into r + 1 convex polygons as desired.

We can now prove our result:
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r
r

r

rr
12

3

4

5

Figure 2.2: Partitioning a polygon into r + 1 convex polygons.

Proof of Theorem 2.1.2: We first show that r guards always suffice.
Partition P as in the previous lemma. Notice that each of the convex poly-
gons obtained is such that at least one of its vertices is a reflex vertex of P .
Our result now follows.

A family of polygons for which r guards are necessary is shown in Fig-
ure 2.3.

Figure 2.3: A family of polygons that require r guards.

2.2 Orthogonal Polygons

Of particular interest is the study of guarding problems for orthogonal poly-
gons, that is; polygons whose edges are all parallel to the x- or y-axis.



2.2. ORTHOGONAL POLYGONS 13

Perhaps one of the motivations for the study of these polygons is that most
“real life” buildings are, after all, “orthogonal”. From a mathematical point
of view, their inherent structure allows us to obtain very interesting and
aesthetic results, and I believe this is an even stronger motivation to study
them.

The first major result here is due to Kahn, Klawa and Kleiman [82].
They proved:

Theorem 2.2.1 Any orthogonal polygon with n vertices can be guarded with
at most bn

4 c guards.

We will present three proofs for Theorem 2.2.1 The first one is new, and
short. We then give two more proofs of the same theorem that although
longer, are interesting in their own right, and demonstrate some interest-
ing properties of partitioning of polygons into convex quadrilaterals and
L-shaped polygons.

We start by proving the following result due to O’Rourke:

Lemma 2.2.1 Let P be an orthogonal polygon with n vertices, r of which
are reflex. Then r = n−4

2 .

Proof: Since P has n vertices, the sum of the internal angles of P is
exactly (n − 2)π. Notice that all the internal angles of P are of size π

2 or
3π
2 , depending on whether they are generated by a convex or reflex vertex

respectively.
Thus if we have r reflex and n− r convex vertices, we have:

(n− r)(
π

2
) + r(

3π

2
) = (n− 2)π

Solving for r gives the desired result.

A horizontal or vertical cut of P is the extension of a horizontal or
vertical edge of P at a reflex vertex towards the interior of P until it hits
the boundary of P . A horizontal or vertical cut is called an odd cut if it
splits P into two non-empty polygons P1 and P2 with n1 and n2 vertices
respectively such that at least one of n1 or n2 equals 4k + 2 for some k.

O’Rourke noted in his proof of the orthogonal art gallery theorem that
if we can prove that any orthogonal polygon has an odd cut, then by an
inductive argument, Theorem 2.2.1 would follow. Indeed, we can easily
verify that if n1 + n2 ≤ n + 2, and one of n1 or n2 equals n1 = 4k + 2 then
bn1

4 c+ bn2

4 c ≤ bn4 c.
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Given an orthogonal polygon P , we label its edges as top, right, bottom,
and left in the natural way, and then call a reflex vertex of P a top-left
reflex vertex if the edges of P incident to it are a top and a left edge. Top-
right, bottom-right, and bottom-left edges are defined in a similar way; see
Figure 2.4.

Right edgeLeft edge

Top edge

Bottom edge

top-right

bottom-right
bottom-left

top-left

Figure 2.4: Classifying the edges and vertices of an orthogonal polygon.

We are ready to prove Theorem 2.2.1.

Proof: Split the set of reflex vertices of P into two sets, S1 containing
all the top-right and bottom-left reflex vertices of P , and S2 containing all
the top-left and bottom-right vertices. Since P has n−4

2 reflex vertices, one
of S1 or S2 has at most bn

4 c vertices. Suppose it is S1. If placing a light at
every vertex of S1 illuminates all of P , we are done. Suppose then that there
is a point p in P not illuminated by S1. Consider the longest horizontal line
segment c containing p, and contained in P . Let e and f be the edges of P

containing the endpoints of c; see Figure 2.5.

Consider the largest rectangle containing c and contained in P . Let e′

and f ′ be edges of P that intersect the top and bottom edges of R respec-
tively. Since p is not visible from any point in S1, it follows that e and
e′ meet at the top-left corner point of R. Similarly f and f ′ meet at the
right-bottom corner point of R.

Let q and q′ be the top-right and bottom-left vertices of R. If they are
vertices of P , it follows that P is R and there is nothing to prove.

Two cases arise:
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1. Neither of q and q′ are vertices of P .

2. Exactly one of them, say q, is a vertex of P .

If neither of q and q′ are vertices of P , it is easy to see that we can
generate two horizontal cuts that generate a rectangle contained in R and
containing c as shown in Figure 2.5. It now follows that one of these two
horizontal cuts is an odd cut of P .

e
f

p

q

q'

e '

f '

c p

q

q '

q

p

q '

e
f

p

q

q'

e '

f '

c e e e

e ' e '

f f

f '
f '

p

q

q ' f '

e '

f

Figure 2.5: Up to symmetry, these are all the cases arising when none of q

and q′ are vertices of P .

Suppose then that only q is a vertex of P . If e and f ′ are properly
contained in the left and bottom edge of R, then by extending the horizontal
edge of P , incident to the bottom vertex of e, and the vertical edge of P

incident to the left endpoint of f ′, we obtain a polygon with n− 4 vertices
that by induction can be guarded with b n−4

4 c guards. Since R can be guarded
with a single guard, our result follows; see Figure 2.6.

p
e f

e '

f '

p
e f

e '

f '

q

c c

Figure 2.6: The case when e and f ′ are properly contained on the left and
bottom edges of R.
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Suppose then without loss of generality that f ′ properly contains the
bottom edge of R and let w be the bottom vertex of e. Consider the hori-
zontal line segment l joining w to a point in the base of R. Slide this segment
until it hits a vertical edge of P or it reaches the left endpoint of f ′ or the
leftmost endvertex of horizontal edge g incident to the bottom vertex of e.
In the second case, if we reach the left endpoint of f ′, this point generates
a vertical odd cut of P that leaves a polygon with six edges to its right,
and another with n − 4 on the left. In this case our result follows again
by induction. The case when we reach the leftmost point of g follows in a
similar way.

Suppose then that we hit a vertical edge of P . Let x be the highest vertex
of P contained in l. Then we can generate two cuts of P at x, a horizontal
cut h and a vertical cut h′. Let P ′ be the orthogonal subpolygon of P to
the left of h′ obtained when we cut P along h′, and P ′′, the subpolygon on
top of h obtained by cutting P along h. If P ′ has m vertices, P ′′ contains
m + 2 vertices, and thus either h or h′ is an odd cut; see Figure 2.7. Our
result follows.

x h
h'

w w

Figure 2.7: The case when f ′ properly contains the bottom edge of R.

2.3 Partitioning orthogonal polygons into convex

pieces

A convex quadrilaterization of an orthogonal polygon P is a partition of P

into a set of convex quadrilaterals with disjoint interiors such that the edges
of these quadrilaterals are either edges of P or diagonals joining pairs of
vertices of P ; see Figure 2.8.
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Figure 2.8: A quadrilaterization of an orthogonal polygon.

The proof of Theorem 2.2.1 is based on the following result:

Theorem 2.3.1 Any orthogonal polygon is convex quadrilaterizable.

We will return to the proof of this result in the following section; we now
prove Theorem 2.2.1.

Proof of Theorem 2.2.1: In Figure 2.9, we show a family of orthogonal
polygons that require bn

4 c guards.

Figure 2.9: An orthogonal polygon that requires b n
4 c guards.

To show that bn
4 c guards are always sufficient, we first obtain a quadri-

laterization Q of P . We next obtain a graph H by adding two diagonals
connecting opposite vertices of every quadrilateral of Q, as shown in Fig-
ure 2.10.

We now show that this graph is 4-colorable. To this end, consider the
dual graph Q∗ of Q. The vertices of Q∗ are the quadrilaterals of Q, two of
which are adjacent if they share an edge of Q. Clearly Q∗ is a tree. Remove
from Q a quadrilateral corresponding to a leaf of Q∗. This produces a
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Figure 2.10: A 4-chromatic graph obtained from a quadrilaterization.

subgraph H ′ of H which, by an inductive argument, may be assumed to
be 4-colorable. It is easy to see that this coloring can be extended to a
4-coloring of H. Notice that in the resulting 4-coloring, all the vertices
of any quadrilateral of Q receive different colors, and thus the vertices of
each chromatic class guard P . Place a guard at each vertex of the smallest
chromatic class, and our result follows.

We now show that every orthogonal polygon is convex quadrilaterizable.
The proof we give here is due to Lubiw [91]. To this end, we define a 1-
orthogonal polygon P to be a polygon that satisfies the following conditions:

1. All the edges of P , with the possible exception of one distinguished
edge denoted by e and called the slanted edge, are parallel to the x- or
y axis.

2. With the possible exception of e, the edges alternate between horizon-
tal and vertical.

3. All internal angles are less than or equal to 3π
4 .

4. The interior of the nose of the slanted edge contains no vertex of P .

5. P has an even number of edges.

Notice that orthogonal polygons are 1-orthogonal. In our definition, we
do not explicitly forbid e from being parallel to the x- or y-axis. If P is or-
thogonal, then e may be chosen to be any of the edges of P . Thus if we show
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that any 1-orthogonal polygon is convexly quadrilaterizable, Theorem 2.2.1
will be proved.

The nose of the slanted edge e of P is the right triangle T towards the
interior of P such that:

1. The hypotenuse of T is e.

2. The other two edges of T are parallel to the x- and y-axis.

e

The nose of e

Figure 2.11: A 1-orthogonal polygon.

We now prove:

Theorem 2.3.2 Any 1-orthogonal polygon is convexly quadrilateralizable.

Proof: If P has four edges, it must be convex, and our result follows.
We now show that if P has more than four edges, there is always a quadri-
lateral Q′ whose removal splits P into smaller 1-orthogonal polygons. Using
induction our result follows.

Assume without loss of generality that the slope of e lies between 0 and
π
2 , and that the vertices of e are labelled u and v such that u is the vertex
of e with smallest y-coordinate. Let w be the third vertex of the nose T of
e.

Since P has an even number of edges, and all internal angles are of size
at most 3π

2 , both edges adjacent to e are horizontal. Let e′ be the horizontal
edge of P that precedes e in the counterclockwise order along the boundary
of P . We now proceed to find the four vertices of Q′. The first two vertices
of Q′ are u and v. Let e” be the semi-open line segment joining v to w, open
at w. Slide e” to the right until it hits a vertex of P . If e′′ hits a whole edge
of P , then the endpoints of this edge, together with u and v are the vertices
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of Q′. Suppose then that e′′ hits a single vertex x of P ; x is the third vertex
of Q′.

Consider now the semi-open horizontal line segment h joining u to the
vertical line through x; h does not contain u, but it contains its right end-
point. Slide it down until it reaches a vertex of P , or it hits a horizontal
edge f of P in the middle. In the first case, let y be the rightmost point that
h hits. The fourth vertex of Q′ is y. This case is illustrated in Figure 2.12.

u

u

w x
u

u

w x

y

Figure 2.12: Finding Q′, case 1.

We now deal with the case when h hits an edge f of P . This can
only happen if x is the second end-vertex of e′. This case is illustrated in
Figure 2.13. In this case, consider the semi-open vertical line segment h′

joining x to f , closed at the bottom and open at the top. Slide h′ to the
right until it hits a vertex of P . If it hits more than one vertex, choose y,
the lowest of these points, to be the last vertex of Q′.

e x

u

v

y

Figure 2.13: Finding Q′, case 2.

It is now easy to verify that we can split P − Q′ into two or three 1-
orthogonal polygons.
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2.4 Cutting orthogonal polygons into L-shaped pieces

A different proof of Theorem 2.2.1 was obtained by J. O’Rourke [102]. An
L-shaped polygon is an orthogonal polygon with six vertices. Notice that
any L-shaped polygon can be guarded by a single guard. O’Rourke’s main
idea is to divide an orthogonal polygon into L-shaped pieces, each of which
can be guarded with one guard.

In view of Lemma 2.2.1 O’Rourke rephrases his result in terms of r, the
number of reflex vertices of orthogonal polygons. He proves:

Theorem 2.4.1 b r
2c+ 1 guards are always sufficient and occasionally nec-

essary to guard an orthogonal polygon with r reflex vertices.

Proof: The proof of Theorem 2.4.1 is by induction on r. If r = 0 our
result is clearly true. Two cases arise:

1. There is a horizontal or vertical line segment l connecting two reflex
vertices of P such that the interior of l is totally contained in the
interior of P .

2. No such horizontal or vertical line segment exists. In this case, we say
that P is in general position.

Let l be a horizontal line segment as in (1). Then l splits P into two
orthogonal polygons Q and R with s and t reflex vertices respectively, such
that s+t = r−2. By induction, we can guard them with b s

2c+1 and b t
2c+1

guards respectively. But (b s
2c + 1) + (b t

2c + 1) ≤ b r
2c + 1 and our result

follows.
Some terminology and results will be neede to prove (2). A cut of an

orthogonal polygon is an extension of one of the edges incident to a reflex
vertex of P towards the interior of P until it hits the boundary of P . Notice
that a cut through a reflex vertex u “resolves” or eliminates u since it is no
longer a reflex vertex in either of the two polygons, say Q and R, into which
P is partitioned by the cut. A cut is called an odd cut if at least one of Q

and R has an odd number of reflex vertices.
To finish the proof of our result, we will use the following result, which

will be proved after we finish our proof: Every orthogonal polygon in general
position has an odd-cut.

