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Abstract

We consider several variations of the problems of covering a set of barriers using sensors so
that sensors can detect any intruder crossing any of the barriers. Sensors are initially located
in the plane and they can relocate to the barriers. We assume that each sensor can detect any
intruder in a circular area centered at the sensor. Given a set of barriers and a set of sensors
located in the plane, we study three problems: the feasibility of barrier coverage, the problem of
minimizing the largest relocation distance of a sensor (MinMax), and the problem of minimizing
the sum of relocation distances of sensors (MinSum). When sensors are permitted to move to
arbitrary positions on the barrier, the problems are shown to be NP-hard. We also study the
case when sensors use perpendicular movement to one of the barriers, thereby moving to the
closest point on the barrier. We show that when the barriers are parallel, both the MinMax
and MinSum problems can be solved in polynomial time. In contrast, we show that even the
feasibility problem is NP-complete if two perpendicular barriers are to be covered, even if the
sensors are located at integer positions, and have only two possible sizes. On the other hand, we
give an O(n3/2) algorithm for the case when the sensors form a non-overlapping arrangement.

1 Introduction

The protection of a region by sensors against intruders is an important application of sensor net-
works that has been previously studied in several papers. Each sensor is typically considered to be
able to sense an intruder in a circular region around the sensor. Previous work on region protec-
tion using sensors can be classified into two major classes. In the first body of work, called area
coverage, the monitoring of an entire region is studied [8, 10, 11], and the presence of an intruder
can be detected by a sensor anywhere in the region, either immediately after an appearance of an
intruder, or within a fixed time delay. In the second body of work, called barrier coverage, a region
is assumed to be protected by monitoring its perimeter or barrier [1, 2, 4, 5, 9], and an intruder
is detected when crossing the barrier. Clearly, the second approach is less costly in terms of the
number of sensors required, and it is sufficient in many applications.

There are two different approaches to barrier coverage in the literature. In the first approach,
a barrier is considered to be a narrow strip of fixed width. Sensors are dispersed randomly on
the barrier, and the probability of barrier coverage is studied based on the density of dispersal. It
has been shown that when the barrier is sufficiently long, one random dispersal leaves gaps in the
coverage, and thus several rounds of dispersal are needed to assure complete barrier coverage [13].
Since random sensor dispersal causes incomplete coverage, in the second approach, several papers
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assume that sensors, once dispersed, are mobile, and can be instructed to relocate from the initial
position to a final position on the barrier in order to achieve complete coverage [4, 5]. Clearly,
when a sufficient number of sensors is used, this approach always guarantees complete coverage of
the barrier. The problem therefore is assigning final positions to the sensors in order to minimize
some aspect of the relocation cost. The variations studied so far include minimizing the maximum
relocation distance (MinMax), the sum of relocation distances of sensors (MinSum), or minimizing
the number of sensors that relocate (MinNum).

Most of the previous work is set in the one-dimensional setting: the barriers are assumed to be
one or more line segments that are part of a line L, and furthermore, the sensors are initially located
on the same line L. In [4] , it was shown that there is an O(n2) algorithm for the MinMax problem
in the case when the sensor ranges are identical. The authors also showed that the problem becomes
NP-complete if there are two barriers. In [3] a polynomial time algorithm for the MinMax problem
is given for arbitrary sensor ranges for the case of a single barrier, and an improved algorithm
is given for the case when all sensor ranges are identical. In [5], it was shown that the MinSum
problem is NP-complete when arbitrary sensor ranges are allowed, and an O(n2) algorithm is given
when all sensing ranges are the same. Minimizing the number of sensors moved (MinNum problem)
was considered in [12]. Similarly as in the MinSum problem, the MinNum problem is NP-complete
when arbitrary sensor ranges are allowed, and an O(n2) algorithm is given when all sensing ranges
are the same.

