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Abstract: A finite poset P(X,<) on a set X={x1,...,xm}  is an angle order (regular n-gon order) if the elements of

P(X,<) can be mapped into a family of angular regions on the plane (a family of regular polygons with n sides and
having parallel sides) such that xi<xj if and only if the angular region (regular n-gon) for xi is contained in the

region (regular n-gon) for xj. In this paper we prove that there are partial orders of dimension 6 with 64 elements

which are not angle orders. The smallest partial order previously known not to be an angle order has 198 elements

and has dimension 7. We also prove that partial orders of dimension 3 are representable using equliateral triangles

with the same orientation. This result does not generalizes to higher dimensions. We will prove that there is a

partial order of dimension 4 with 14 elements which is not a regular n-gon order regardless of the value of n.

Finally, we prove that partial orders of dimension 3 are regular n-gon orders for n≥3.
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1. Introduction

Let F={S1,...,Sm}  be a family of sets. A partial order P(X,<) on a set X={x1,...,xm}
represents F if xi<xj in P(X,<) iff Si is contained in Sj, i≠j. F is called a set representation of
P(X,<). Partial orders arising from specific families of sets have been studied in various papers
in the literature. For instance partial orders of dimension 2 have set representations using
intervals of the real line. (See [3]). Partial orders of dimension 2 can also be represented using
families of circles on the plane; to see this, one can take a representation F ={I1,...,Im}  of a
poset P(X,<) of dimension  2 using intervals along the x-axis, then for each interval Ij of F
build a circle Cj such that Ij is a diameter of Cj . It is easily seen that F'={C1,...,Cm} is a set
representation for P(X,<). When the elements of F are boxes in the n-dimensional space Rn

(i.e. sets of points {x=(x1,...,xn) : ai≤xi≤bi; ai, bi constants, i=1,...,n} ) the posets thus obtained

are exactly all 2n-dimensional posets. (See [5]). Partial orders of dimension 2n also have set
representations using convex n-polygons on the plane. (See [10]). When the elements of F are
arcs on a circle, we obtain circular permutation graphs. (See [8]).

In this paper we will study partial orders arising from families of circles (circle orders),
angular regions in the plane (angle orders) and regular polygons with n sides (regular n-gon
orders). Angle orders were first studied in Fishburn and Trotter [4]. They showed that all posets
of dimension 4 and all interval orders are angle orders. They presented a partial order of
dimension 7 and 198 points which is not an angle order. In section 2 of this paper we present a
partial order of dimension 6 with 64 elements which is not an angle order. This, however, does
not solve their problem of deciding  whether there are dimension 5 posets which are not angle
orders.

In section 3 we study regular n-gon orders, that is posets arising from families of regular n-
gons all of which have the same orientation , that is, all of which have parallel sides. We prove
that all posets of dimension 3 are representable by families of equilateral triangles. This result
is tight in the sense that for dimension n>3,  we prove that there are posets of dimension n
which are not regular n-gon orders. More surprisingly, we will prove that there are posets of
dimension 4 which are not regular n-gon orders regardless of the value  of n. Finally we prove
that posets of dimension 3 are regular n-gon orders for every value of n. This provides good
evidence towards the validity of the following conjecture: Every partial order of dimension 3 is
a circle order. Several results in this paper are proved by using the crossing number of partial
orders. The crossing number of partial orders defined in [6] has been useful in the study of
geometric comtainment problems. (See [10]).



1.2 Terminology and Definitions
A binary relation < over a set X defines a partial order  P(X,<) on X if it satisfies

(i)   x<y, y<z implies x<z (transitivity), and
(ii)  x<x (antisymmetry).

The partially ordered set P(X,<) is a linear order  if it also satisfies
(iii) x<y or y<x for all distinct x,y Œ X.

Let P(X,<) be a poset.  A realizer  of P of size  k + 1  is a collection of linear orders
{Lo(X,<0), L1(X,<1),..., Lk(X,<k)}  such that  Lo(X,<0) «  L1(X,<1) «...« Lk(X,<k)=P(X,<).
where the intersection is defined by

x<y iff x<iy for all i.
It can be easily proved that every poset can be obtained as the intersection of a number of linear
orders.  Dushnik and Miller [2] define the dimension  of P, denoted dim P, to be the size of the
smallest possible realizer of P.  Such a realizer is called a minimum realizer of P.