Let P be an orthogonal polygon in general position, and consider an
odd-cut that splits it into two subpolygons Q and R. Assume without loss
of generality that Q has an odd number of reflex vertices. Let s and t be the
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number of reflex vertices of Q and R respectively. Then by induction, we
can guard Q and R with (b s

2c+ 1) and (b t
2c+ 1) vertex guards respectively.

Notice that s + t = r − 1, and since s is odd it follows by a simple case
analysis that (b s

2c+ 1) + (b t
2c+ 1) ≤ b r

2c+ 1. Our result now follows.

To finish the proof of Theorem 2.4.1 we now prove that every orthogonal
polygon in general position has an odd-cut.

We notice first that the general position condition is essential. The
polygon in Figure 2.14(a) has no odd-cuts! Moreover a horizontal odd-cut
does not always exist. The polygon in Figure 2.14(b) has no horizontal
odd-cut. This complicates things a bit. We divide cuts into horizontal and
vertical cuts, which we denote as H-cuts and V -cuts respectively.

(a) (b)

Figure 2.14: An orthogonal polygon with no odd-cuts, and a polygon with
no horizontal cuts.

Notice first that if the number of reflex vertices of P is even, then the
number of reflex vertices of Q plus those in R equals r−1, which is odd, and
thus one of Q or R must have an odd number of reflex vertices. Suppose
then that P has an odd number of reflex vertices.

Two reflex vertices of P are called a horizontal pair if they are the end
vertices of a horizontal edge of P . A reflex vertex v of P is called H-isolated
if the second end vertex of the horizontal edge incident at v is convex.

Obtain a partitioning of P by cutting P along an H-cut at each reflex
vertex of P that belongs to a horizontal pair; see Figure 2.15. We call this
the H-partitioning π of P . We now define a H-graph of this partitioning as
the oriented graph whose vertex set is the set of regions of this partitioning.
Two adjacent regions, X and Y are connected by an edge oriented from X
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to Y if the H-cut that separates them is an extension of an edge of P on
the boundary of X; see Figure 2.15.

Figure 2.15: The H-partitioning of P and its H-graph.

We can now classify the vertices of the H-graph of P as follows:

Leaf nodes Vertices with in-degree 1.

Pit nodes Vertices with in-degree 2, and out-degree 0.

Source nodes Vertices with out-degree 2 or 4.

Branch nodes Vertices with out-degree 2 and in-degree 1.

Lemma 2.4.1 If the H-graph of P contains a pit, then it has an odd-cut.

Proof: Let K be a pit of P , and let h and h′ be the top and lower H-
cuts separating it from its neighbours. If K contains no H-isolated vertices,
one of h or h′ must be an odd-cut. If K has H-isolated vertices and h is an
even cut, the highest H-isolated vertex u of K generates an odd-cut, and
our result follows; see Figure 2.16.

We now prove:

Lemma 2.4.2 If P contains no odd-cuts, its H-graph contains a single
source, P has exactly one H-isolated vertex, and it is located at the source
of its H-graph.
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u

h

h'

Figure 2.16: Finding an odd-cut in a pit.

Proof: Observe that if the H-graph of P contains two sources, then the
path joining them must necessarily contain a pit. However since P admits
no odd-cuts, its H-graph has no pits. It follows the H-graph of P contains
a unique source. Since the H-graph of P is a tree with a unique source,
each vertex of it, except for its source, has in-degree 1. Let K be one of
these regions of the H-partitioning of P . Then since P admits no odd-cuts,
the cut corresponding to the incoming edge of K is an even-cut. Suppose
without loss of generality that this edge is a bottom edge of K. Then if K

contains H-isolated vertices, the lowest of them generates an odd-cut, which
is a contradiction.

However since P contains an odd number of reflex vertices (or any H-cut
would be an odd-cut) it must contain at least one H-isolated vertex, and it
must be a vertex of the source region of the H-partitioning of P . Moreover,
notice that if the source region contains more than one H-isolated vertex,
one of them would generate an odd-cut, which is a contradiction. Our result
follows.

We notice that all the results proved for H-cuts hold for V -cuts, and in
particular we have that if P admits no vertical odd-cuts, it has exactly one
V -isolated vertex located at the source face of the V -graph of P .

We now prove:

Lemma 2.4.3 Any orthogonal polygon P in general position with an odd
number r of vertices admits an odd-cut, 3 ≤ r.

Proof: Since P admits no odd-cuts, it has exactly one H-isolated vertex
u and one V -isolated vertex v. Moreover these vertices are in the sources of
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the H-graph and the V -graph of P . Any other reflex vertex of P belongs to
an H- and a V -pair. Therefore all the reflex vertices of P are located in a
chain of reflex vertices that starts, say, in u and ends in v; see Figure 2.17.
This implies that both u and v are located in leaf regions of the H- and
V -partitions of P , which is a contradiction.

u
v

Figure 2.17: A spiral orthogonal polygon.

This concludes our proof of Theorem 2.4.1.

2.5 Algorithms for L-shaped partitions

In this section we develop an O(n lnn) algorithm to partition an orthogonal
polygon into L-shaped pieces. Using Chazelle’s linear time triangulation
algorithm, a linear time implementation of our algorithm can be obtained,
however this is outside the scope of our book.

An orthogonal polygon Q is called a vertical histogram if it has a hori-
zontal edge, called the base of Q, such that every point of Q is visible from
some point in its base; see Figure 2.18.

Figure 2.18: A histogram.
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Lemma 2.5.1 If an orthogonal polygon has no horizontal odd-cuts, it can
be partitioned into b r

2c+ 1 L-shaped pieces.

Proof : Observe that by Lemma 2.4.2 the H-graph of any such polygon
has exactly one source, and one H-isolated vertex located in this face. It
is easy to see that this cut partitions P into two histograms. Our result
now follows by partitioning each of these histograms by cutting them along
a vertical line through every second reflex vertex.

We now show how to obtain a partitioning of P into L-shaped pieces.
To start, assume that P has no horizontal cuts that join two reflex vertices.
This case can be easily dealt with. Furthermore we will assume that P

contains an odd number of reflex vertices. The case when P has an even
number of reflex vertices will be dealt with at the end of our proof for the odd
case. Our approach is justified by the following observation: an odd-cut of a
polygon with an odd number of reflex vertices splits it into two subpolygons,
each with an odd number of reflex vertices. Moreover we observe that if we
cut P along an odd-cut h, and h′ is an odd-cut of P different from h, then
h′ is also an odd-cut of the subpolygon of P that contains it.

We now present our algorithm to find an L-partitioning of a polygon P

with an odd number of reflex vertices:

Algorithm 2.5.1

1. Find all the horizontal cuts of P .

2. Find all the horizontal odd-cuts.

3. Cut P at each horizontal odd-cut.

4. Each resulting piece has no horizontal odd-cut, i.e it is a histogram.
Partition it by cutting it along a vertical through every second reflex
vertex.

We notice now that each subpolygon Pi of P obtained in Step 3 of our
algorithm has no odd-cuts, and thus by Lemma 2.5.1 can be partitioned into
at most b ri

2 c − 1 L-shaped pieces, where ri is the number of reflex vertices
of Pi. It now follows that our algorithm indeed produces a partitioning of
P as desired.

Finding the odd-cuts of P can be done in O(n lnn) time by a horizontal
line sweep. See Appendix.
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Determining which cuts are odd-cuts can be accomplished as follows:
Pick any reflex vertex of P and label it 1. Set a reflex counter of vertices of
P to 1. We now walk along the boundary of P . Each time we encounter a
reflex vertex of P we increase our counter by one, and label the vertex with
the new value of our counter. Each time we encounter the end point of a
horizontal cut that is not a vertex of P we simply label it with the value of
our counter. A horizontal cut is even if the absolute value of the difference
of the labels of its end points is odd. This can clearly be done in linear time.

Step 3 can also be done in linear time. It is obvious that this partition
yields at most b r

2c+ 1 L-shaped polygons. Thus we have proved:

Theorem 2.5.1 An orthogonal polygon with an odd number of reflex ver-
tices can be partitioned into at most b r

2c+ 1 L-shaped polygons in O(n lnn)
time.

If P has an even number r of reflex vertices, we first create an extra
reflex vertex of P as follows: let e be the lowest horizontal edge of P and
u its leftmost vertex. Since we are assuming that P is in general position,
all its vertices have different x- and y-coordinares. Let ε be such that the
horizontal and vertical distance between any two vertices of P is at least ε.
Cut away from P a square with sides parallel to the coordinate axes, such
that the length of its edges is ε and u is its lowest leftmost vertex. Let P ′ be
the resulting orthogonal polygon. P ′ has exactly r + 1 reflex vertices. The
following lemma, left as an exercise to the reader, can now be proved:

Lemma 2.5.2 Any L-shaped partitioning of P ′ into at most b r+1
2 c+1 pieces

can be modified to obtain a similar partitioning of P into b r
2c+ 1 pieces.

However since r is even, b r+1
2 c+ 1=b r

2c+ 1 and we have proved:

Theorem 2.5.2 An orthogonal polygon with r reflex vertices can be parti-
tioned into at most b r

2c+ 1 L-shaped polygons in O(n lnn) time.

2.6 Algorithms

Using Fisk’s proof, together with Chazelle’s linear time triangulation algo-
rithm, we can develop a linear time algorithm to find b n

3 c guards to protect
a polygon as follows:

Algorithm 2.6.1
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1. Triangulate p.

2. Three color the vertices of GT (P ).

3. Place the guards at the smallest chromatic class.

To show that Algorithm 2.6.1 runs in linear time, all we have to show
is that Step 2 of Algorithm 2.6.1 can be implemented in linear time. To
show this, we notice that by Excercise 3 of Section 1.3, GT (P ) always has
a vertex v of degree 2. We now notice that any 3-coloring of GT (P ) − v

can be extended to a 3-coloring of GT (P ). It is now easy to see that this
procedure leads to a linear time algorithm.

2.6.1 Input sensitive algorithms

Although Theorem 2.1.1 provides a general upper bound on the number of
guards required to guard any polygon with n vertices, most polygons can
be guarded with fewer than bn

3 c guards. It is natural then to ask for the
existence of an efficient algorithm to find the minimun number of vertex
guards to protect a polygon.

Unfortunately, the existence of such an algorithm is highly unlikely, due
to the following result of D. T. Lee and A.K.Lin [86]:

Theorem 2.6.1 The minimum vertex guard problem for polygons is NP-
complete.

2.7 Exercises

Ex. 2.1 Provide all the details of a linear time implementation of Algo-
rithm 2.6.1.

Ex. 2.2 Prove Lemma 2.1. Hint: use the fact that the dual graph of a
triangulation of a polygon is a tree in which the maximum degree of
each vertex is 3.

Ex. 2.3 Finish Chvátal’s proof of Theorem 2.1.1.

Ex. 2.4 Verify that P−Q′ can indeed be split into two or three 1-orthogonal
polygons; i.e. verify that the resulting polygons have an even number
of edges and their noses are empty.

Ex. 2.5 Prove Lemma 2.5.2.



Chapter 3

Guarding traditional art

galleries

In the classical Art Gallery Theorem, an art gallery is a simple polygon on
the plane. In a more realistic setting, a traditional art gallery is housed in
a rectangular building subdivided into rectangular rooms. Assume that any
two adjacent rooms have a door connecting them. (See Figure 3.1.)

v1

v2

v 3
v

4 v5

v7

v 6
v 8

R1 R2

R3 R4 R5

R7

R6

R8

Figure 3.1: Traditional art gallery and its dual graph.

How many guards need to be stationed in the gallery so as to guard all
its rooms? Notice that a guard who is stationed at a door connecting two
rooms will be able to guard both rooms at once, and since no guard can
guard three rooms, it follows that if the art gallery has n rooms we need at
least dn

2 e guards. One of our objectives in this chapter is to prove:

29
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Theorem 3.0.1 [41] Any rectangular art gallery with n rooms can be guarded
with exactly dn

2 e guards.

3.1 A taste of matching theory

Some basic results in matching theory have been widely used in several
results on illumination problems. To help the reader better understand the
results about to be proved, a brief revisiting of these results is in order.

Given a graph G, a matching M of G is a subset of edges of G such that
no two edges of M have a common vertex. A matching M of G is called
perfect if each vertex of G is incident to an edge in M ; see Figure 3.2.

G
1

G
2

Figure 3.2: Graph G1 has a matching with two edges, but no perfect match-
ing. G2 has a perfect matching.

Given a graph G and a subset S of the vertices of G, we define Odd(S) to
be the number of components of G−S with an odd number of vertices. We
now prove the following result due to W. T. Tutte which provides necessary
and sufficient conditions for the existence of perfect matchings:

Theorem 3.1.1 (Tutte [128]): A graph G has a perfect matching iff for
every subset S of V (G), Odd(G − S) ≤ |S|.