In this paper we consider the algorithmic complexity of several natural generalizations of the
barrier coverage problem with sensors of arbitrary ranges. We generalize the work in [3, 4, 5, 12]
in two significant ways. First, we assume that the initial locations of sensors are points in the
two-dimensional plane and are not necessarily collinear. Second, we consider multiple barriers that
are parallel or perpendicular to each other, rather than being required to be on the same line. We
consider two types of sensor movements. In the first part of the paper, we assume that sensors
can move to arbitrary final positions on any of the barriers. We use standard cost measures such
as Euclidean or rectilinear distance between initial and final positions of sensors. In the second
part of the paper, we assume that sensors use perpendicular movement, that is, once having been
assigned a barrier to relocate to, a sensor will take the shortest path to the barrier, and relocate to
the closest point on the barrier.

1.1 Preliminaries and notation

Throughout the paper, we assume that we are given a set of sensors S = {s1, s2, . . . , sn} located
in the plane in positions p1, p2, . . . , pn, where pi = (xi, yi) for some real values xi, yi. The sensing
ranges of the sensors are r1, r2, . . . , rn, respectively. A sensor si can detect any intruder in the closed
circular area around xi of radius ri. We assume that sensor si is mobile and thus can relocate itself
from its initial location pi to another specified location p′i. A barrier b is a closed line segment in the
plane. Given a set of barriers B ={b1, b2, . . . , bk} , and a set of sensors S in positions p1, p2, . . . , pn
in the plane, of sensing ranges r1, r2, . . . , rn, the barrier coverage problem is to to determine for
each si its final position p′i on one of the barriers, so that all barriers are covered by the sensing
ranges of the sensors. We call such an assignment of final positions a covering assignment. Figure
1 shows an example of a barrier coverage problem and a possible covering assignment. Sometimes
we are also interested in optimizing some measure of the movement of sensors involved to achieve
coverage.

We are interested in the algorithmic complexity of three problems:

Feasibility problem: Given a set of sensors S located at positions p1, p2, . . . , pn, and a set of
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Figure 1: (a) A given barrier coverage problem (b) a possible covering assignment

barriers B, determine if there exists a valid covering assignment, i.e. determine whether there
exist final positions p′1, p

′
2, . . . p

′
n such that all barriers in B are covered.

MinMax problem: Given a set of sensors S located at positions p1, p2, . . . , pn, and a set of barriers
B, find final positions p′1, p

′
2, . . . p

′
n so that all barriers in B are covered and max1≤i≤n{d(pi, p

′
i)

is minimized.

MinSum problem: Given a set of sensors S located at positions p1, p2, . . . , pn, and a set of barriers
B, find final positions p′1, p

′
2, . . . p

′
n so that all barriers in B are covered, and

∑n
i=1 d(pi, p

′
i) is

minimized.

1.2 Our Results

Our results are summarized in Table 1.

Barriers Movement Feasibility MinMax MinSum

1 barrier Arbitrary final positions O(n) NP-hard NP-hard [5]
2 barriers Arbitrary final positions NP-hard NP-hard NP-hard
1 barrier Perpendicular O(n) O(n log n) O(n2)

k parallel barriers Perpendicular P P P
2 perpendicular barriers Perpendicular NP-hard NP-hard NP-hard

Table 1: Barrier coverage problems: Initial positions on the plane, final positions on barriers

Throughout the paper, we consider the barrier coverage problem with sensors of arbitrary
ranges, initially located at arbitrary locations in the plane. In Section 2, we assume that sensors
can move to arbitrary positions on any of the barriers. While feasibility is trivial in the case of one
barrier, it is straightforward to show that it is NP-hard for even two barriers. The NP-hardness of
the MinSum problem for one barrier follows trivially from the result in [5]. In this paper, we show
that the MinMax problem is NP-hard even for a single barrier. We show that this holds both when
the cost measure is Euclidean distance and when it is rectilinear distance.

In light of these hardness results, in the rest of the paper, we consider a more restricted but
natural movement. We assume that once a sensor has been ordered to relocate to a particular
barrier, it moves to the closest point on the barrier. We call this perpendicular movement. Section 3
considers the case of one barrier and perpendicular movement, while Section 4 considers the case of
perpendicular movement and multiple parallel barriers. We show that all three of our problems are
solvable in polynomial time. Finally, in Section 5, we consider the case of perpendicular movement
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and two barriers perpendicular to each other. We show that even the feasibility problem is NP-
complete in this case. The NP-hardness result holds even in the case when the given positions of
the sensors have integer values and the sizes of sensors are limited to two different sizes. In contrast,
we give an O(n1.5) algorithm for finding a covering assignment in the case when the sensors form a
non-overlapping arrangement. This is the case or example, when all sensors are located in integer
positions and the sensing ranges of all sensors are of diameter 1.