1.3 Function Diagrams
 Let x={f1,…,fm} be a family of continuous functions fi:[0,1]ÆR, i=1…m. The family

x={f1,…,fm} is called normal  if the following conditions are satisfied:

a) For any pair of elements fi, fj Œ x, i≠j, the set of values S(i,j)={x Œ [0,1] : fi(x)=fj(x)}  
is finite.

b) fi(0)≠fj(0), fi(1)≠fj(1); i≠j.
c) Each time the graphs of two different functions intersect, they cross each other; that is 

if fi(x0)=fj(x0) there exists an e>0 such that  x0-e<x< x0<y< x0+e implies that
fi(x)<fj(x) and fi(y)>fj(y) or fi(x)>fj(x) and fi(y)<fj(y).

Informally speaking, a set of functions x={f1,…,fm}  is  normal  if the graphs of any two
elements fi, fj Œ x intersect a finite number of times and each time they intersect, they cross
each other.

 Let X={x1,…,xm}  be a set, and P(X,–) a partial order on X. P(X,–) is called a function
order (f-order for short) if there exists a normal set of functions x={f1,…,fm}  such that  xi – xj
if fi(x)<fj(x) for all x Œ [0,1]. The set of functions x={f1,…,fm}  will be called an f-diagram for
P(X,–) . We will also say that P(X,–) represents x. It is easy to prove that every poset is an f-
order. (See [6]).



1.4 The Crossing Number of a Partial Order

Given an f-diagram x={f1,…,fm} , the crossing number  c(x) is defined as the maximum
over the set {|S(i,j)|: fi, fj Œ x, i≠j}; that is the maximum number of times two elements of x
intersect. The crossing number c(P(X,<)) of a poset  P(X,<) is now defined as min{c(x): x is
an f-diagram for P(X,<)}.

Informally speaking, every partial order can be represented in many ways using a normal set
x={f1,…,fm} of continuous real functions with domain [0,1]. In each such representation, the
graphs of some elements of x intersect a number of times. The crossing number of a poset
P(X,<) is k if in any f-diagram x={f1,…,fm} representing P(X,<) there are at least two elements
of x={f1,…,fm}  that intersect at least k times. Notice that if c(P(X,<))=0, then P(X,<) has an f-
diagram x in which no pair of functions of x intersect, thus P(X,<) is a linear order. It is also
easy to prove that if c(P(X,<))=1, then the dim P(X,<) is 2 and that in general
c(P(X,<))≤ dim P(X,<) -1. (See [6]).

 Let Hn(X,<) be the poset with elements X={u1,…,un ,v1,…,vn }  such that ui<vj , i≠j, and all
other pairs of elements in Hn(X,<) are not comparable. Hn(X,<) is called the Hiraguchi poset. It
is well known that the dimension of Hn(X,<) is n. In [6] it was proved that the crossing number
of the Hiraguchi poset Hn(X,<) is 2, n≥3. (See figure 1).
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Let Yn be the poset obtained from Hn(X,<) as follows: For each subset Sk of {1,…,n} with
exactly În/2˚ and Î(n+1)/2˚ elements (if n is even both values are the same, if n is odd they are



different), insert in Hn(X,<) a new element sk such that sk>uj, j Œ Sk , sk< vi, i œ Sk; si< sj if Si<
Sj, i≠j.
(See figure 2). The next results were proved in [10]:

Theorem 1:  The crossing number c(Yn)= n-1, dim Yn=n.
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Figure 2.

2.1 Representations of Partial Orders Using Regular Convex Polygons

Let F={S1,…,Sn} be a family of sets. A partial order P(X,<) on a set X={x1,…,xn}
represents F={S1,…,Sn} if Si is contained in Sj implies  xi<xj in P(X,<). Conversely
F={S1,…,Sn} will be called a set representation of P(X,<). In this section we study the
problem of representing partial orders using convex polygons on the plane. If no restrictions
are imposed on the polygons to be used we can easily prove the following result:

Theorem 2. Every poset has a representation using convex polygons on the plane.

Proof: Let P(X,<) be a poset on a set X={x1,…,xn}. Let S be a convex polygon with n
vertices. Label the vertices of S using the elements x1,…,xn of X in the clockwise direction
along the boundary of S. For every i let Si=Conv({xj Œ X : xj< xi} » {xi}), i.e. the convex
closure of Si={xj Œ X : xj< xi} » {xi}. It follows easily that {S1,...,Sn} is a set representation of
P(X,<).