We first observe that if G has a subset of vertices S such that Odd(G−
S) > |S|, then G cannot have a perfect matching. To see this we simply
observe that in any perfect matching of G at least one element of an odd
component of G−S must be matched to a vertex in S. Thus if we have more
odd components in G − S than elements in S, a perfect matching cannot
exist; see Figure 3.3.
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Figure 3.3: A graph with no perfect matching. The vertices of S are repre-
sented by small empty disks.

A graph G is called saturated if it has no perfect matching, but adding
any other edge to G produces a graph that has a perfect matching.

Let S be the set of vertices of a saturated graph G adjacent to all the
vertices of G, and let T = V (G)− S. We now prove:

Lemma 3.1.1 Let u, v, w be elements of T such that u and w are adjacent
to v. Then u and w are also adjacent.

Proof: Assume that u and w are not adjacent. Since v is in T , there is
a vertex x of G not adjacent to v. Let G′ and G′′ be the graphs obtained by
adding the edges u − w and v − x to G respectively. Since G is saturated,
G′ and G′′ have perfect matchings. Let M ′ and M ′′ be these matchings
respectively. Since G has no perfect matchings, u− w and v − x are in M ′

and M ′′ respectively.
In the graph obtained by joining M ′ and M ′′ each vertex has degree

two, and this graph consists of a set of even cycles with edges alternating
between M ′ and M ′′. Two cases arise:

1. u− w and v − x belong to different cycles of M ′ ∪M ′′.

2. u− w and v − x belong to the same cycle.

Suppose then that u−v and v−x belong to different cycles in M ′∪M ′′.
Let C be the cycle containing u−w. Then by deleting from M ′ all the edges
of C in M ′ and replacing them by those edges of C in M ′′, we obtain a perfect
matching of G′ that does not contain v − w, which is a contradiction.
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u

v

w

x

Figure 3.4:

If both edges belong to the same cycle C of M ∪M ′′, relabel the vertices
of C v0 = v, v1 = x, . . . , according to the order in which they appear in C,
and suppose without loss of generality that w is relabelled with a smaller
label than v. Then since the edges of C alternate between M ′ and M ′′,
w = v2k+1 for some k ≥ 0. However since v and w are adjacent, the cycle
with vertices v0 = v, v1 = x, . . . , v2k+1, v0 = v is an even cycle C ′ such that
every second edge of it belongs to M ′; see Figure 3.4. By removingthe edges
of C ′ in M ′ and replacing them by the edges of C ′ not in M ′ we obtain again
a matching of G′ that does not contain v − x, a contradiction. Therefore u

and w are adjacent in G.

We are now ready to prove Tutte’s Theorem:

Proof: As mentioned before, if Odd(G−S) > |S| then G cannot have a
perfect matching. Suppose then that G has no perfect matching, and that
G has an even number of vertices, otherwise if G has an odd number of
vertices, take S to be the empty set, and our result follows.

We now show that G must contain a subset S of vertices such that
Odd(G − S) > |S|. Let us add to G as many edges as possible to obtain a
saturated graph G′. Since G is not a complete graph, G′ is not complete
either. As before, let S be the set of vertices of G′ adjacent to all the vertices
of G′ and H0 be the complete subgraph of G′ induced by S, and H1, . . . ,Hk

be the components of G′−S. By Lemma 3.1.1 H1, . . . ,Hk are also complete
subgraphs of G′.

If at most S components of G′ − S are odd, then a perfect matching of
G′ can be easily found contradicting that G′ is saturated. Thus G′ − S has
at least S + 1 odd components, in fact by a parity argument, it must have
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at least S + 2 odd components. If G′ − S contains more than S + 2 odd
components, we can check that we can add to G′ an extra edge connecting
two odd components and the resulting graph still has no perfect matching,
a contradiction.

Similarly, if G′−S contains an even component, then any edge connecting
it to another component of G′ − S can be added without creating a perfect
matching, which contradicts that G′ is saturated.

To finish our proof, we delete from G′ the edges we added to G, and
observe that in doing so, each odd component of G′ − S generates at least
an odd component of G−S. Thus Odd(G−S) > |S| and our result follows.

3.2 The proof of Theorem 3.0.1

We now prove Theorem 3.0.1 using Tutte’s Theorem.

Proof: Given a rectangular art gallery T with n rooms R1, . . . , Rn, we
can associate to it a dual graph G(T ) by representing each room Ri of T

by a vertex vi in G(T ), two vertices being adjacent if their corresponding
rectangles share a line segment in their common boundary. See Figure 3.1.

Notice that the boundary of the union of the rectangles corresponding
to the vertices of any connected subgraph of G(T ) forms an orthogonal
polygon, possibly with some orthogonal holes.

We now show that if G(T ) has an even number of vertices, G(T ) has a
perfect matching M . This suffices to prove our result since our d n

2 e points
can now be chosen using M as follows: for every edge {vi, vj} of G(T ) in M

station a guard at the door connecting Ri and Rj . Clearly these guards will
cover all the subrectangles of T . The case when G(T ) has an odd number
of vertices follows by subdividing any room of T into two.

Suppose then that G(T ) has an even number of vertices. We now show
that G(T ) satisfies Tutte’s Theorem. Let S be any subset of vertices of
G(T ), and k be the number of connected components of G(T ) − S. Each
component Ci of G(T ) − S is represented by an orthogonal subpolygon Pi

of T . Each such polygon has at least four corner points and thus the total
number of corner points generated by the k components in G(T ) − S is at
least 4k; see Figure 3.5.



34 CHAPTER 3. GUARDING TRADITIONAL ART GALLERIES

S={R  ,R  ,R  }
1 3 6

A corner point

R5

R4

R2

When R   is replaced, three
corner points disappear.

Not a corner point
anymore.

6

R6R5

R4

R2

Figure 3.5: The components of G− S are themselves orthogonal polygons.

The next observation is essential to our proof: When a rectangle rep-
resented by a point in S is now replaced, at most four corner points will
disappear.

Once all rectangles in S are replaced, all the corner points generated by
the components of G(T )−S will disappear, except for the four corner points
of T . It follows that k ≤| S | +1. The reader may verify that if k =| S | +1,
then at least one of the components of G(T ) − S is even. Our result now
follows.

A different proof of Theorem 3.0.1 can be obtained by using another well
known result on planar graphs. It is common practice in most museums to
indicate to visitors, using arrow signs, a sequence in which the rooms of
the museum may be visited without either missing or repeating a room.
Our second proof of Theorem 3.0.1 shows that in fact, any traditional Art
Gallery always has such a path. A graph G is called hamiltonean if there is
a cycle that contains all the vertices of G. A graph has a hamiltonean path
if there are two vertices u and v and a path starting at u and ending in v

that contains all the vertices of the graph. We now prove:

Theorem 3.2.1 Every rectangular art gallery has a hamiltonean path. More-
over, this path starts and ends at external rooms.

To prove our result, we will use the following result due again to Tutte [129]:
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Theorem 3.2.2 Every planar 4-connected planar graph is hamiltonean.

A graph is called k-connected if we need to delete at least k vertices of
it to obtain a disconnected graph. We now prove:

Theorem 3.2.3 Any rectangular art gallery with n rooms has a hamil-
tonean path.

To prove our result, we will show that G(T ) has a hamiltonean path.
We notice first that G(T ) is planar, but not necessarily 4-connected. For
example the graph arising from Figure 3.1 is 3-connected. To sove this
problem we first frame our rectangular art gallery T using four rectangles
as shown in Figure 3.6.

R6R5

R4

R3

R2

R1

Figure 3.6: Framing a rectangular art gallery.

We now notice that the dual G(T ∗) of the resulting rectangular art
gallery T ∗ in which we add a vertex to the unbounded external face is indeed
4-connected. Thus by Theorem 3.2.3 it is hamiltonean. This however is not
enough, as the hamiltonean path of G(T ∗) guaranteed by Theorem 3.2.3 may
induce two paths in G(T ). Referring again to Figure 3.6 the hamiltonean
cycle of G(T ∗) shown in thick lines first visits R2, R5, R6 and R1, exits T

and reenters it to visit R4 and R3, thus failing to produce a hamiltonean
path for T . This can however be fixed as follows: Take three copies of T ,
and frame them as in Figure 3.7. The dual graph G(T ∗∗) of the resulting
configuration is again hamiltonean. Hovever, it is now easy to verify that
the hamiltonean cycle of G(T ∗∗) induces a hamiltonean path in at least one
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of the three copies of T used in our construction. That this path begins and
ends at external rooms of T is obvious. Our result follows.

Figure 3.7: Framing three copies of a rectangular art gallery.

To show that Theorem 3.2.1 implies Theorem 3.0.1, we simply follow our
hamiltonean path for T , and station a guard at the door connecting the first
room we visit to the second, the door connecting the third to the fourth,
etc. our result follows.

3.2.1 Algorithms

In this section we show that the placement of the b n
2 c guards to protect a

rectangular art gallery can be done in linear time. Our result follows fron
the following result due to N. Chiba and T. Nishizeki [27]

Theorem 3.2.4 Finding hamiltonean cycles in 4-connected planar graphs
can be done in linear time.

By using Chiva and Nishizeki’s algorithm on G(T ∗∗), which is 4-connected,
we have:

Theorem 3.2.5 Guarding a rectangular art gallery with d n
2 e can be done

in linear time.

3.3 Non-rectangular Art Galleries

In the previous section, we studied the problem of guarding art galleries
housed in rectangular buildings. In this section we study the problem of
guarding art galleries housed in convex buildings that are subdivided into
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Figure 3.8: A convex art gallery subdivided into convex rooms.

convex rooms. As before, we will assume that whenever two rooms share a
wall, there is a door connecting them. (See Figure 3.8.)

Our main result in this subsection is the following:

Theorem 3.3.1 Any convex art gallery T with n convex rooms can be
guarded with at most b 2n

3 c guards.

To prove our result, we use the following result due to Nishizeki [96] (see
also [97]).

Theorem 3.3.2 Let G be a 2-connected planar graph such that the degree
of every vertex in G is at least 3. Then for all n ≥ 14, G has a matching of
size at least dn+4

3 e. For n < 14, G has a matching of size dn
2 e.

We will not prove Nishizeki’s theorem here. The interested reader may
find the proof of this result in [97].

We proceed now to prove Theorem 3.3.1.

Proof: Let G(T ) be the dual graph of T in which the vertices of G(T )
are the rooms of T , two of which are adjacent if they share a common wall.
Suppose that G(T ) contains no cut vertex v with degree 2. This case can
be handled easily by an inductive argument. It may be the case that G(T )
has vertices of degree 2. Since our rooms are convex, any internal room,
i.e. a room contained in the interior of T has degree greater than or equal
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to 3. Thus vertices of degree 2 in G(T ) correspond to exposed rooms of T ,
i.e. rooms having a sector of thier boundaries on the boundary of T . It
now follows that if we add an artificial vertex to G(T ) adjacent to all the
exposed roms of T to obtain a 2-connected graph such that all its vertices
have degree at least 3.

We can now apply Nishizeki’s Theorem to our augmented graph. This
produces a matching M of size at least d n+5

3 e. Each edge of M corresponds
to two adjacent rooms that can be guarded with a single guard. This takes
care of 2dn+5

3 e rooms of T We must place a guard for each of the remaining
rooms. Thus we can guard T with at most

dn + 5

3
e+ ((n + 1)− 2dn + 5

3
e) = b2n

3
c

guards. An example in which b 2n
3 c guards are necessary is shown in Fig-

ure 3.9.

A point p covers or guards a convex set Si if p is in the interior or the
boundary of Si. Let P be a partitioning of the plane into n convex sets. A
point set G is called a cover of P if every element of P is covered by at least
a point in G. We observe that using the same technique as that one used in
the proof of our previous result we can prove:

Theorem 3.3.3 Any partitioning of the palne into n convex sets has a cov-
ering with at most b 2n

3 c points. The bound is tight.

The proof of this result is left as an excercise.

Figure 3.9: A convex art gallery with 3m + 1 rooms that needs 2m guards.
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3.4 Excercises

Ex. 3.1 Prove that if an orthogonal polygon with k reflex vertices is subdi-
vided into n rectangular rooms as in Theorem 3.0.1 it can be guarded
with at most bn+k

2 c guards. Show that this bound is tight.

Ex. 3.2 Show that Theorem 3.0.1 extends to decompositions of boxes in R3

into boxes, such that no two of these boxes meet at a single point.

Ex. 3.3 Suppose that we choose to station a set of guards in a rectangular
art gallery according to the following greedy algorithm:

While not all the rectangles of T are guarded, choose, if
possible, a pair of adjacent rectangles, guard them with a
guard, and delete them them from G(T ). Once this can
no longer be done, the collection of subrectangles left form
an independent set in the dual graph G(T ). Guard each of
these rectangles with a guard.

Prove that using this algorithm will produce a guarding set with at
most b3n

4 c guards. Show that in some cases, our algorithm will actually
choose b 3n

4 c guards.