2 Arbitrary Final Positions

In this section, we assume that sensors are allowed to relocate to any final positions on the barrier(s).
We consider standard measures for the cost of relocation, such as Euclidean distance or rectilinear
distance.

2.1 Single Barrier

We consider first the case of a single barrier b. Without loss of generality, we assume that b is
located on the x-axis between (0, 0) and (L, 0) for some L. The feasibility of barrier coverage in
this case is simply a matter of checking if Σn

i=02ri ≥ L. For the MinSum problem, it was shown in
[5] that even if the initial positions of sensors are on the line containing the barrier, the problem
is NP-hard; therefore the more general version of the problem studied here is clearly NP-hard.
Recently, it was shown in [3] that if the initial positions of sensors are on the line containing
the barrier, the MinMax problem is solvable in polynomial time. The complexity of the MinMax
problem for general initial positions in the plane has not yet been studied.

MinMax

We proceed to study the complexity of the MinMax problem when initial positions of sensors can
be anywhere on the plane, and the final positions can be anywhere on the barrier. See Figure 2 for
an example of the initial placement of sensors.
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Figure 2: (a) An example of a 2-dimensional one barrier problem.

Theorem 1 Let S = {s1, s2, . . . , sn} be a set of n sensors with ranges r1, r2, . . . , rn located in the
plane in initial positions p1, p2, . . . , pn. Let the barrier b be a line segment on the x-axis between
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(0, 0) and (L, 0). Given an integer k, the problem of determining if there is a covering assignment
such that the maximum relocation distance (Euclidean/rectilinear) of the sensors is at most k is
NP-hard.

Proof. Let R =
∑n

i=1 2ri. Clearly if R < L the problem is infeasible, so we assume R ≥ L.
We first give the proof for the case R = L. We prove it by reducing the 3-partition problem (see
[6]) to the problem of covering the barrier b with sensors such that the maximum movement of
the sensors is at most k. The 3-partition problem is defined as follows: we are given a multiset
A = {a1 ≥ a2 ≥ · · · ≥ an} of n = 3m positive integers such that B/4 < ai < B/2 for 1 ≤ i ≤ n and∑n

i=1 ai = mB for some B. The problem is to decide whether A can be partitioned into m triples
T1, T2, . . . , Tm such that the sum of the numbers in each triple is equal to B.

We create an instance of the barrier coverage problem as follows: Let L = mB + m− 1 so that
the barrier b is a line segment from (0, 0) to (L, 0), and let k = L+ 1 Create a sensor si of range ai
for every 1 ≤ i ≤ 3m positioned at −ai. In addition, create m−1 sensors s3m+1, s3m+2, . . . s4m−1 of
range 1/2 located at positions (B+1/2, k), (2B+3/2, k), (3B+5/2, k), . . . , ((m−1)B+(2m−3)/2, k).
See Figure 3 for an example. Since R = L, all sensors must move to the barrier. Observe that the
distance from any of the m− 1 sensors located above the barrier to the barrier is k, and even if all
of them move this distance, there would be gaps of length B between these sensors on the barrier.
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Figure 3: Reduction from 3-partition to the MinMax problem

If there is a partition of S into m triples T1, T2, . . . , Tm, the sum of each triple being B, then
there is a solution to the movement of the sensors such that the three sensors corresponding to
triple Ti are moved to fill the ith gap in the barrier b. The maximal move of the three sensors
corresponding to Ti into ith gap is at most L, and the maximum of the moves of all sensors is
k in this case. If such a partition does not exist, then any covering assignment for the barrier b
corresponds to moving at least one of the sensors above the x-axis by k + 1 (rectlinear distance),
and by

√
k2 + 1 > k (Euclidean distance).