[]



 In fact, it can be provedthat all 2n-dimensional posets are n-gon orders, that is, for every
partial order P(X,<) of dimension 2n, there is a set representation using convex polygons with n
sides [10]. For example, partial orders of dimension 6 are triangle orders. From now on, we
shall assume that a point cannot be a vertex of more than one polygon of a polygon
representation of a partial order and that any two edges of different polygons intersect at most
in one point..  In this section we will study partial orders arising from families of regular
polygons with parallel sides ; for instance we will consider families of equilateral triangles
with bases parallel to the x-axis.The next result was our original motivation to study these
families of partial orders.

Theoem 3. Every poset of dimension 3 can be represented using equilateral triangles.

Proof: Let P(X,<) be a poset of dimension 3 on a set X={x1, .., xn}  and L1, L2, L3 linear
extensions of P(X,<) such that  L1 « L2 « L3=P(X,<). Take 3 rays R1, R2, R3 emanating from
the origin at 120˚ angles. Label n points in Ri using the elements of X in the order determined
by  Li, i=1,2,3. For a point xj in Ri let Li,j be the line perpendicular to Ri through xj, i=1,2,3,
j=1,...,n. Each such line determines a semiplane Si,j containing the origin. For each xiŒX let
Ti=S1,j « S2,j « S3,j. It follows that Ti is contained in Ti if and only in Ti< Ti in P(X,<). (See
figure 3).
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Thus a natural question to ask is what posets can be represented using regular n-gons.  For
instance: What posets can be represented using equilateral triangles, squares, pentagons...? Can
we extend the result in Theorem 3 to higher dimensions? Unfortunately the answer to the last
question is negative. In fact we will prove that Y4 is not representable using regular n-gons
regardless of the value of n. We recall that in this section, we shall be concerned only with
regular n-gons all having the same orientation.  A representation F={S1,…,Sn}  of a partial
order P(X,<) is called normal  if S1 « … « Sn≠ø.

A poset will be called a regular n-gon order  if it can be represented using regular n-gons all
with the same orientation. Our first result concerning regular n-gon orders is this:

Lemma 1: Any regular n-gon order has a normal representation.

Proof: Let F={P1, .., Pk} be a representation of an regular n-gon order P(X,<) on a set
X={x1, .., xk} using regular n-gons. Suppose that all elements of F are contained in a circle of
radius 1. For each element Pi of F let Pi' be the regular n-gon obtained from Pi as follows: For
each edge ej of Pi let Sj be the semiplane containing Pi defined by the line Lj parallel to ej at
distance 1 from ej, j=1,...,n. Let Pi'= S1 « ... «  Sn .  It follows immediately that
R'={P1',... Pk'} is a normal representation of P(X,<). (See figure 4).

[]
We can now prove

 Theorem 4: The dimension of every regular n-gon order is at most n. Moreover, there are
regular n-gon orders with dimension n.

Proof: Let  F={P1, .., Pk}  be a normal representation of a regular n-gon order P(X,<).
Suppose that the origin belongs to the common intersection of P1,...,Pk. For each edge ei of P1
let Ri be the ray emanating from the origin that intersects ei perpendicularly. Each Ri  defines a
linear extension Li of P(X,<)  (the order in which the elements of F are intersected by Ri ),
i=1,...,n. It is easy to see that L1,...,Ln is a realizer of P(X,<). (See figure 4).
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Next we shall prove that the Hiraguchi poset Hn is a regular n-gon order set. We will prove
this result for the case n=3. The proof can easily be adapted for other values of n. Take an
equilateral triangle T on the plane. Let us extend each edge ei of T at both ends by a constant ei
to obtain e'i, i=1,2,3. Using e'i let us construct an equilateral triangle Ti containing T, one of
whose edges is e'i. It is easy to see that Ti  is well defined, i=1,2,3.  In the perpendicular to the
mid-point of ei, we can always choose a point pi  not contained in Ti, i=1,2,3. Then  the partial
order representing {T1 ,T2, T3 ,p1, p2 , p3}  is H3. (See figure 5).
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We now proceed to prove that there are partial orders of dimension 4 which are not regular
n-gon orders regardless of the value of n. In order to prove this, we need the next lemma.

Lemma 2: Let P(X,<) be a regular n-gon order (n≥3) . Then the crossing number of P(X,<)
is at most two.

 Proof:  Let F={P1,...,Pn}  be a normal representation of P(X,<) using regular n-gons all
with the same orientation. Let p be a point in P1 « ... « Pn. Let Lp be a ray emanating from p
that does not meet any point in which the boundaries of any two elements of  F intersect. Then
using what in topology is known as surgery, we can cut the plane along Lp and stretch it so that
one side of the cut goes to the y-axis and the other to the line x=1. In doing so, the boundary of
each Pj is mapped into a continuous function fi[0,1]ÆR. Then we obtain an f-diagram
x={f1,…,fm} for P(X,<) with crossing number at most 4. (See figure 6 ).

