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Optimizing an oriented convex hull with two directions
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Abstract

Given a set P of n points in the plane in general
position, we generalize the rectilinear convex hull
of P , RH(P ), to the O2

β-convex hull of P , denoted

byO2
βH(P ), where the directions of two oriented lines,

used as coordinate axes, form an angle β ∈ [0, π]. We
show: (i) How this hull can be computed and main-
tained while β changes in [0, π], and (ii) How to de-
termine the angle β for which O2

βH(P ) maximizes its
area or minimizes its perimeter. Our algorithms run
in optimal Θ(n log n) time and O(n) space.

1 Introduction

All the point sets P considered in this paper will be
assumed in general position and such that no two el-
ements of P lie on a horizontal line. Let Ok be a set
of k lines in the plane through a common point. A
region R in the plane is called Ok-convex if its inter-
section with any line parallel to one in Ok is either
empty or connected, see [4, 7].

Ottmann et al. [5] consider k = 2 with horizontal
and vertical lines, showing how to compute the so-
called rectilinear convex hull of P , denoted byRH(P ),
in optimal Θ(n log n) time and O(n) space. Rotating
the set of two lines makes RH(P ) change and the
rotation for which RH(P ) has minimum area was ob-
tained in [1], in optimal Θ(n log n) time and O(n)
space. See [2] for a generalization.

Here we also consider the case k = 2, with a set O2

composed of a horizontal line (oriented from left to
right) and a second line (oriented from bottom to
top) forming an angle β with the horizontal, see Fig-
ure 1 (left). Hence, we may denote O2 as O2

β .
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Following Ottmann [5], we define the O2
β-convex

hull of a point set P as the intersection of all the con-
nected supersets of P which are O2

β-convex, see Fig-

ure 1 (right). The O2
β-convex hull of a point set P will

be denoted as O2
βH(P ). In this paper we show algo-

rithms for: (i) Computing and maintaining O2
βH(P )

while β changes in [0, π], and (ii) finding an angle
β ∈ [0, π] such that the area of O2

βH(P ) is maximized

or the (non-zero) perimeter of O2
βH(P ) is minimized.

Our algorithms run in Θ(n log n) time andO(n) space.
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Figure 1: left: Example of O2. right: Example
of O2

βH(P ).

Let D = {0, β, π, π + β}. Consider two consecu-
tive elements o1 and o2 in D, in the counterclock-
wise order, and a point p on the plane. The stabbing
O2
β-wedge associated to o1, o2 with apex p is the open

region bounded between two rays emanating from p
with orientations o1 and o2, respectively. Note that
every point p in the plane is the apex of four stab-
bing O2

β-wedges; top-left, top-right, bottom left, and
bottom-right. See Figure 1 (left).

Proposition 1 ([2]) LetW be the set of all stabbing
O2
β-wedges of the plane containing no elements of P .

The O2
β-convex hull of P is O2

βH(P ) = R2 −
⋃
w∈W

w.

2 Computing and maintaining O2
βH(P )

Based on Proposition 1, in order to compute O2
βH(P )

we focus on the maximal stabbing O2
β-wedges contain-

ing no elements of P .
Moreover, for a point set P and a pair of lines O2

β

we define four staircase polygonal lines, as follows:
The top-right β-staircase is the following sector of the
boundary of the region obtained by removing from
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the plane all the top-right O2
β-wedges containing no

element of P : It starts at the top element of P and
ends at the element of P which is the rightmost one
with respect to the non-horizontal line in O2

β . In a
similar way we can define the top-left, bottom-left,
and the bottom-right β-staircases of P .

In the sample O2
β-hull of Figure 1, the dotted lines

are the directions of the oriented lines in O2
β that

are used as coordinate axes. Notice that the top-
left β-staircase is just a point, and that O2

βH(P ) is
disconnected because of the intersections (the regions
bounded by dashed lines) between the top-right and
bottom-left β-staircases.

2.1 Maintaining the top-right staircase of P

We now show how to construct and maintain the top-
right β-staircase of P as the angle β runs from 0 to π.
Start by sorting, in O(n log n) time, the n points of P
from bottom to top, and relabel and place them in
this order in a list L = {p1, . . . , pn}.

For each pi, i = 2, . . . , n − 1, compute the angles
αa
i , α

b
i , αc

i , and αd
i as shown in Figure 2. Note that

for p1 and pn only two of these angles are defined. All
these angles can be computed in O(n) time. Notice
that for an small enough initial value of β, all the
elements of P belong to the top-right β-staircase of P
and therefore, O2

βH(P ) = P .