It remains to show that the transformation from the 3-partition problem to the sensor movement
problem is polynomial. Since 3-partition is strongly NP-complete [6], we may assume that the values
a1, a2, . . . , an are bounded by a polynomial cnj for some constants c and j. Therefore, B ≤ 3cnj

and k ≤ cnj+1. Our reduction uses n+m−1 sensors and n+m−1 ≤ 2n. The 3-partition problem
can be represented using O(n log n) bits. In the corresponding barrier coverage problem we need
O(n log n) bits for the positions and sizes of sensors s1, s2, . . . , sn and we need O(n log n) bits to
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represent the position and size of each sensor of size 1. Thus we need O(n log n) bits to represent
the corresponding barrier coverage problem, which shows that the transformation is polynomial.

Finally, by adding one additional sensor at distance > k above the barrier, we can create an
instance of the problem where R > L, and the proof remains exactly the same as that sensor cannot
be involved in a covering assignment that has maximum relocation distance k.

2.2 Multiple Barriers

It is easy to see that when there are two barriers to be covered, even feasibility of coverage is
NP-complete. This can be shown by reducing the Partition problem to an appropriate 2-barrier
coverage problem. Given a partition instance with n items a1, a2, . . . , an, we create n sensors
such that sensor si has range ai/2, and is initially placed at location (i, 0). Create any two non-
intersecting barriers b1 and b2, each of length Σn

i=1ai/2. Clearly this is a polytime reduction, and
there is a solution to the partition problem if and only if there is a solution to the barrier coverage
problem. It follows that k-barrier coverage is also NP-hard.

3 Perpendicular Movement: One Barrier

In this section, we assume that sensors use perpendicular movement, and can only move to the
closest point in the barrier. Without loss of generality, let the barrier b be the line segment between
(0, 0) and (L, 0) and let the set of n sensors s1, s2, . . . sn be initially located at positions p1, p2, . . . , pn
respectively, where pi = (xi, yi) and x1 − r1 ≤ x2 − r2 ≤ . . . ≤ xn − rn. Observe that sensors are
ordered by the leftmost x-coordinate they can cover, and they can only move in a vertical direction.
For simplicity we assume all points of interest (sensor locations, left and right endpoints of sensor
ranges, barrier left and right endpoint) are distinct. Since the y-coordinate of all points on the
barrier are the same, we sometimes represent the barrier or a segment of the barrier by an interval
of x-coordinates. For technical reasons, we denote the segment of the barrier between the points
(i, 0) and (j, 0) by the half-open interval [i, j).

3.1 Feasibility of coverage

We first show a necessary and sufficient condition on the sensors for the barrier to be covered. Since
only vertical movements are allowed, given a point p′ = (x′, 0) on the barrier, a sensor s in position
p = (x, y) with sensing range r can be assigned to cover p′ only if |x − x′| ≤ r. Once again, for
technical reasons, we consider the interval on the barrier that a sensor can cover to be a half-open
interval. More precisely, we say that the sensor s at position p = (x, y) is a candidate sensor for
p′ = (x′, y′) on the barrier if x − r ≤ x′ < x + r. Alternatively we say s potentially covers the
point p′. Clearly, the barrier b can be covered only if every point on the barrier has a candidate
sensor. Conversely, if every point has a candidate sensor, the problem can be solved in linear time
by simply repeatedly covering the leftmost uncovered point on the barrier by moving the smallest
numbered candidate sensor for the point down to the barrier.

3.2 MinSum

We give a dynamic programming formulation for the MinSum problem. We denote the set of
sensors {si, si+1, . . . sn} by Si. If the barrier is an empty interval, then the cost is 0. If the first
sensor is not a candidate for the left endpoint of the barrier, or if the sensor set is empty while
the barrier is a non-empty interval, then clearly the problem is infeasible and the cost is infinity.

6



If not, observe that the optimal solution to the MinSum problem either involves moving sensor s1
down to the barrier or it doesn’t. In the first case, the cost of the optimal solution is the sum of
y1, the cost of moving the first sensor to the barrier, and the optimal cost of the subproblem of
covering the interval [x1 + r1, L) with the remaining sensors S2 = S−{s1}. In the second case, the
optimal solution is the optimal cost of covering the original interval [0, L) with S2. The recursive
formulation is given below:

cost(Si, [a, L)) =


0 if L < a
∞ if xi − ri > a
∞ if Si = ∅ and L > a

min

{
yi + cost(Si+1, [xi + ri, L)),
cost(Si+1, [a, L))

otherwise

Observe that a subproblem is always defined by a set Si and a left endpoint to the barrier
which is given by the rightmost x-coordinate covered by a sensor. Thus the number of possible
subproblems is O(n2), and it takes constant time to compute cost(Si, [a, L)) given the solutions to
the sub-problems. Thus, by using either a tabular method or memoization, the problem can be
solved in quadratic time.