Ex. 3.4 Prove Theorem 3.3.3.
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Chapter 4

Families of Line Segments

Let F = {S1, . . . , Sn} be a collection of n line segments on the plane. We
say that a set of points Q = {p1, . . . , pk} protects F if every element Si of
F contains a point visible from some point pj in Q.

A natural motivation for this concept is that a guard is protecting an
art work S if it can see at least a point of it. In this case, a robber cannot
remove S without our guard noticing it! In Figure 4.1 we show a family of 7
line segments that need two points to protect them. Notice that the smaller
line segments cannot be protected by the same guard.

Figure 4.1: Two guards suffice.

Our main objective in this section is to prove the following result.

Theorem 4.0.1 Any collection of n line segments can always be protected
using at most dn

2 e points; b 2n−3
5 c points are occasionally necessary.

Some preliminary results and definitions will be needed before we can
prove our result.

41
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Consider a collection F = {S1, . . . , Sn} of n disjoint line segments on
the plane. Construct a graph G(F ) with n vertices v1, . . . , vn such that vi is
adjacent to vj if and only if there is a point x on the plane that sees at least
a point in the boundary of each of Siand Sj , i.e. x can protect both line
segments. In Figure 4.2 a collection F of five segments and its corresponding
graph G(F ) is shown.

L1

L4

L3

L2

L5

v5

v3

v2

v1

v4

Figure 4.2: A family F of five line segments, and its corresponding graph
G(F ).

The main idea in our proof of Theorem 4.0.1 is to show that for any
family F with an even number n of disjoint segments, the graph G(F ) has
a perfect matching.

The following lemma, given without proof, will be used to prove our
main result.

Lemma 4.0.1 Let Q be any convex polygon, F = {S1, . . . , Sn} a family of n

disjoint segments and let H be the subset of elements of F which intersect Q.
The subgraph of G(F ) induced by the vertices of G(F ) representing elements
in H is connected.

We proceed now to prove Theorem 4.0.1.

Proof: Let F = {L1, . . . , Ln} be a collection of n disjoint segments and
let G(F ) be its associated graph. Assume that n is even, otherwise add
another segment to F . We show that G(F ) satisfies Tutte’s condition and
thus has a perfect matching .
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Consider any subset H of F and let S be the set of vertices of G(F )
representing the elements of H. We show that the number of connected
components of G(F )− S is at most | S |=| H |.

To start, delete from the plane all the segments not in H. One at a
time, extend the elements of H until they meet another element of F , meet
a previously extended element of F or become lines or semilines. Let π

be the plane partition induced by the extended elements of H. It is easy
to verify that π contains exactly | H | +1 polygonal faces. Replace the
elements of F not in H; see Figure 4.3.

Line segments in  H.
Line segments not in H.

Figure 4.3: The partitioning generated by the elements in H.

By Lemma 4.0.1, the number of components of G(F )− S is at most the
number of faces of π, which is | H | +1. It can be easily verified that there are
at least two adjacent faces in π such that the segments that intersect them
are in the same component in G(F ) − S. Thus the number of components
in G(F )−S is at most | S |, implying that G(F ) has a perfect matching M .
It follows that F can be protected by a set, consisting of at most n

2 points,
one for each edge of M .

To get the lower bound, construct an example of a family F with n

segments in which b 2n−3
5 c points are required to guard F , as follows.

Let H be a cubic plane graph with triangular outer face in which all the
vertices, except the outer ones, are such that the three vectors emanating
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from the vertex along the edges positively span the plane. Let H have k

vertices; it has 3k
2 edges.

Substitute the edges of H by segments such that at each of the k − 3
inner vertices we obtain a triangular face in which we insert a small segment;
see Figure 4.4.

Figure 4.4: Generating a set of n line segments that require b 2n−3
5 c points

to protect them.

Discard the three edges of the outer face of H and disconnect each edge
in a small neighborhood of its end vertices to form a collection of n = ( 3k

2 )−
3+k−3 segments. No two of our k−3 small segments are visible from a single
point, hence k − 3 points are needed to guard the collection of segments.
It is easy to verify that k − 3 points are also sufficient. k − 3 = b 2n−3

5 c,
completing the proof of Theorem 4.0.1.

We close this section by noticing that the proof of Theorem 4.0.1 is also
valid if we allow some of our line segments to be semilines, or even lines.
Moreover in this case, the dn

2 e bound is tight, the set of semilines, and line
shown in Figure 4.5 achieves this bound.

4.1 More on families of line segments

An attractive variation to guarding problems involving families of line seg-
ments was studied by J. O’Rourke [104].

Suppose we have a set of disjoint line segments F = {L1, . . . , Ln} repre-
senting walls built anywhere on the plane, and we want to guard the whole
plane. How many guards are always sufficient to achieve our goal?
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Figure 4.5: A family containing m semilines and m line segments that re-
quires dn

2 e guards to protect it.

We must first clarify the conditions set by O’Rourke in his result. A
guard at a point p sees a point q on the plane if the line segment joining p to
q does not cross any element of F . For this purpose, it is better to consider
the elements of F as open line segments. Moreover, O’Rourke allows for the
line segment joining p to q to be collinear with any element of F , and also
to locate guards on the line segments themselves.

Under these restrictions, O’Rourke proved:

Theorem 4.1.1 b 2n
3 c guards are always sufficient and occasionally neces-

sary to guard the plane in the presence of n line segment obstacles.

We will assume that our line segments are in general position, i.e. we
assume that no two of them are collinear, and that the lines generated by
the elements of F are such that no three meet at a point. These conditions
can easily be taken care of.

We can now prove Theorem 4.1.1.

Proof: Consider a family F = {L1, . . . , Ln} of n line segments in general
position. As we did in the proof of Theorem 4.0.1, one by one extend each
element of F until it hits another element of F , or an extension of it, or
becomes a semiline or a whole line.

This creates a partitioning of the plane into exactly n + 1 convex poly-
gons. Consider the dual of the obtained partitioning. If n ≥ 3 this graph
is 2-connected, however it may have vertices of degree 2; see Figure 4.6.
It is easy to see that all vertices of degree 2 lie on infinite regions of our
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partitioning, and thus by adding an artificial vertex adjacent to all these
vertices, we obtain a planar graph that satisfies Nishizeki’s Theorem, and
thus has a matching of size at least d ((n+1)+1)+4

3 e = dn+6
2 e.

Figure 4.6: A convex partitioning of the plane generated by a set of line
segments.

Notice that since two adjacent regions can be guarded with a single point,
located possibly on a line segment of F , using d n+6

2 e points we can guard
at least 2dn+6

2 e − 1 regions. The last −1 in the equation is to take into
consideration the case when our artificial vertex is the endvertex of an edge
in our matching. The remaining ones can be guarded with a point each.
This gives a total of:

(n + 1)− 2dn + 6

2
e − 1 + dn + 6

2
e = b2n

3
c

guards. We now show that there are families of line segments for which
b2n

3 c points are required. We start again with a cubic graph G with m

vertices drawn on the plane such that its external face is a triangle, and for
all internal vertices, the edges incident to them span the plane. We again
discard the edges in the outer face and modify the remaining edges of G in
such a way that at each of the internal vertices we obtain a triangular face.
Our configuration has exactly three line segments, say a, b and c that can
be extended to infinity.
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We now shorten each of the resulting line segments by a sufficiently small
ammount, and add three more lines la, lb and lc close to the end points of
a, b, and c respectively as shown in Figure 4.7.

Figure 4.7: A family of n line segments for which b 2n
3 c guards are necessary.

Since G has exactly 3m
2 edges, our construction yields a total of 3m

2 line
segments. If we place a point in the middle of each triangle in our previous
construction, plus a point between each of a and la, b and lb, and c and lc,
we obtain a set of m points such that no two of them can be guarded by a
single guard. Our result now follows.

An interesting open problem arises:

Problem 4.1.1 Verify if the bounds of Theorem 4.1.1 remain valid if we
don’t allow guards to be placed on line segments.

At this point, it is worth noticing that the proof of Theorem 4.1.1 extends
to families containing line segments, semilines, and lines. However if we do
not allow guards to be located on our our obstacles, the bound proved in
Theorem 4.1.1 is no longer valid. If our obstacls are n parallel lines, and no
guard is allowed on them, we need n+1 guards to guard the plane. If we use
semilines, it is easy to construct examples for which n guards are required.

4.2 Illuminating line segments

We now turn our attention to the following problem studied by Czyzowicz,
Rivera-Campo, Urrutia, and Zaks [40]: Instead of viewing our line segments
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as obstacles, let us try to illuminate them. Notice however that a point on a
line can be illuminated by a ray hitting the line from either side of it. How
many lights are needed to illuminate all the line segments? We prove:

Theorem 4.2.1 Any collection F of n disjoint line segments can be illumi-
nated with at most d 2n

3 e − 3 light sources.

Proof: Let F = {L1, . . . , Ln} be a family of n disjoint line segments.
Choose a triangle T containing all of the elements of F in its interior and let
F ′ be the family containing all of the elements of F together with three line
segments Ln+1, Ln+2 Ln+3 obtained from T by shortening the three sides
of T by an ε > 0, ε sufficiently small; see Figure 4.8.

Construct a family H = {S1, . . . , Sn, Sn+1, Sn+2, Sn+3} of n + 3 strictly
convex compact sets with mutually disjoint interiors (our sets are allowed
to touch each other at a single tangency point located in their boundaries)
satisfying the following properties:

1. Li is contained in Si, i = 1, . . . , n + 3.

2. The number of points at which pairs of elements of H are tangent is
maximized.

L
1

L
2

L
3

Figure 4.8: Illuminating line segments.

We can now see easily that every element in H is tangent to at least
three elements in H. Construct a graph G as follows: For each element of H
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Light sourcesEdges of a maximum matching Light sources

Figure 4.9: Placement of lights.

insert a vertex in G. Two vertices are adjacent if their corresponding sets
in G are tangent; see Figure 4.9.

It is now easy to see that G is planar and 2-connected. In addition, since
each set in H is tangent to at least three other elements in H the degree of
each vertex in G is at least three. Then by Theorem 3.3.2, G has a matching
M of size at least dn+3+4

3 e = dn+1
3 e + 2. For each pair of elements Si, Sj

matched in M by an edge of G, place a light source at the point in which
they intersect. This light source will completely illuminate the line segments
Li and Lj contained in Si and Sj respectively. Since M has at least dn+1

3 e+2
elements, 2(dn+1

3 e + 2) elements of F will be illuminated using d n+1
3 e + 2

lights. For the remaining elements of F , an extra light source per element
is needed. Then the total number of lights required with our technique is:

(dn+1
3 e+ 2) + ((n + 3)− 2(dn+1

3 e)) = n + 1− dn+1
3 e ≤ d2n

3 e − 3.

In terms of lower bounds, we notice that the set of n lines obtained in
Theorem 4.0.1 also requires b 2n−3

5 c to illuminate them. If we also consider
illumination of sets of line segments and semilines, we can obtain sets that
require dn

2 e points to illuminate them as follows: Consider a regular polygon
Pn with n vertices. In the clockwise direction, extend all the sides of Pn to
obtain a set of n semilines. Shorten them a bit at their finite endpoint to
make them disjoint.
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The gap between the lower and upper bounds for the illumination of
line segments (or semilines for that matter) is large. A challenging problem
is that of closing those gaps. For line segments, I believe that the correct
bound is somewhere around b 2n−3

5 c. However even a proof that any family
of n line segments can always be illuminated with d n

2 e+ c lights has proved
elusive, c a constant.

The case when our lines are orthogonal, i.e. parallel to the x- or y-axis
is also open. In this case we can prove that any set of n orthogonal line
segments can always be illuminated with d n+1

2 e lights, see Exercise 1. For
the lower bound, we can only produce families that require b n

3 c lights; see
Figure 4.10.

Figure 4.10: A set of orthogonal lines that requires b n
3 c lights.

4.3 Hiding behind walls

In this section, we study the following problem introduced by Hurtado, Serra
and Urrutia [78]: Consider a set of disjoint line segments F . A collection of
points P is called hidden with respect to F if any line segment joining two
points in P intersects an element of F .

We now prove:

Theorem 4.3.1 Any family of n disjoint line segments has a hidden point
set with at least

√
n elements.

To prove our result, we will use the following result of Erdös and Szek-
eres [48]:

Theorem 4.3.2 Any sequence of n numbers has an increasing or a decreas-
ing subsequence with at least

√
n elements. The bound is tight.

For example, consider the following sequence of numbers:
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π = {4, 6, 3, 7, 2, 6, 1, 9, 8}

The numbers 4, 6, 7, 9 form an increasing subsequence of π. Notice that
the elements of the subsequence do not have to appear consecutively in
π. Similarly 7, 2, 1 form a decreasing subsequence of π. The proof of this
result is left as an exercise to the reader. See exercise 3. Consider a set
F = {L1, ..., Ln} of line segments such that their projections on the x axis
form a disjoint collection of intervals. Let si be the slope of Li, i = 1, . . . , n.
We now prove:

Lemma 4.3.1 If a1 < . . . , < an then F admits a hidden set of size n.