αdi
αai

αbi

αci

pi

pi−1

pi+1

αbi+1
αci+1

αdi−1
αai−1

Figure 2: The four angles αa
i , α

b
i , αc

i , and αd
i for the

point pi of P .

We observe next that, as the value of β increases,
the first element of L to drop from the list is the pi
with the smallest angle αdi . Thus, when β reaches αdi ,
pi leaves L. Since pi is no longer considered, we must
update the angle of the predecessor pi−1 of pi in L
to be the angle between the horizontal line through
pi−1 and the segment joining pi−1 to pi+1. In a re-
cursive way, if we have removed several elements of L,
the next element pj to be eliminated is that with the
smallest αdj . This can be obtained in logarithmic time
using a priority queue. See Figure 3.

Hence, the total time complexity of calculating and
maintaining the top-right β-staircase of P as β in-
creases from 0 to π is O(n log n) and using linear

pi
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β3
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β2β1
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Figure 3: Portion of the top-right staircase for three
values of β, before, at, and after the event β = αd

i .

space. At the end, when β = π, the only element
remaining in L is the top point pn.

The top-left, bottom-left, and the bottom-right β-
staircases of P can be computed and maintained in
a similar way. The four β-staircases of P can be
maintained simultaneously, as β goes from 0 to π,
in O(n log n) time and O(n) space.

Lemma 1 O2
βH(P ) for β ∈ [0, π] can be maintained

for β ∈ [0, π] in O(n log n) time and O(n) space.

Proof. In order to maintain the boundary
of O2

βH(P ) for β ∈ [0, π], apart from the four
β-staircases of P we also need the sequence of
the overlap-events which define when overlaps
of O2

βH(P ) finish. Initially, for β slightly greater
than zero, consecutive points of P in the y-coordinate
order define a very large overlap, whose area will
decrease until reaching zero when the corresponding
opposite wedges cease to intersect. In order to
know when this happens, we need to maintain the
current pairs of points which define the opposite
wedges determining the overlap, updating them as in
Figure 3, and focusing on the two points on rays with
the direction of the non-horizontal line in O2

β . See
Figure 5. The overlap finishes when β reaches the
angle γ between the horizontal and the line through
those two points.

The cost of this update is constant, once we know
which point is to be changed. Nevertheless, we also
need: (i) To maintain the list of the angles γ for all the
current overlaps and (ii) To compute the minimum of
this list, just to know which is the next overlap-event
of ending-overlap. The cost of these updates is at
most O(log n) time per insertion/deletion per point
in P , each time such an overlap-event occurs. Since
the number of these overlap-events is linear, the total
cost is O(n log n) time. �

Standard techniques (refer to Chapter 4 in [6])
allow to obtain the boundary of O2

βH(P ) in to-
tal O(n log n) time and O(n) space. Furthermore,
this time complexity of the algorithm is optimal,
since given O2

βH(P ) we can compute in linear time
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CH(O2
βH(P )) = CH(P ) and the computation of the

usual convex hull CH(P ) is in Ω(n log n).
From the discussion above we get:

Theorem 2 O2
βH(P ) can be computed and main-

tained for β ∈ [0, π] in Θ(n log n) time and O(n)
space. The numbers of edges and connected compo-
nents of O2

βH(P ) for β ∈ [0, π] can also be computed
and maintained in the same running time and space.

3 Optimizing the area and perimeter of O2
βH(P )

Given an angle β, let the polygon P(β) be the one
obtained joining counterclockwise consecutive vertices
of the four staircases that define O2

βH(P ).
Following the lines of Bae et al. [3], we express the

area of O2
βH(P ) in terms of the angle β, as

area(P(β))−
∑
i

area(4i(β)) +
∑
j

area( j(β)),

where: (i) The triangles 4i are defined by a segment
joining two consecutive vertices of a β-staircase S of P
and the edges joining them along S. (ii) The parallel-
ograms j are the overlaps between the boundaries
of opposite staircases. See Figure 4.

Figure 4: Dotted, the polygon P(β). In dark gray,
the area of O2Hβ(P ). In yellow, a triangle and a
parallelogram.

Next, we show how to compute each of the three
terms in the formula. This allows us to get a general
formula, which can be evaluated in each of the in-
tervals [βi, βi+1] between two consecutive events, ob-
taining the value of β ∈ [βi, βi+1] which maximizes
the area of O2

βH(P ) in that interval. Note that there
is a linear number of these intervals.

3.1 Polygon P(β)

Observe that, as β increases from 0 to π, the set of
vertices changes a linear number of times. This hap-
pens each time a point drops from one of the four
staircases of P . Let A = {β1, β2, . . . , βm} be the set
of angles at which the vertices of P drop out from the
four staircases of P , βi < βi+1, 1 ≤ i ≤ m− 1.