Theorem 2 Let s1, s2, . . . sn be n sensors initially located at positions p1, p2, . . . , pn respectively,
and let b be a barrier between (0, 0) and (L, 0). The MinSum problem using only perpendicular
movement can be solved in O(n2) time.

3.3 MinMax

The same dynamic programming formulation works for minimizing the maximum movement, except
that in the case when the i-th sensor moves down in the optimal solution, the cost is the maximum
of yi and cost(Si+1, [xi+ri, L)) instead of their sum. Thus, the MinMax problem can also be solved
in O(n2) time. However, an alternative approach is more efficient. Consider the subset of sensors
that are at distance at most d from the barrier. Clearly, we can check the feasibility of covering the
barrier with such a subset in O(n) time. The minimum value of d for which the problem remains
feasible gives the solution to the minmax problem. This optimal value of d can be found using
binary search on the set of distances of all sensors to the barrier. This gives the following result:

Theorem 3 Let s1, s2, . . . sn be n sensors initially located at positions p1, p2, . . . , pn respectively,
and let b be a barrier between between (0, 0) and (L, 0). The MinMax problem using only perpen-
dicular movement can be solved in O(n log n) time.

4 Perpendicular Movement: Multiple Parallel Barriers

In this section, we study the problem of covering multiple parallel barriers. We assume that sensors
can relocate to any of the barriers, but will use perpendicular movement to move to the closest
point of the chosen barrier. Without loss of generality, we assume all barriers are parallel to the
x-axis. Since there are k barriers, there are k points on barriers with the same x-coordinate. We
therefore speak of sensors being candidates for x-coordinates: a sensor s in position p = (x, y) with
sensing range r is a candidate sensor for x-coordinate x′ if x−r ≤ x′ < x+r. Clearly, such a sensor
is a candidate for an point p′ on a border with x-coordinate x′. We say an interval I = [a, b) of
x-coordinates is k-coverable if every x-coordinate in the interval has k candidate sensors. Observe
that such an interval of x-coordinates could exist on multiple barriers.
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For simplicity, we explain the case of two barriers; the results for the feasibility and MinSum
problems generalize to k barriers. Assume without loss of generality that the two barriers to be
covered are b1 between (0, 0) and (L, 0) and b2 between (0,W ) and (L,W ) and the set of n sensors
s1, s2, . . . sn to be initially located at positions p1, p2, . . . , pn respectively, and is ordered by the
xi − ri values as in Section 3. Thus, sensors may only move in a vertical direction. We assume
that the ranges of sensors are smaller than the distance W between the two barriers, and thus it is
impossible for a sensor to simultaneously cover two barriers. See Figure 4 for an example of such
a problem.
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Figure 4: An example of a barrier coverage problem with two parallel barriers

4.1 Feasibility

We first show a necessary and sufficient condition on the sensors for the two barriers to be covered.
Clearly, since the ranges of sensors are smaller than the distance between the two barriers, the
barrier coverage problem for the two parallel barriers b1 and b2 above is solvable by a set of sensors
S only if the interval [0, L) is 2-coverable by S. We proceed to show that 2-coverability is also a
sufficient condition, and give a O(n) algorithm for finding a covering assignment for two parallel
barriers. To simplify the proof of the main theorem, we first prove a lemma that considers a slightly
more general version of the two parallel barrier problem.

Lemma 1 Let s1, s2, . . . sn be n sensors initially located at positions p1, p2, . . . , pn respectively where
pi = (xi, yi) and x1 − r1 ≤ x2 − r2 ≤ . . . xn − rn. Let b1 between (0, 0) and (L, 0) and b2 between
(P,W ) and (Q,W ), where 0 ≤ P < L ≤ Q, be two parallel barriers to be covered. If intervals [0, P )
and [L,Q) are 1-coverable, and interval [P,L) is 2-coverable, then a covering assignment that uses
only perpendicular movement of the sensors can be obtained in O(n) time.