[]

Theorem 5. There are posets with dimension n>3 which are not  regular n-gon orders.

Proof: By theorem 1 there are posets of dimension n and crossing number n-1, n≥1. For n>3
these posets have crossing number n-1≥3, and then by Lemma 2 can not be represented using
regular n-gons.

[]



Figure 6.

 Corollary 1: Y4 is not a regular n-gon order regardless of the value of n.

 Y4 is the smallest partial order known to us that is not a regular n-gon order. It has only 14
elements. We strongly believe that Y4 is the smallest ordered set that is not a regular n-gon
order.

2.2 Dimension 3

Let X={x1,…,xm}  be a set, and P(X,<) a partial order on X. P(X, <) is called a circle order
if  there exists a family F={P1,...,Pm}  of circles on the plane such that xi < xj iff circle Pi is
contained inside Pj. One of the most interesting areas in the study of geometric containment
problems is the study of circle orders. In [10] it was proved that the crossing number of circle
orders is at most 2. Since Y4 has crossing number 3, Y4 is not a circle order. On the other hand,
all partial orders with dimension 2 are circle orders. Then from a dimension point of view, the
standing problem is that of deciding if all partial orders with dimension 3 are circle orders. This
seems to be a very hard problem. In this section, we shall present a result which provides good
evidence that the answer to the above problem is positive. We will prove that partial orders
with dimension 3 are regular n-gon orders, regardless of the value of n, n≥3. Notice that as
nÆ• the polygons thus obtained converge to circles. Unfortunately, we cannot apply a limit
type argument to our result to solve the circle orders problem.

Theorem 6. Every partial order with dimension 3 is a regular n-gon order, n≥3.



Proof: As in previous cases, we will prove our result for n=4. For larger values of n, the
proof can be easily adapted to obtain the desired result. Let P(X,<) be a partial order of
dimension 3 on  X={1,...,m} .

Let {L1(X,<1), L2(X,<2), L3(X,<3)} be a realizer of P(X,<). Suppose w.l.o.g. that L1(X,<1)
is the linear extension in which i <1 j iff as integers i<j. Each Li(X,<i) defines a permutation πi
on {1,...,m}, i=2,3. Using π2, label the points with coordinates (k m2,0) on the x-axis with the
element π2

-1(k), k=1,...,m. Similarly, label the points (-k m2,0) on the x-axis with the element -
π3

-1(k), k=1,...,m. (See figure 7).
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Figure 7.

For each i let l(i) be the line segment contained in the line y=i determined by the
perpendiculars to the x-axis at the two points labelled i. Each l(i) uniquely determines a square
S(i) with base  l(i), i=1,...,m. Notice that  i<j in P(X,<) imply :

a)  The base l(j) of S(j) is at least 2m2 units longer than l(i).
b) The projection of l(j) on the x-axis contains the projection of l(i).
c) l(j) is at most m-1 units below  l(i).
From a), b) and c) it follows immediately that S(i) is contained in S(j).It is now easy to



verify that  F={S(1),...,S(m)}  is a representation for P(X,<).
 For the general case, instead of using the perpendiculars to the x-axis at the two points

labelled i, we use a line forming a 2p/n angle with the positive x-axis at the point labelled i and
another line at a (n-2)p/n angle with the negative  x-axis at the point labelled -i. The points on
the y-axis should also be repositioned closer to the x-axis.

[]
3.1. Angle orders

We now proceed to study representations of partial orders using families of angular regions.
Angle orders were introduced in  Fishburn and Trotter [4]. An angular region  is a closed
region A of R2 bounded by a pair of rays R1 and R2 emanating from a point p containing all
points swept out by rays from p in the clockwise direction from R1 to R2. A poset P(X,<) is
called an angle order if it has a representation using angular regions in the plane. In [4] it was
proved  that all posets of dimension at most four are angle orders. Moreover, in the same paper
it was proved that the poset consisting of all elements x Œ 27 (under containment) with at most
four elements is not an angle order. Such poset has 198 elements. The following questions was
posed in [4]:

Problem 1: What is the dimension of the least dimension poset which is not an angle order?

Problem 2:  Is 25  an angle order?  And in general what is the smallest n such that 2n is not
an angle order?