Proof: For each Li let pi be its midpoint. Choose a point q1 below pi

at distance ε from Li, i = 1, . . . , n. We now claim that if we choose ε small
enough, q1, . . . , qn form a hidden set. Consider two integers i < j, and the
line segment Li,j joining pi to pj. If ai is smaller than the slope ai,j of Li,j,
then by choosing ε small enough, we can guarantee that the line segment
joining qi to qj intersects Li. If ai is greater than or equal to ai,j the segment
joining qi to qj will intersect Lj ; see Figure 4.11.

We observe that Lemma 4.3.1 is also true when a1 >, . . . , > an, placing
q1, . . . , qn above pi, i = 1, . . . , n.

Figure 4.11: A family of 5 line segments with increasing slopes that has a
hidden set of size 5.

We now prove Theorem 4.3.1:
Proof: Consider a family of n disjoint line segments. Pick a point pi

in the interior of each Li in such a way that the x-coordinates x1, . . . , xn

of pi, . . . , pn are all different. Assume without loss of generality that x1 <

, . . . , < xn. For each Li, choose a segment L′

i contained in it and centered at
pi in such a way that L′

1, . . . , L
′

n have disjoint projections on the x-axis. Let
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us consider now the sequence of slopes of L′

1, . . . , L
′

n. Then by Theorem 4.3.2
this sequence contains an increasing or decreasing subsequence with at least√

n elements. Our result now follows from Lemma 4.3.1.

4.4 Excercises

Ex. 4.1 Prove that any family of n isothetic line segments, i.e. parallel
to the x- or y-axis, can be illuminated with at most b n+1

2 c guards.
Hint: Enclose the segments within a rectangle and then partition it
into n + 1 rectangles. Now use Tutte’s Theorem. Be careful, in this
case we cannot assume that all adjacent faces are connected in the dual
graph!

Ex. 4.2 (Jennings and Lenhart [80] Prove that any family F of n disjoint
line segments always has a subset S with at most b n

2 c elements such
that every element in F is in S or is visible from at least one point on
an element in S. The bound is tight.

Ex. 4.3 Prove Theorem 4.3.2. Hint: Let π = {p1, . . . , pn} be a sequence
of numbers. Associate to each pi a point on the plane with integer
coordinates (ai, bi) such that ai is the length of the longest increasing
subsequence of elements of π that ends in pi, and bi is the lenght of
the longest decreasing subsequence of π that starts at pi. Show that if
i 6= j then (ai, bi) 6= (aj , bj). Conclude from this that for some i, ai or
bi is at least

√
n .

Ex. 4.4 (Boenke and Shermer [104])Show that if we place n disjoint line
segments on the plane, and we restrict our guards to be located only
within our line segments, then n guards are always sufficient, and
ocassionally necessary to guard the plane.



Chapter 5

Floodlight illumination

problems

In the previous chapters, we have assumed that the light sources emit light
in all directions, or that the guards can patrol around themselves in all di-
rections. We now present an illumination problem in which the light sources
have a restricted angle of illumination. We call such light sources floodlights.
Thus for the rest of this paper, a floodlight fi is a source of light located at
a point p of the plane, called its apex; fi illuminates only within a positive
angle of illumination αi, and can be rotated around its apex. We start by
study the following problem due to J. Urrutia:

Problem 5.0.1 The 3-floodlight illumination problem: Let α1 +α2 +
α3 = π and consider any convex polygon P . Can we place three floodlights
of sizes at most α1, α2, α3, no more than one per vertex, in such a way that
P is completely illuminated?

We now show that the Three Floodlight Illumination Problem always has
a positive solution. Clearly our result is true if P has 3 vertices. Consider any
convex polygon P with at least four vertices and suppose that α1 ≤ α2 ≤ α3.
Notice first that α2 < π

2 and that since P has at least four vertices, the
interior angle at one vertex v of P is at least π

2 . Find a triangle T with
internal angles α1, α2, and α3 such that the vertex of T with angle α2 lies
on v, and the other vertices of T lie on two points x and y on the boundary of
P . Suppose that x and y lie on different edges, say e1 and e3 of P . (The case
when they lie on the same edge will be left to the reader.) See Figure 5.1.

Place a floodlight f2 with angle of illumination α2 at v, illuminating T .
Consider the circle C passing through the vertices of T . It is easy to see

53
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Figure 5.1: Illustration of proof of the Three Floodlight Problem.

that at least one vertex of each of e1 and e3 is not contained in the interior
of C. Let u and w be these end points. Two cases arise:

1. u 6= w. Place floodlights f1 and f3 at u and w illuminating the an-
gular region determined by v, u, x and v, w, y. Since u and w are not
contained in the interior of C, the angles of illumination of f1 and f3

are at most α1 and α3 respectively. Since f1, f2, and f3 illuminate P ,
our result follows.

2. u = w. By considering the tangents to C at x and y it is easy to verify
that the angle α of P at u is at most π − 2α2 which is less than or
equal to α3 = π − (α1 + α2). Place a floodlight of size α at u. This
illuminates P .

5.1 Illuminating the plane

We now study the following floodlight illumination problem of the plane
studied in [14]. Suppose we have four points p1, . . . , p4 on the plane and four
π
2 floodlights, one at each pi. Can we orient them in such a way that all of
the plane is illuminated? (We assume here that our lights cast no shadows.)
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To see that under these conditions the plane can always be illuminated,
consider a line that leaves two points on one side of it. Assume without loss
of generality that the line is parallel to the x-axis. It is easy to see now
that using the floodlights on top of l, we can illuminate the region below
it, and using the lights below l, we can illuminate the region above it, as in
Figure 5.2. It follows that the number of solutions to our plane illumination
problem is actually infinite!

Figure 5.2: Four π
2 floodlights suffice to illuminate the plane.

We now prove an interesting generalization of the previous result. Let
{α1, . . . , αn} be a set of angles such that each of them is at most π and
α1 + . . . αn = 2π. Consider a set of floodlights f1, . . . , fn such that the size
of fi is αi, i = 1, . . . , n.

Theorem 5.1.1 Let Pn be a collection of n points on the plane, and f1, . . . , fn

a set of floodlights of sizes {α1, . . . , αn} such that α1 + . . . + αn = 2π. Then
we can locate all our floodlights, one per element of Pn and point them in
such a way that the plane is completely illuminated.

Some preliminary results will be needed to prove our result. They are
of interest in their own right. Suppose that we have three angles α1, α2, α3

such that their sum is 2π, and each of them is at most π. Consider any point
set Pn with n points, and three integers n1, n2, n3 such that n1+n2+n3 = n.
We now prove:

Theorem 5.1.2 There is a point p such that the plane can be split into
three infinite angular regions by three rays emanating from p such that the
angles between the rays are α1, α2, α3 and the region with angle αi contains
exactly ni elements of Pn in its interior.
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Proof: Choose the three directions 0, α1, and α1 + α2, and assume
without loss of generality that the angle of inclination of any line connecting
two elements of P is not 0, α1, or α1 + α2. If an element q of P is such
that the three rays emanating from it at angles 0, α1, and α1 +α2 partition
the plane in three regions that contain i, j,and k elements such that two of
these values are equal to n1, n2, or n3 in this order, say i = n1, j = n2, then
by choosing p slightly above q our result follows. Assume then that this is
not the case.

Assign to each point with coordinates (x, y) the vector (i, j, k) in which
i is the number of elements q of Pn with the property that the direction d of
the line connecting p to (x, y) is 0 ≤ d < α1. The integer j is the number of
elements of Pn with α1 ≤ d < α1 +α2, and k = n− (i+ j). If (x, y) is in Pn,
it will be considered to belong to the region bounded by the rays emanating
from it with directions α1 + α2 and 2π.

Figure 5.3: Finding a partitioning of the plane for n = 11, n1 = 2, n2 = 6,
and n3 = 3, α1 = 3π

4 , and alpha2 = π
2 The solution appears in thick lines.

We observe now that for each y we can choose x large enough that
(i, j, k) = (0, n, 0). As x decreases in value and y remains constant, the
second coordinate of (i, j, k) decreases one by one until it becomes n2. Let
f(y) be the value such that if x < f(y), then j < n2. It is easy to verify that
the function defined by (f(y), y) is a piecewise continuous linear function.
Moreover if we choose y0 small enough, then for the point (f(y0), y0) we
have that (i, j, k) = (n − n2, n2, 0) and that for y1 large enough, we have
(i, j, k) = (0, n2, n− n2). It now follows that by increasing y0 continuously,
the value of the first coordinate of (i, j, k) decreases one by one, until it
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reaches the value n3; see Figure 5.3. Our result follows.

Let α ≤ π. An α-wedge of the plane is a region W bounded by two
rays emanating from a point p, called the apex of W , such that the angle
between the rays generating W is α; α is called the size of W . We define
W−1 to be the wedge with apex at p but generated by rays emanating from
p in opposite directions from those that generated W ; see Figure 5.4.

L'

L 1

L
2

Figure 5.4: Illuminating a wedge.

We now prove:

Lemma 5.1.1 Consider an α wedge W , and set of floodlights with sizes
{α1, . . . , αm} such that α1 + . . . +αm = α, and a set of points Pm contained
in W−1. Then we can always illuminate W by placing a floodlight at each
element of Pm.

Proof: Our result is clearly true if m = 1. Suppose then that m > 1.
Suppose that W and W−1 are opposite regions bounded by two lines L1

and L2 that intersect at a point p, and that W is above L1 as shown in
Figure 5.4. Consider a line L′ that intersects L1 at an angle α1, contains
exactly one point q of Pm, and all the remaining elements of Pm lie on or
above L′. Notice that L′ and L1 define a wedge W1 of size α1 such that q

belongs to W ′

1. W1 can now be illuminated from q using a floodlight of size
α1. Notice now that L′ also defines with l2, a wedge W” of size α−α1, and
all the elements of Pm−q lie on W ′′−1. By induction, we can now illuminate
W ′′−1 with the floodlights of sizes α2, . . . , αm, and our result follows.
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We are ready to prove Theorem 5.1.1. Partition our set of floodlights into
three sets F1 = {f1, . . . , fi}, F2 = {fi+1, . . . , fj} and F3 = {fj+1, . . . , fn}
such that β1 = α1 + . . . + αi, β2 = αi+1 + . . . + αj and β3 = αj+1 + . . . + αn

are all less than π. Let n1 = i, n2 = j−i, and n3 = n−j. By Theorem 5.1.2,
we can partition the plane into 3 wedges W1, W2 and W3 of sizes β1, β2

and β3 such that each of them contains exactly n1, n2 and n3 points. By
Lemma 5.1.1, we can now illuminate W−1

1 , W−1
2 and W−1

3 by using the
points in Wi, and using the floodlights at Fi, we can illuminate W−1

i , i =
1, . . . , 3. However W−1

1 ∪W−1
2 ∪W−1

3 covers the plane!

5.2 Illumination of stages

We now study the following problem introduced by J. Urrutia [14] in 1990.
Suppose that we are testing the set of stage lights of a new theater, with a
number of stage lights. The Stage illumination problem, consists in deter-
mining if the set of stage lights of the theater are enough to illuminate all of
the stage at once. In mathematical terms we cast this problem as follows:

L L

Figure 5.5: The stage illumination problem.

Suppose we have a line segment, representing the stage of a theater,
and a set of stage lights, modeled by floodlights. Is it possible to point our
floodlights in such a way that the line segment is completely illuminated?
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The existence of an efficient algorithm to solve the stage illumination
problem remains open. We now proceed to solve a problem that at first
appears harder:

Given a set F = {f1, . . . , fn} of floodlights each with angle αi, i =
1, . . . , n we can associate to F an angular cost equal to α1 + . . . + αn. We
now solve the following problem:

Optimal floodlight illumination of stages Consider a stage, represented
by a line segment S and a set P = {p1, . . . , pn} of n points. Determine a
set of floodlights F that illuminates S such that the angular cost of F is
minimized and the apex of each floodlight fi ∈ F is located at some point
pj ∈ P .

We point out here that we will allow for more than one floodlight to be
located at each point of P . Moreover, we assume that each floodlight has
size strictly greater than 0. Interestingly enough, our solution is such that
only at one point in P we may place two lights; at the other points we place
one or no light at all.

5.2.1 Illuminating the real line

Our first step consists in solving the problem of illuminating the real line
using floodlights placed on the elements of a point set P = {p1, . . . , pn}.
To make our presentation easier, we will assume that all of our points have
different y-coordinates. This restriction can be easily taken care of.

We study now the problem of illuminating the real line using only two
points pi and pj . Assume that pi is lower than pj. Consider the two circles
tangent to the real line and containing pi and pj, and let their intersection
points with the real line be labelled xi,j and yi,j in such a way that xi,j <

yi, j; see Figure 5.6(a).

We now prove:

Lemma 5.2.1 In the optimal floodlight illumination of the real line L from
{pi, pj} all points in the interval [xi,j , yi,j] are illuminated from pj, and all
points in the intervals (∞, xi,j ] and [yi,j,∞) are illuminated from pi.