Proof. We give an algorithm to find such a covering assignment. First we assign sensors to cover
b1 between (0, 0) and (P, 0) by repeatedly assigning an arbitrary candidate sensor to cover the
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leftmost uncovered point of this interval. Clearly this is possible, since the interval of x-coordinates
[0, P ) is 1-coverable. Let s be the last sensor that was used in this assignment, of range r, and
initially in position (x, y), so that its final position is (x, 0) where x + r ≥ P .

x + r ≥ L Then we have a single barrier left and the interval of x-coordinates [x + r,Q) is 1-
coverable, so we can use the algorithm of the previous section.

P < x + r < L Then since [P,L) was initially 2-coverable, and s is the only unavailable sensor
among all candidate sensors for this interval, it follows that the interval of x-coordinates
[P, x+ r) is now 1-coverable and [x+ r, L) is 2-coverable. We now have a sub-problem of the
same type as the original problem and proceed to solve it recursively.

x + r = P Then there must be two other sensors that are candidates for the x-coordinate P . We
arbitrarily pick one of these two candidate sensors and assign it to barrier b1. It follows that
the point (P,W ) on barrier b2 must be 1-covered, and in fact the initial interval of b2 is
1-covered. Once again, the remaining sub-problem can be solved recursively.

Since at every step of the algorithm, one of the sensors is assigned to cover one of the barriers,
in increasing order of the values xi − ri, the algorithm takes O(n) time.

The above lemma establishes that complete coverage of two parallel barriers b1 between (0, 0)
and (L, 0) and b2 between (0,W ) and (L,W ) can be achieved if and only if the interval of x-
coordinates [0, L] is 2-covered, and a covering assignment can be found in linear time. It is easy
to see that the lemma can be generalized for k barriers to show that the feasibility problem can
be solved in O(kn) time. We proceed to study the problem of minimizing the sum of movements
required to perform barrier coverage.

4.2 MinSum

The dynamic programming formulation given in Section 3.2 can be generalized for the case of two
barriers. The key difference is that in an optimal solution, sensor si may be used to cover a part
of barrier b1 or barrier b2 or neither. Let xcost(Si, [a1, L), [a2, L)) denote the cost of covering the
interval [a1, L) of the barrier b1 and the interval [a2, L) of the second barrier with the sensor set
Si = {si, si+1, . . . , sn}. The optimal cost is given by the formulation below:

xcost(Si, [a1, L), [a2, L)) =



cost(Si, [a2, L)) if L < a1
cost(Si, [a1, L)) if L < a2
∞ if xi − ri > min{a1, a2}
∞ if Si = ∅ and

L > min{a1, a2}

min


yi + xcost(Si+1, [xi + ri, L), [a2, L)),
W − yi + xcost(Si+1, [a1, L), [xi + ri, L)),
xcost(Si+1, [a1, L), [a2, L))

otherwise

It is not hard to see that the formulation can be generalized to k barriers; a sensor si may move
to any of the k barriers with the corresponding cost being added to the solution. Observe that a
subproblem is now given by a set Si, and a left endpoint to each of the barriers. The total number
of subproblems is O(nk+1) and the time needed to compute the cost of a problem given the costs
of the subproblems is O(k). Thus, the time needed to solve the problem is O(knk+1).
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Theorem 4 Let s1, s2, . . . sn be n sensors initially located at positions p1, p2, . . . , pn respectively
where pi = (xi, yi) and x1− r1 ≤ x2− r2 ≤ . . . xn− rn. The MinSum problem for k parallel barriers
using only perpendicular movement can be solved in O(knk+1) time.

4.3 MinMax

Clearly a very similar formulation as above can be used to solve the MinMax problem in O(knk+1)
time as well. However, the approach used in Section 3.3 can be used for multiple barriers, as shown
in the theorem below:

Theorem 5 Let s1, s2, . . . sn be n sensors initially located at positions p1, p2, . . . , pn respectively,
and let b1 between (0, 0) and (L, 0) and b2 between (0,W ) and (L,W ) be the two parallel barriers
to be covered. The MinMax problem for the 2 parallel barriers using only perpendicular movement
can be solved in O(n log n) time.