Since the set of vertices of P(β) remains unchanged
for any β ∈ (βi, βi+1), its area also remains un-
changed. Thus, the area of P(β) has to be updated
each time β reaches a value in A. Since A has only a
linear number of elements, the area of P(β) has to be
updated a linear number of times. Each update can
be done in constant time, as it involves the addition
or subtraction of the areas of at most two triangles.
See Figure 5. A flag will indicate when we have to
add or to subtract.

p3

p4

p2

p1

p3

p4

p2

p1

Figure 5: Left: Before the first event, the top-right
and the bottom-left β-staircases of P are formed by
all the points of P , the top-left β-staircase is the point
p4, and the bottom-right β-staircase is the point p1.
Right: After the first event, p2 leaves the top-right
β-staircase and p3 leaves the bottom-left β-staircase.

3.2 Triangles 4i
Since the number of vertices of P(β) changes only
when β reaches a βi ∈ A, the number of triangles
defined by P(β) also changes only when β equals some
βi ∈ A.

Using elementary geometry, it can be checked that
the sum of the areas of all the triangles of βi ∈ A
has the form c + d cot(β): It is sufficient to note
that the area of each triangle 4i of P(β) has the
form |ci ± di cot(β)|. For example, if pi = (xi, yi)
and pi+1 = (xi+1, yi+1) are consecutive vertices in
the counterclockwise order of the top-right β-staircase
of P , see Figure 6, then the area of the triangle 4i
bounded by (i) the segment joining pi to pi+1, (ii)
the horizontal line through pi, and (iii) the line with
angle β passing through pi+1 can be expressed as

area(4i) = |(xi−xi+1)(yi+1−yi)+(yi+1−yi)2 cot(β)| =

= |ci ± di cot(β)|.

3.3 Parallelograms j

Parallelograms arise from overlaps between opposite
β-staircases of the P . We need to compute the initial
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(xi+1, yi+1)

(xi, yi)(x0, y1)

β

(xj+1, yj+1)

(xj, yj)

(x′0, yj)

β

(xk+1, yk+1)

(xk, yk)

(x0, yj)

Figure 6: Left: Triangle corresponding to two con-
secutive points of the top-right β-staircase of P .
Right: Parallelogram corresponding to two consecu-
tive points of the top-right β-staircase and two con-
secutive points of the bottom-left β-staircase.

and final values of β for which each overlap is alive.
These overlap events should be merged with the other
events, in order to perform a discrete computation
updating and computing the maximum values of the
variables we want to optimize.

Overlaps can only arise between opposite staircases,
that is between the top-right and the bottom-left β-
staircases, or between the top-left and the bottom-
right β-staircases.

Moreover, as β increases from 0 to π, all the over-
laps between the top-left staircases and the bottom-
right β-staircases arise after all the overlaps between
the top-right and the bottom-left β-staircases. Thus
we can process them independently, one after another.

The sum of the areas of these parallelograms can be
expressed again as a function of the type c′+d′ cot(β).
For example, consider a parallelogram j deter-
mined by two consecutive points pj = (xj , yj) and
pj+1 = (xj+1, yj+1) of the top-right β-staircase, to-
gether with two consecutive points pk = (xk, yk) and
pk+1 = (xk+1, yk+1) of the bottom-left β-staircase.
See Figure 6.

Note that the vertices of the parallelogram j are
not pj , pj+1, pk, and pk+1. In fact, the parallelogram

j is the intersection of two triangles of P(β), defined
by pj , pj+1, and pk, pk+1.

Using elementary geometry, it can be checked that:
As β increases, the number of parallelograms gener-

ated by the top-right and the bottom-left β-staircases
decreases. We need to compute in advance the events
of the ends (and the beginnings) of overlaps, which
are exactly the beginning (and the end) events of ar-
eas for the top-right and the bottom-left β-staircases
the top-left and the bottom-right β-staircases.

Using again a priority queue, we can find the order
in which the overlaps disappear in overall O(n log n)
time. When a point defining an overlap changes, we
have to update the corresponding area formula. This
can be done in constant time.

The discussion above leads to the following result:

Theorem 3 To compute the angle β such that
O2
βH(P ) has maximum area can be done in O(n log n)

time and O(n) space.

As for maintaining the perimeter, it is enough to
maintain the four staircases and the overlaps.

Thus, we get the following result:

Theorem 4 To compute the angle β such that
O2
βH(P ) has minimum (non-zero) perimeter can be

done in O(n log n) time and O(n) space.
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