Proof: Suppose that in an optimal illumination of the real line with a
set of floodlights F , an interval with endpoints a < b contained to the left of
xi,j is illuminated by a small floodlight f at pj. Consider the circle passing
through a, b and pj. It is easy to see that this circle leaves pi outside, and
thus the angle a, pi, b is smaller than the angle a, pj , b. Thus if we substitute
f by a floodlight f ′ at pi we obtain a set of lights that illuminates the real line
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Figure 5.6: Illuminating the real line from two points.

with smaller weight than that of F , which is a contradiction. In now follows
that all the points to the left of xi,j are illuminated from pj . Similarly we
can conclude that the interval [xi,j, yi,j] is illuminated from pj and [yi,j,∞)
is illuminated from pi, see Figure 5.6.

Next we prove:

Lemma 5.2.2 Let P = {p1, . . . , pn} be a collection of points, and pi a point
in the interior of the convex hull of P . Then in any optimal illumination of
the real line with floodlights at points of P , there is no floodlight located at
pi.

Proof: Suppose that pi is an interior point of the convex hull of P , and
that there is an optimal illumination of the real line in which a floodlight fi

placed at pi illuminates an interval, say [x, y]. Consider the smallest disk D

containing x, y and all of the elements of P , see Figure 5.7.

Let pj be a point of P located in t he boundary of D. Since pi is in the
interior of the convex hull of P , pi 6= pj ; moreover pi belongs to the interior
of D. Therefore the angle x, pi, y is greater than angle x, pj, y. Thus we
could substitute the floodlight at pi that illuminates the interval [x, y] by a
smaller one placed at pj that illuminates the same interval . This contradicts
our assumption on the optimality of F .

The following corollary now follows:
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p
i

p
j

x y

Figure 5.7: Only points in the convex hull are useful.

Corollary 5.2.1 Consider an optimal floodlight illumination of the real line
wit a set of floodlights F on a set of points P . Then if a point x is illuminated
by a floodlight of F located at a point pi of P , the disk circle C tangent to
the real line and containing pi contains all of the elements of P .

It now follows that the optimal solution to the floodlight illumination
problem of the real line can be obtained as follows: Consider the leftmost
point yi,j generated by all pairs of points in the convex hull of P , and obtain
the circle tangent to the real line and passing throuh pi and pj. Slide to the
left a point p initially located at yi,j. While we move p to the left, maintain
a circle C tangent to the real line at p, and tangent to the convex hull of
P . For any position of p, the vertex pk on the convex hull of P and C,
is the point were the floodlight that will illuminate p must be located, see
Figure 5.8. Notice that at a finite set of positions of p, C will contain two
points in the convex hull of P . These points correspond to the beginning
and ending of the intervals to be illuminated by the elements of P , this
situation is illustrated in Figure 5.8.

we now proceed to develop an algorithm to solve our floodlight illumi-
nation problem:

Algorithm 5.2.1 FLIP

Input : A set P = {p1, . . . , pn} of n points on the plane with positive y-
coordinates, and the real line L.

Output : A partitioning of the lines into a sequence of at most n + 1
intervals, each assigned to a point of P from where that interval is to
be illuminated.
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Figure 5.8: Optimal illumination of the real line.

1. Calculate the convex hull of P . Relabel the vertices of the convex hull
of P in the clockwise direction by {p1, . . . , pk} where p1 is the point of
P closest to L and k is the number of vertices in the convex hull of P .

2. Determine the point y = y1,i which is the rightmost point in {y1,j; j =
2, ..., n}. Illuminate all of the points in the interval [y,∞) from p1.

While i1 do:

(a) Find the smallest index j > i (or take j = 1 if no such j exists)
such that the disk D defined by the circle tangent to L containing
pi and pj contains all the elements of P . Let x be the point in
which C is tangent to L.

(b) Illuminate the interval [x, y] from pi.

(c) i← j , y ← x

EndWhile

3. : Illuminate the interval (−∞, y] from p1. Stop
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For example in Figure 4, y initially takes the value y1,2, and i the value
2. In the next iteration, y changes to y2,4 and i to 4. Notice that even
though p3 is a vertex in the convex hull of P = {p1, . . . , p6}, no interval is
illuminated by p3. This happens because the circle tangent to L through
p2 and p3 does not contain p4, and in the execution of our While loop for
i = 2, j skips the value 3. The subsequent values for y are x5,4 and x1,5 and
the values for i are 5 and 1 respectively. Thus all the points in the intervals
(−∞, x1,5] and [y1,2,∞) are illuminated from p1, and [y2,4, y1,2], [x5,4, y2,4]
and [x1,5, x5,4] are illuminated from p2, p4 and p5 respectively.

5.3 Floodlight illumination of polygons

Let us consider a polygon P with n vertices. Observe that if we are allowed
to place n − 2 floodlights of size π

3 at the vertices of P , we can always do
so in such a way that P is completely illuminated. This follows from the
observation that any triangulation of P has n−2 triangles, each of which in
turn has an internal angle of size at most π

3 . Observe, however, that using
this rule to illuminate P , we may place more than one floodlight at some
vertices of P . If we allow a floodlight of size at most π at each vertex, we
can indeed illuminate all of P . If P is a triangle, we can illuminate it by
placing a floodlight at any of its vertices of size at most π. Suppose then
that P has more than 3 vertices. Take any triangulation T of P , choose an
ear e of T . Let v be the vertex of e of degree 2 in T . Place a floodlight
of size equal to the internal angle of P at v. Delete v and by an inductive
argument we can illuminate P − v. Our result follows.

A natural question now arises: is it possible to illuminate any polygon
by placing at each vertex of P at most one floodlight of size at most α for
some α < π? We will now prove that for arbitrary polygons, the answer to
this question is, surprisingly, no. We now prove:

Theorem 5.3.1 For any ε > 0 there is a polygon P that cannot be illumi-
nated by placing at most one floodlight of size π − ε at each of its vertices.

Proof: We will prove our result only for orthogonal floodlights. The
proof presented here is due to O’Rourke and Xu [105]. The full result follows
easily from the ideas presented here, and is left as an exercise. The interested
reader can find the complete proof in [49]. Consider the symmetric polygon
P shown in Figure 5.9. Divide P into a left and right section by cutting it
along a vertical through vertex v. Notice that all the convex internal angles
at the vertices of P are slightly bigger than π

2 . Label the vertices of P as
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shown in Figure 5.9 and notice that the extensions l2, l1 of the edges of P

connecting v2 to r2, and v1 to r1, respectively are such that l2 hits the base
of P to the left of the point at which l1 hits it.

v'
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r'2
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Figure 5.9: A polygon that cannot be illuminated by placing an orthogonal
floodlight at each vertex.

We now show that P cannot be illuminated by placing an orthogonal
floodlight at each of its vertices. The orthogonal floodlight at v illuminates
vertices in L or R, but not both. Assume without loss of generality that this
light illuminates vertices in L. Since the internal angle at v2 is bigger than
π
2 the only way we can illuminate all the points in a small neighborhood of
v2 is by using the floodlights at v2 and r2. Similarly to illuminate all the
points in a small neighborhood of v1, we need the lights at v1 and r1. Notice,
however, that this will prevent the floodlights at r1 and r2 from pointing
towards v0. It now follows that all the points in a small neighborhood of v0

have to be illuminated using only the floodlight at v0. Notice that this is
impossible, since the internal angle of P at v0 is greater than π

2 . Our result
now follows.

The following problem arises naturally from the above result:

How many π-floodlights are always sufficient to illuminate any
polygon with n vertices?

F. Santos has produced a family of polygons with 5n + 1 vertices that
require 3n vertex π floodlights to illuminate them; see Figure 5.10. We now
conjecture:

Conjecture 5.3.1 b 3n−3
5 c π vertex floodlights are always sufficient and oc-

casionally necessary to illuminate any polygon with n vertices.
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Figure 5.10: A family of polygons with 5n + 1 vertices that require 3n π

vertex floodlights.

5.4 Orthogonal polygons

We now turn our attention to the study of the illumination of orthogonal
polygons with vertex floodlights. A floodlight of size π

4 will be called an
orthogonal floodlight. We now prove:

Theorem 5.4.1 Any orthogonal polygon P with n vertices can be illumi-
nated with at most b 3n−4

8 c orthogonal vertex floodlights.

Proof: We start by proving that P can be illuminated by choosing a
set of orthogonal floodlights according to the following rule, which we call
the top-left illumination rule:

Top-left illumination rule:

1. At the top vertex of every left edge of P place an orthogonal floodlight
illuminating the set of directions between 3π

4 and 2π.

2. At the left vertex of every top edge of P again place an orthogonal
floodlight illuminating the set of directions between 3π

4 and 2π.

To see that the set of floodlights chosen by the top-left illumination rule
illuminates P , choose any point q in P . Consider the longest horizontal line
segment h passing by q, totally contained in P . Slide h upwards until it hits
a top edge of P or it reaches the top vertex of the edge of P containing the
left end point of h. In the former case, there is a floodlight at this vertex
that illuminates q. Suppose then that h hits a top edge e of P . Notice that
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Figure 5.11: Illuminating an orthogonal polygon with orthogonal floodlights.

by our illumination rule, we have a floodlight at the left vertex of e, and this
floodlight illuminates q; see Figure 5.11.

In a similar way, we can define the top-right, bottom-right, and bottom-
left illumination rules, each of which illuminates P . Moreover, if we use the
four illumination rules simultaneously, we will place exactly two floodlights
at each reflex vertex, and one at each convex vertex. Thus if P has r

reflex vertices, the total number m of floodlights used by our four rules
is 2r + (n − r). By Lemma 2.2.1 r = n−4

2 , and thus we have that m =
2n−4

2 + n+4
2 = 3n−4

2 . It now follows that one of our illumination rules has at
most b3n−4

8 c floodlights.

The polygon P12 shown in Figure 5.12(a) has 12 vertices and requires

4 = 3(12)−4
8 orthogonal vertex floodlights. If we now paste copies of this

polygon as shown in the same figure, we can generate a family of polygons
with 12 + 8k vertices, each of which requires 4 + 3k vertex floodlights. Our
result now follows.

We now show that π
2 is essential in our previous result, i.e. we prove:

Theorem 5.4.2 For any ε > 0 there is an orthogonal polygon that cannot
be illuminated with π

2 − ε vertex floodlights.
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P12

Figure 5.12: A family of polygons that requires b 3n−4
8 c orthogonal vertex

floodlights.

Proof: For any ε > 0 construct an orthogonal polygon with 12 vertices
consisting of a square S with four long rectangles R1, . . . , R4 attached to
it as shown in Figure 5.13. Label the vertices of P as shown in the same
figure. It is easy to see that P can be constructed in such a way that the
following conditions hold:

1. The angle ui, v − i, ri is greater than π
2 − ε, i = 0, . . . , 3.

2. The angle p, ri, ri+1 is greater than π
2 − ε, i = 0, . . . , 3 addition taken

mod4.

Under these conditions, we can verify that the π
2 − ε floodlights at ui

and vi cannot illuminate all of Ri, i = 0, . . . , 3 To complete the illumination
of each Ri, we must then use a floodlight placed at a reflex vertex of P ,
i = 0, . . . , 3. It now follows that the point p at the center of S is not
illuminated.

5.5 The two floodlight illumination problem

In this section we study the following problem: Given a convex polygon P

with n vertices, find two floodlights of sizes α1 and α2 that illuminate P and
their locations such that α1 + α2 is minimized.

Consider two points a and b on the boundary of a polygon P , not nec-
essarily vertices of P . The vertex interval (a, b) is defined to be the set of
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Figure 5.13: An orthogonal polygon that cannot be illuminated with or-
thogonal vertex floodlights.

vertices of P that we meet when we move in the clockwise direction on the
boundary of P from a to b. For short, we will refer to the interval (a, b)
rather than to the vertex interval (a, b). Notice that (a, b)
neq(b, a). In particular, when a and b are interior points of edges of p,
(a, b)∪ (b, a) is the set of vertices of P . A pair of floodlights F1 and F2 that
illuminates a polygon P will be called a floodlight illuminating pair and will
be called a FLIP of P . If F1 and F2 are such that the sum of their apertures
is minimized, we call them an optimal FLIP.

We call F1, F2 an opposite FLIP if the intersection of the regions illumi-
nated by F1 and F2 is a quadrilateral with all of its vertices on the boundary
of P , see Figure 5.14(a). If the interior of the regions illuminated by a FLIP
F1 andF2 are disjoint, we call F1, F2 a dividing FLIP, see Figure 5.14(b).
Observe that an optimal FLIP must be either an opposite FLIP or a dividing
FLIP.

We now prove:

Lemma 5.5.1 Let F1, F2 be an optimal FLIP of a polygon P . Then the
apexes of F1 and F2 are located at vertices of P .