Proof. We first show that given a maximum distance d, we can decide in linear time whether a
covering assignment exists so that every sensor relocates at most distance d to its final position.
If d < W/2, the sets of candidate sensors for each of the two barriers are disjoint. We can verify
independently the feasibility of covering each barrier with its set of candidate sensors, as shown in
Lemma 1.

If d ≥W/2, we partition S into the sets A, B, and C where A consists of sensors that are only
candidates for barrier b1 (that is, they are at distance > d from barrier b2), B consists of sensors
that are only candidates for barrier b2, and C consists of candidates for both barriers. We assign
all sensors in set A to barrier B1 and all sensors in set B to barrier B2. This now leaves a set of
uncovered intervals on each barrier. If there is a point x that is uncovered on either barrier and
has no candidate sensors, then barrier coverage is impossible. If there is a point x that is only
uncovered on one barrier and has a candidate sensor, then we assign the candidate sensor to the
barrier. After this process is completed, we have a set of intervals that have non-empty parts that
are 2-coverable. We now appeal to Lemma 1 to complete the proof.

The optimal value of d can be found using binary search on the set of distances of all sensors
from each of the two barriers, and an application of Lemma 1 is done in O(n) time. This completes
the proof.

5 Perpendicular Movement: Two Perpendicular Barriers

In this section, we consider the problem of covering two perpendicular barriers. Once again, we
assume that sensors can relocate to either of the two barriers, but will use perpendicular movement
to move to the closest point of the chosen barrier. In contrast to the case of parallel barriers, we
show here that even the feasibility problem in this case is NP-complete. Figure 5 illustrates an
example of such a problem. For simplicity we assume that b1 is a segment on the x-axis between
(0, 0), (L1, 0) and b2 is a segment on the y-axis between (0, 0), (0, L2). Since the sensors can only
employ perpendicular movement, the only possible final positions on the barriers for a sensor si in
position pi = (xi, yi) are p′i = (0, yi) or p′i = (xi, 0).

We first show that the feasibility problem for this case is NP-complete by giving a reduction
from the monotone 3-SAT problem [6]. Recall that a Boolean 3-CNF formula f = c1 ∧ c2 ∧ ...∧ cm
of m clauses is called monotone if and only if every clause ci in f either contains only unnegated
literals or only negated literals [7]. In order to obtain a reduction into a barrier coverage problem
with two perpendicular barriers, we first put a monotone 3-SAT formula in a special form as shown
in the lemma below:
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Figure 5: An example of a barrier coverage problem with two perpendicular barriers.

Lemma 2 Let f = f1 ∧ f2 be a monotone 3-CNF Boolean formula with n clauses where f1 and
f2 only contain unnegated and negated literals respectively, and every literal appears in at most m
clauses. Then f can be transformed into an equisatisfiable monotone formula f ′ = f ′1∧f ′2 such that
f ′1 and f ′2 have only unnegated and negated literals respectively, and f ′ has the following properties:

1. All clauses are of size two or three.

2. Clauses of size two contain exactly one variable from f and one new variable.

3. Clauses of size three contain only new variables.

4. Each new literal appears exactly once: either in a clause of size two or in a clause of size
three.

5. Each xi appears exactly in m clauses of f ′1, and exactly in m clauses of f ′2.

6. f ′ contains at most 4n + mn clauses.

7. The clauses in f ′1 (respectively f ′2) can be ordered so that all clauses containing the literal xi
(xi) appear before clauses containing the literal xj (respectively xj) for i < j, and all clauses
of size three are placed last.

Proof. Let f = f1∧f2 be a monotone 3-CNF Boolean formula, where f1 only contains unnegated
literals and f2 only contains negated literals. Assume the clauses are numbered from 1 to n, and
let m be the maximum number of occurrences of any literal in f . For each unnegated literal xp
that appears in the clause numbered i, we introduce a new variable xp,i; suppose there are k such
variables where 1 ≤ k ≤ m. If k < m, we also introduce m− k new variables yp,1, yp,2, . . . , yp,m−k.
Similarly, for each negated literal xp that appears in the clause numbered j in f1, we introduce a
new variable xp,j ; suppose there are k such variables where 1 ≤ k ≤ m. If k < m, we also introduce
m− k new variables zp,1, zp,2, . . . , zp,m−k. where xp appears in clause i.