In the rest of this section, we shall produce a poset of dimension 6 with 64 elements which
is not an angle order. Thus problem 1 reduces to the following: Are all posets of dimension 5
angle orders?  The problem of deciding if 25 is an angle order remains open. The technique
used to prove our results follows some ideas presented in [4] combined with the crossing
number of posets.

Let A be an angular region bounded by two rays R1 and R2. If the angle between R1 and R2

is less than 180°, A is called a little angle; if the angle exceeds 180°, A will be called a big
angle. The point p will be called the vertex  of A. Notice that if the angle between R1 and R2 is
180° then the vertex of A is not unique.

An angle order P(X,<) that has a representation using only little angles will be called an l-
angle order. If P(X,<) has a representation using only big angles, P(X,<) will be called a b-



angle order.

For a given angular region A in the plane let A*=R2-A. Clearly if A is a little angular
region, A* is a big angular region. The next result follows immediately from observations
made in [4].

Lemma 3 [4]: If P(X,<) is an l-angle (b-angle ) order, then the dual P*(X,<) of P(X,<) is a
b-angle (l-angle) order.

[]
Next, we observe that the boundaries of two different angular regions intersect in at most

four points. This lead us to the following result:

Lemma 4: The crossing number of an l-angle order is at most 4.

Proof: Let R= {A1,...,An}  be a representation of P(X,<) using little angular regions.
Assume without loss of generality that all the intersection points of the boundaries of the
angular regions of R are contained in a circle of radius 1 with center in the origin.

Let us assume that x1< x2<...<xn is a linear extension of P(X,<). For each element xi Œ X let
Si be the region determined by the intersection of Ai with the circle of radius i and center in the
origin. Clearly xi<xj if and only if Si is contained in Sj, i≠j Œ {1,...,n}. Let Si(1) be the set of
points in R2 at distance ≤1 from Si. Since the origin belongs to Si(1),i=1,...,n,  S1 « ... «  Sn ≠
Ø. Moreover, the boundaries of any two such sets intersect in at most four points. Let L0 be a
ray emanating from the origin that does not meet any point in which the boundaries of any two
elements Si(1), Sj(1) intersect. Using surgery again as in Lemma 2 our result follows.

[]
Lemma 5: The crossing number of a b-angle order is at most 4.

Proof: By lemma 3 the dual P*(X,<) of an angle order P(X,<) is an l-angle order. Thus the
crossing number of P*(X,<) is at most 4. But the crossing number of a poset is equal to the
crossing number of its dual. The result now follows.

[]
The next result trivially  follows:

Lemma 6: Let P(X,<) be a poset with crossing number greater than or equal to 5. Then if
P(X,<) is an angle order, any representation R={Ai,..., Ai}  of P(X,<) contains a little and a big
angular region.



Theorem 6: There are posets of dimension 6 which are not angle orders.

Proof:  The idea used in the proof of this theorem is similar to the one used by Fishburn and
Trotter in their proof of Corollary 2 in [4].  Let P(X,<) be any poset with crossing number at
least 5. Let us construct a new poset  Q consisting of two isomorphic copies P1(X,<), P2(X,<)
of P(X,<) such that if x Œ P1(X,<) and y Œ P2(X,<) then x<y. We claim that  Q is not an angle
order. For if Q is an angle order, then there is a representation R of Q using angular regions in
the plane. By lemma 6 there is a big angular region Ai representing an element xiŒP1(X,<).
Similarly there is a small region Bj representing an element yj Œ P2(X,<). However, since by
definition xi< yj, Ai is contained in Bj which is impossible. Letting P(X,<)= Y6 gives us the
desired result.

[]
Since Y6 has 12+C(6,3) elements, Theorem 6 gives us a poset with 64 elements which is not

an angle order.  Some open problems are now presented. We proved that the crossing number
of l-angle orders and b-angle orders is at most 4. This leads us to the following question:

Is it true that the crossing number of angle orders is at most 4? More specifically, is Y6 an
angle order?  So far we have been unable to verify if Y6 is an angle order or not.

What about partial orders with crossing number ≤4; is it true that any partial order with
crossing number at most 4 is an angle order?

Similar questions can be asked about regular n-gon orders. For instance, is it true that all
partial orders with crossing number 2 are regular n-gon orders for some n?

Remark: It has been called to our attention that W. T. Trotter has been able to use
arguments similar to those presented here to obtain a five-dimensional order which is not a
circle order.  If 25 is a little angle order, then its crossing number is at most 3, a contradiction.
The result now follows by using 25 in Theorem 6 instead of Y6.

Alon and Scheinermann have also been able to prove that there are partial orders of
dimension 5 which are not angle orders [1]
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