Proof: Suppose that F1, F2 form an optimal FLIP. Two cases arise:

(a) F1 and F2 form an opposite FLIP with apexes at q and r such that
r is not a vertex of P . Let x, r, y, q be the vertices of the intersection of the
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Figure 5.14: An opposite and a dividing FLIP.

areas illuminated by F1 and F2. Consider the circle C(x, y, p) that passes
through x, y and a vertex p of P such that C(x, y, p) contains all the vertices
of the interval (x, y) of P . Notice that the angle spanned by p and the line
segment joining x to y is smaller than that spanned by r and the same
segment. Therefore if we replace F2 by a floodlight F3 with apex in p and
illuminating the angular sector determined by x, p, and y, F1 and F3 also
illuminate P and the sum of their sizes is smaller than that of F1 and F2,
see Figure 5.15(a).

p

q

x

y

r

(a) (b)

Figure 5.15: The vertices of an optimal FLIP must lie on vertices of P .

b) F1and F2 form a partitioning pair Figure 5.15(b). We can easily verify
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that in this case, we can slide the apex of F1 and F2 towards two vertices of
P such that the sum of the sizes of F1 andF2 decrease.

Suppose now that we want to find a FLIP F1 and F2 of a polygon P in
such a way that their apexes are located on two fixed vertices p and q of P ,
and the sum of the sizes of F1 and F2 is minimized. Call such a FLIP an
optimal (p, q)− FLIP . We now show:

Lemma 5.5.2 Given two vertices p and q of P , we can find an opposite
optimal (p, q)− FLIP in linear time.

Proof: Our objective here is to find two points, x and y, on the boundary
of p such that the sum of the angles α = ypx and β = xqy is minimized.
Consider the angles γ and δ formed by pxq and qyp as in Figure 5.16(a).

p

q

x

y

α
β

δ

γ

p

q
x

(a) (b)

Figure 5.16: Finding an optimal (p, q)− FLIP .

We now observe that minimizing α + β is equivalent to maximizing γ +
δ. However, the maximization of γ + δ can be achieved by maximizing
independently γ and δ! Thus all we need to do is to locate for each edge
e of the chain of edges of P from p to q the point re on e that maximizes
the angle preq, and keep the point re wich maximizes γ. Clearly this can
be done in constant time per edge, and x can be found in linear time. The
same procedure is applied to find y.

The previous Lemma, provides an O(n3) algorithm to find the optimal
FLIP. To reduce the complexity of our algorithm to O(n2), we need to
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provide a criterion to reduce the number of pairs of vertices of P that can
be apexes of an optimal opposite FLIP. Consider the set D of all diagonals
of P joining all pairs of vertices of P with the property that there is a
circle through their endpoints that contains P . Under our general circular
position on the vertices of P , it is easy to see that the elements of D induce
a triangulation T (P ) of P , see Figure 5.17(a). Using standard techniques
for calculating Voronoi Diagrams of convex polygons, D and T (P ) can be
found in linear time [4].

A subset of three vertices {u, v, w} of the vertex set of p is called a c −
triple if {u, v, w} is the set of vertices of a triangle of T (P ). By the definition
of T (P ), it follows that the circle C(u, v, w) determined by {u, v, w} contains
P . Under our general position assumption, the number of c − triples of P

is exactly n − 2. We say that two c − triples {u, v, w} and {x, y, z} are
adjacent if they share two common elements. If {u, v, w} and {u, v, x} are
two adjacent c − triples, The vertices w and x will be called the antipodal
vertices of {u, v, w} and {u, v, x}.

Given two vertices p and q of P , we say that a c−triple {r, s, t} separates
them if p and q are both different from r, s, and t and when we traverse the
boundary of p from p to q (and from q to p) in the clockwise order, we meet
either one of r, s or t before we meet q (resp. p), see Figure 5.17(b).

Lemma 5.5.3 If two vertices p and q of a polygon P are apexes of an
optimal FLIP, then there is no c− triple that separates them.

Proof: Suppose there is a c − triple that separates p and q, and that
there is an optimal opposing FLIP F1, F2 of P with apexes at p and q, see
Figure 5.17(b). Suppose further that F1 and F2 meet at two points x and y

in the interior of two edges of P . As in the proof of Lemma 5.5.1, the circle
through x, y and q contains in its interior all of the vertices of P between
x and y in the clockwise direction, except for q itself, see Figure 5.17(b).
Similarly for the circle trough y, p and x. However, this will force one of
these circles has to intersect the circle through r, s and t at least four times,
which is impossible.

Corollary 5.5.1 Let p and q, be the apexes of an optimal FLIP. Then p

and q form an antipodal pair of vertices of two adjacent c− triples, or there
is a circle through p and q containingP .

We are now ready to give our algorithm O-FLIP to obtain an optimal
floodlight illumination pair of a polygon.
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(a) (b)

Figure 5.17: A polygon, and its corresponding T (P ). The c− triple {r, s, t}
separates pand q .

Algorithm 5.5.1 O-FLIP Input a polygon P with n vertices.

1. Find T (P ), and all c− triples of P .

2. Find the set S of all pairs of vertices of P that are antipodal pairs, or
adjecent in T (P ).

3. For each pair of p and q in S, find an optimal opposite (p, q)−FLIP .

4. For each pair of vertices p and q of P find in constant time the parti-
tioning pair of floodlights F1, F2 with apexes at p and q that illuminate
P and minimizes the sum of the sizes of F1 and F2.

Output the FLIP of minimum weight identified in Steps 3 and 4.

We now have:

Theorem 5.5.1 Given a convex polygon P with n vertices in general posi-
tion, O-FLIP finds an optimal FLIP in O(n2) time.
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Proof: Steps 1 and 2 can be carried out in linear time. Step 3 requires
O(n2) time, since there are at most n−2 antipodal pairs and 2n−3 edges in
T (P ). Solving each of them requires O(n) time. In Step 4, we need to test
all pairs of vertices p and q of P . However, for every of these pairs, there
are exactly two partitioning FLIP’s, and the complexity of Step 4 is O(n2)
.

5.6 Exercises

1. Suppose that we associate to each vertex v of P a weight equal to the
size of the internal angle of P at v. Show that we can always choose a
set of vertices of P such that they illuminate P and the sum of their
weights is at most (n−2)π

3 . Show that this bound is tight.

2. Show that Theorem 5.1.2 still holds if we remove the condition that
α1, α2 and α3 are less than or equal to π.

3. Prove that Theorem 5.1.1 is not true if we remove the condition that
the floodlights are of size at most π!

4. A polygon P is called co-circular if all the vertices of P lie on a cir-
cle. Show that the two-floodlight illumination problem for cocircular
polygons can be solved in linear time.
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Chapter 6

Moving guards

In the previous chapters, we studied problems daling with stationary guards,
i.e. guards stationed at some fixed location. In this chapter we will study
guarding problems in which our guards are represented by points that are
allowed to move within a polygon.

We start with the following problem introduced by Suzuki and Ya-
mashita, called by T. Shermer The Hunter’s Problem. In this problem,
we have a set of hunters and a prey that are allowed to move freely within
a polygon. The hunters move with a bounded velocity, and the prey moves
with unbounded velocity.

Our objective is to decide if there is a strategy that the hunters can follow
to catch the prey. The prey is considered caught if it comes within sight of
a hunter. A polygon P is k-searchable if k hunters are always sufficient to
catch any prey in P . It follows easily from Theorem 2.1.1 that every polygon
is bn3 c-searchable. This bound however is not tight, Urrutia proved:

Theorem 6.0.1 O(lnn) hunters are always sufficient, and occasionally nec-
essary to catch a prey in any polygon with n vertices.

Proof: Let f(n) be the minimum number of hunters needed to catch a
prey in an n vertex polygon P . We now show that f(n) ≤ f( 2n

3 ) + 1. This
will prove our result. We start by first finding a diagonal joining two vertices
of P that cuts it into two subpolygons P1 and P2, each of size at most 2n

3 .
It is well known that such a diagonal always exists. Station a hunter at an
endpoint of this diagonal. This will ensure that no prey can go from P1 to
P2. Next scan P1 first, and then P2. This can be accomplished with at most
f(2n

3 ) hunters. Our result now follows. A family of polygons that require
O(lnn) hunters can be obtained from a binary search tree T as follows: first
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draw T on the plane without crossing edges, and then substitute a sequence
of three narrow corridors for each edge of T as in Figure 6.1.

Figure 6.1: A binary polygon.

The problem of deciding if a polygon is k-searchable seems to be difficult,
even for small values of k. Suzuki and Yamashita studied the problem of
deciding if a simple polygon is 1-searchable. They were able to give some
sufficient or necessary conditions for a polygon to be 1-searchable, but failed
to provide a full characterization of these polygons. Three points x1, x2, and
x3 of P are called an asteroidal triple if they are such that the shortest path
between xi and xj is not visible from any point visible from xk; i, j, k ∈
{1, 2, 3}, i 6= j 6= k. For example in the polygon in Figure 6.2, x1, x2, and
x3 form an asteroidal triple. Moreover, it is easy to verify that this polygon
is not 1-searchable. Suzuki and Yamashita [123] proved:

Theorem 6.0.2 A polygon P that contains an asteroidal triple is not 1-
searchable.

The proof of this result is left as an exercise.

6.0.1 Lazy guards

The following problem involving moving guards was introduced by Colley,
Meijer and Rappaport:

Problem 6.0.1 The lazy guard problem: Given a simple polygon P , choose
the minimum number of stations (points) in P such that a moving guard that
visits all the stations guards P , i.e. while traveling to visit all the stations,
every point in P will, at some point in time, be visible to our guard.
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x 1

x 3

x 2

Figure 6.2: A 2-searchable polygon.

Since our guard wants to minimize the distance walked, we will assume
that while traveling from one station to the next, he will choose the shortest
path connecting them. The motivation for introducing stations is that if
we want to make sure a guard patrols a polygon, the easiest way to do so
is to place a few check-in stations such that if the guard visits them, P is
guarded. In Figure 6.3 we show a polygon that needs three stations.

We now prove:

Theorem 6.0.3 The lazy guard problem can be solved in linear time.

We begin by proving the following result:

Lemma 6.0.1 Let S be a set of k stations such that if a guard visits them
in a given order, it guards P . Then if we visit the elements of S in any
order, P is also guarded.

Proof: Suppose that P is guarded while visiting the elements of S

in a specific order. Let p and q be two elements of S that are visited in
consecutive order, and r any point in P visible from some point x in the
shortest path from p to q. Take the longest line segment L containing r and
x contained in P . This will cut P into two subpolygons, one containing p
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Figure 6.3: Three stations suffice to guard this polygon.

and the other containing q. Then if we visit the elements of S in any other
order, say first p and then q, at some point we must cross L, and thus r is
guarded.

It is easy to see now that we can without loss of generality assume that
the stations are visited starting and ending at the same station along the
shortest circuit connecting them. This circuit defines a perhaps degenerate
polygon PS that may consist of the union of several simple polygons and
line segments connecting them. We refer to this as the guards polygon.

We now prove:

Lemma 6.0.2 If a polygon is guardable using k stations, it can also be
guarded with k stations located on the boundary of P .

Proof: The case k = 2 is easy. Let us assume then that k ≥ 3, and
suppose that we have a set S of k stations such that when we visit them, we
guard P . Let s be a station in S not located on the boundary of P . Suppose
that s is adjacent to two vertices s1 and s2 in PS . Consider the bisector of
the external angle of PS defined by s1, s, and s2, and extend it until it hits
the boundary of P at a point s′. Let S′ = S − {s} ∪ {s′}. We now prove
that if we visit all the stations in S ′ we guard P . We notice first that PS′

contains PS . It now follows that if a point is visible from some point in PS it
is also visible from a point in PS′ . To finish our proof, we continue replacing
the elements of S until all stations are on the boundary of P .
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Consider a reflex vertex v of P , and let v− and v+ be the clockwise and
counter-clockwise vertices of P adjacent ot v. Let r(v+) and r(v−) be the
points at which the rays starting at v+ and v− which pass through v hit the
boundary of P ; see Figure 6.4. Let C(v, r−) be the segment of the boundary
of P traversed when moving from v to r(v+) in the clockwise direction along
the boundary of P . Similarly we define C(v−, v).

v

v -

v+

r(v  )-

r(v  )+

Figure 6.4: Finding C(v, v+) and C(v−, v).

We now prove:

Theorem 6.0.4 A set of stations on the boundary of P suffices to lazy
guard it if for every reflex vertex v of P , C(v, v+) and C(v−, v) contain an
element of S.

Proof: It is clear that if for some reflex vertex v of P no element of S is
located on C(v, v+) then v+ is not visible from PS , which is a contradiction.
Similarly for C(v−, v). The converse is obvious.

From Theorem 6.0.4 we can obtain the following algorithm to solve the
lazy guard problem:

Algorithm 6.0.1

1. For each reflex vertex of P compute C(v, v+) and C(v−, v).

2. Determine the smallest set of points S on the boundary of P such that
each C(v, v+) and C(v−, v) contains at least a point in S.
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Step 1 of our algorithm can be done in linear time; see [71]. Step 2
can also be solved in linear time by reducing it to the problem of finding a
minimum vertex cover of a circular arc graph, which is known to be solvable
in linear time [85], as follows:

Map the boundary of P to a circle C. Each C(v, v+) and C(v−, v) is in
turn mapped to an arc of our circle. Our problem is now reduced to that of
finding a minimum number of points on C that covers the arcs defined by
C(v, v+) and C(v−, v); v a reflex vertex of P .

Thus we have proved:

Theorem 6.0.5 An optimal placing of stations to lazy guard a polygon can
be found in linear time.

For polygons with holes, the situation changes drastically. The order in
which a set of stations is visited becomes relevant, and finding a minimum
set of stations to lazy guard a polygon becomes NP-complete.

We now show that lazy guarding a polygon with holes is NP-complete.
We use the following problem that is known to be NP-complete:

Problem 6.0.2 k-vertex cover of planar 3-regular graphs

INSTANCE: A planar graph G with maximum degree 3, and an integer
k.

QUESTION: Is there a set of vertices with k elements such that every
edge of G has an endpoint in S?

We now prove that the following problem is also NP-complete:

Problem 6.0.3 k-guarding of polygons with holes

INSTANCE: A polygon P possible with holes.

QUESTION: Is there a set of points in p of cardinality k that guards P?

Lemma 6.0.3 k-guarding of polygons with holes is NP-complete.

Proof: Take a planar graph G with maximum degree 3, and a plane
embedding of it in which its edges are represented by straight lines. We can
assume that no two edges of G are collinear. Slightly extend the line segment
representing each edge in both sides by a small amount, and substitute this
line segment by a thin rectangle r(e) with its longer side parallel to e. Finally
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Figure 6.5: Substituing edges in a planar graph.

add two small spikes aligned with e and of width ε. The objective of these
spikes is to ensure that any point that sees all of them belongs to r(e) or to
any of its the two spikes; see Figure 6.5. Let P be the union of all r(e) and
their spikes.

It is now easy to verify that a k-vertex cover of G generates a set of
points that guard the resulting polygon. On the other hand, let S be a set
of k points that guards P . If a point s in S guards points in more than one
rectangle r(e), these rectangles correspond to edges in G with a common
end-vertex v. Move s to the location of v. It now follows that the vertices
in which we place a guard correspond to a vertex cover of G.

We now show:

Theorem 6.0.6 Lazy guarding a polygon with k stations is NP -complete.

Proof: Take a planar graph with maximum degree 3, and an embedding
of it in which no edge is horizontal or vertical. Consider a set of n + 1 hor-
izontal line segments and two vertical ones such that the endpoints of each
horizontal line segment are on the vertical segments, and each horizontal
line segment, except for the bottom one, contain a vertex of G. Obtain from
G the polygon P as in the previous lemma, and substitute each horizontal
line segment by a narrow rectangle with a hook at each end, and the vertical
lines by two narrow rectangles as shown in Figure 6.6. Let Q be the union
of these polygons. We now prove that Q can be lazy guarded with 2n+k+2
stations iff G has a vertex covering of size k.

To cover the spikes of the horizontal rectangles, we need a station in each
of them, i.e. we need 2n + 2 stations. Suppose then that G has a vertex
cover of size k. Then by placing k stations at the positions corresponding
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to the vertices of the vertex cover of G, we get a set of 2n + 2 + k stations
that lazy guards Q.

Suppose now that Q is 2n + 2 + k lazy guardable, and that S is a set of
2n+2 + k stations that lazy guard P . To guard the spikes of the horizontal
rectangles of Q, we need 2n + 2 stations. Thus the remaining k stations
must be used to ensure that P is lazy guarded. Notice first that if a corridor
r(e) of Q is such that no station is located in r(e) or its spikes, then due to
the way we constructed Q, we can find a path connecting all the stations
of S that does not cover r(e), which is a contradiction. As in the previous
lemma, we can now move the k stations in S not used to guard hooks to
locations corresponding to vertices of G to obtain a k vertex cover of G. It
now follows that deciding if Q is lazy guardable with 2n + 2 + k stations is
equivalent to deciding if P is k guardable, which is NP-complete.

Figure 6.6: Constructing Q.

6.1 Exercises

1. Prove Theorem 6.0.2.

2. (Research problem) Characterize i-searchable polygons.



Chapter 7

Miscellaneous

In this chapter, we study variations of guarding or illumination problems
studied by several authors.

7.1 Guarding triangulations of point sets

Let Pn be a set of n points on the plane. A triangulation T of Pn is a
partitioning of the convex hull of Pn into a set of triangles with disjoint
interiors. The vertices of these triangles are elements of Pn, and each element
of Pn is a vertex of at least one triangle in T . The edges of T are the edges
of its triangles.

A set S of edges of T guards it if every triangle of T has a vertex that is
the end-vertex of an edge in S. A set H of vertices of T guards it if every
face of T has a vertex in H. We will prove the following results, proved by
Everett and Rivera-Campo [53], and Bose, Shermer, Toussaint and Zhu [16]
respectively:

Theorem 7.1.1 Any triangulation of a set of n points can be guarded with
at most bn

3 c edges.

Theorem 7.1.2 Any triangulation of a point set can be guarded with at
most bn2 c vertices. This bound is tight.

We notice first that the upper bound for Theorem 7.1.2 follows easily
from the Four Color Theorem; simply take a four-coloring of the vertices
of our triangulation, and by placing a guard at all the vertices of the two
smaller chromatic classes our triangulation is guarded. In fact the first proof
of Theorem 7.1.1 also used the Four Color Theorem. We now present a proof
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of both of these results that does not use the Four Color Theorem. This
proof is due to Bose, Kirkpatrick and Li [15]. Some preliminary results will
be needed. We first observe that our problems of guarding triangulations
of point sets can be reduced to that of guarding maximal planar graphs. If
the convex hull of our point set is a triangle, then any triangulation of our
point set yields a maximal planar graph, otherwise by adding extra edges
to the external face of the graph defined by our triangulation, we obtain a
maximal planar graph.

A graph is called k-regular if all of its vertices have degree k. We start
by proving the following well known result in Graph Theory:

Theorem 7.1.3 Every 2-connected planar 3-regular graph has a perfect
matching.

Proof: To prove our result, we will show that any 3-regular 2-connected
graph G satisfies Tutte’s Theorem 3.1.1. Let S be a set of vertices of G and
H an odd component of G − S. Since G is 3-regular and H has an odd
number of vertices, the number of edges joining vertices of H to vertices in
S has to be odd. However since G is 2-connected, there are at least 3 edges
connecting S to H. It now follows that Odd(G − S) ≤| S |.

A 2-coloring of a graph is called K3-free if it contains no triangle that is
monochromatic. We now prove:

Theorem 7.1.4 Every planar graph admits a K3-free 2-coloring.

Proof: We can assume that G is a maximal planar graph, otherwise
insert extra edges until it becomes a maximal planar graph. Let G∗ be the
dual graph of G, i.e. for each face of G, insert a vertex in G∗. Two vertices
in G∗ are adjacent if their corresponding triangular faces share an edge of
G. Notice that there is a one-to-one correspondence between the edges of
G and those of G∗. Since G is maximal, G∗ is a 3-regular and 2-connected
graph, and thus by Theorem 7.1.3 it has a perfect matching M . Delete from
G all the edges corresponding the the edges of G∗ in M . It is now easy to
see that all the faces of the remaining graph, call it H, are quadrilaterals,
and H is therefore bipartite, i.e. the vertices of H can be 2-colored in such
a way that no adjacent vertices receive the same color. It now follows that
this 2-coloring of H induces a K3-free coloring of G; see Figure 7.1.



7.1. GUARDING TRIANGULATIONS OF POINT SETS 85

1

21

2
2

1

Figure 7.1: Obtaining a K3-free coloring of a maximal planar graph.

We can now prove Theorem 7.1.2:

Proof: Take any K3 2-coloring of T . Clearly each chromatic class in
any such coloring guards T . Place a guard at each vertex in the smallest
chromatic class, and our result follows. To show that our bound is tight, we
generate a family of triangulations that require b n

2 c vertex guards as follows:
Let S1 be the seven vertex triangulation shown in Figure 7.2. S2, . . . , Sn are
now obtained by recursively replacing triangle x, y, z by a copy of S1. We
leave it to the reader to verify that Sk has 4k+3 vertices, and that it requires
2k + 1 guards; see Excercise 1.

The following will be needed to prove Theorem 7.1.1. Let G1 and G2 be
the subgraphs of G induced by the chromatic classes of our 2-coloring of G,
and let M1 and M2 be maximal matchings of G1 and G2 respectively.

Let us now choose two different sets S1 and S2 of edges of G that guard
G as follows:

S1 contains all the edges of M1 as well as an extra edge incident to each
unmatched vertex of G1. S2 is chosen in a similar way.

Next we show:

Lemma 7.1.1 M1 ∪M2 guard G.

Proof: Suppose that there is a triangle F of G that is not guarded by
M1 ∪M2. Then none of the vertices of this face is incident to any edge in
M1 or M2. Since we have a 2-coloring of G, two of the vertices of F receive
the same color, say color 1. This contradicts the assumption that M1 is
maximal.



86 CHAPTER 7. MISCELLANEOUS

x
y

z

Figure 7.2: S1 needs 3 guards to be guarded.

We are now ready to prove our main result:

Proof of Theorem 7.1.1: Notice that S1, S2 and M1∪M2 guard G. If
M1∪M2 has at most bn

3 c edges, we are done. Suppose then that |M1∪M2 |
is greater that bn

3 c. Notice that:
| S1 | = | V (G1) | − |M1 |

and
| S2 | = | V (G2) | − |M2 |

Moreover | V (G1) | + | V (G2) |=| V (G) |= n.
Then | S1 | + | S2 |=| V (G1) | + | V (G2) | −(|M1 | + |M2 |)
≤ n− bn3 c ≤ d2n

3 e.
It now follows that one of S1 or S2 has at most bn

3 celements.

An example of a triangulation with 13n− 12 vertices that needs 4n− 8
edge guards can be obtained as follows: Consider the graph H shown in
Figure 7.3. It is clear that for this triangulation we need two edges. Let T

be any maximal planar graph with n vertices. By Euler’s formula, T has
exactly 2n−4 triangular faces. Place a copy of H in the middle of each face
of T and retriangulate the resulting graph. The total number of vertices of
the resulting graph is n + 6(2n − 4). Since each copy of H needs two edge
guards, and no two copies of H can share an edge guard, we need at least
2(2n− 4) edge guards.

A plane graph H is a planar graph G together with an embedding of it
on the plane. An edge e and a face F of H are called incident if at least
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Figure 7.3: To guard H we need 2 edge guards.

one vertex of e lies on the boundary of F . A set S of edges of H guards it
if each face of H is incident to an edge of S. Notice that the proof of the
previous theorem does not apply to plane graphs; see exercise.

In a similar way, but now using the Four Color Theorem, we have [53]:

Theorem 7.1.5 Every plane graph H on n vertices can be guarded with
b2n

5 c edges.

Proof: Triangulate H and four-color the vertices of H. Let V1, V2, V3

and V4 be the chromatic clases of our four coloring of H. For 1 ≤ i < j ≤ 4
let Mi,j be a maximal matching of the subgraph of H induced by Vi ∪ Vj.
Let Ai,j be a set of edges defined as follows: Ai,j contains all the edges of
Mi,j plus choose an extra edge for each vertex of Vi∪Vj not covered by Mi,j.
Since each face of H must contain three vertices of different colors, it follows
that each Ai,j guards H. Moreover notice that M1,2 ∪M1,3 ∪M2,4 ∪M3,4 is
also a guarding set of H. However:

| A1,2 | + | A1,3 | + | A2,4 | + | A3,4 | + | M1,2 ∪M1,3 ∪M2,4 ∪M3,4 | =
2n.

It follows that at least one of these sets has at most b 2n
5 c edges.

From an algorithmic point of view, the proofs presented here for The-
orems 7.1.1 and 7.1.2 yield algorithms with complexity O(n

3n

2 ). To prove
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this, we notice that calculating the dual graph of a triangulation can be
done in linear time, finding its matching in O(n

3n

2 ); see [93]. Finding M1,

M2 again takes O(n
3n

2 ) time, and calculating and S1 and S2 can be done in
linear time. Thus we have:

Theorem 7.1.6 Finding an edge and a vertex guard sets of sises b n
3 c and

bn2 c respectively can be done in O(n
3n

2 )

An interesting open problem here is to find a proof of Theorem 7.1.5
that does not depend on the Four Color Theorem. It is easy to see that a
proof based on K3-free 2-colorings fails since M1 ∪M2 does not necessarily
guard a plane graph. On the other hand if all the faces of a plane graph are
odd, i.e. have an odd number of edges on their boundaries, the elements of
M1 ∪M2 guard it. The proof of this is left as an excercise.

7.2 Exercises

1. Verify that S1, . . . Sk, . . . as defined in Theorem 7.1.2 require 2K + 1
guards.

2. Prove that there are 2-connected plane graphs for which b n
3 c edges are

necessary to guard them.

3. Prove that any plane graph such that all its faces are odd can be
guarded with dn

3 c edges.
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[130] J. Urrutia. Iluminando poĺıgonos con reflectores. Actas VI Encuentro
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