For each clause ci ∈ f1 of the form (xp∨xq∨xr), we put the collection of clauses (xp∨xp,i), (xp∨
xq,i), (xp ∨ xr,i) into f ′1 and the clause (xp,i ∨ xq,i ∨ xr,i) into f ′2. Similarly for each clause cj ∈ f2
of the form (xp ∨ xq ∨ xr), we put the collection of clauses (xp ∨ xp,j), (xq ∨ xq,j), (xr ∨ xr,j) into f ′2
and the clause (xp,j ∨ xq,j ∨ xr,j) into f ′1.
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For every literal xp ∈ f1 that occurs k < m times in f1, we add clauses (xp ∨ yp,1)∧ (xp ∨ yp,2)∧
. . . (xp ∨ yp,m−k). Similarly, for every literal xp that occurs k < m times in f2, we add clauses
(xq ∨ zq,1) ∧ . . . ∧ (xq ∨ zq,m−k). Finally, let f ′ = f ′1 ∧ f ′2. From the construction of f ′ it is easy to
verify that it has Properties 1 to 6 mentioned in the statement of the lemma. Property 7 follows
from Properties 1 to 4.

Now we show that f and f ′ are equisatisfiable. First assume f is satisfiable, and let A be a
satisfying assignment for f . We show how to obtain a satisfying assignment A′ for f ′. For every
variable xp in f , A′ uses (a) the same truth assignment for xp as in A (b) the opposite truth value
for all new variables xp,i (c) the truth value true for every new variable of the type yp,i and (d) the
truth value false for every new variable of the type zp,i. To see that A′ satisfies f ′, observe that all
clauses of size two in f ′1 are of the form (xp ∨ xp,i) or (xp ∨ yp,i) and are clearly satisfied. The only
clauses of size three in f ′1 are of type (xp,i∨xq,i∨xr,i) and correspond to a clause ci = (xp∨xq ∨xr)
in f2. Since A satisfies ci, one of xp, xq, xr must be false. But then one of xp,i, xq,i, xr,i must be true
in A′, and hence the clause (xp,i ∨ xq,i ∨ xr,i) is satisfied. A similar argument can be made about
the clauses in f ′2.

Next assume that f ′ is satisfiable, and let A′ be a satisfying assignment for f ′. We claim that
taking the assignment for the original variables xp in A′ will also satisfy f . To see this, consider
the clause ci = (xp∨xq ∨xr) in f1. In f ′2 there is a corresponding clause (xp,i∨xq,i∨xr,i). Since A′

satisfies this clause, at least one of xp,i, xq,i, xr,i must be false. Suppose xp,i is false. To satisfy the
clause (xp∨xp,i) in f ′1, the truth value of xp in A′ must be true. Thus the clause ci = (xp∨xq ∨xr)
is satisfied in f1. A similar argument can be made about the clauses in f2.

We give an example that illustrates the reduction and the ordering specified in Property 7:
Example 1
Consider 3-CNF formula

f = (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

An equisatisfiable formula f ′ satisfying the properties of Lemma 2 is shown bellow:

f ′ = (x1 ∨ x1,1) ∧ (x1 ∨ x1,3) ∧ (x1 ∨ y1,1) ∧ (x2 ∨ x2,2) ∧ (x2 ∨ x2,3) ∧ (x2 ∨ y2,1)

∧(x3 ∨ x3,1) ∧ (x3 ∨ x3,2) ∧ (x3 ∨ x3,3) ∧ (x4 ∨ x4,1) ∧ (x4 ∨ x4,2) ∧ (x4 ∨ y4,1)

∧(x1,4 ∨ x2,4 ∨ x4,4) ∧ (x2,5 ∨ x3,5 ∨ x4,5)

∧(x1 ∨ x1,4) ∧ (x1 ∨ z1,1) ∧ (x1 ∨ z1,2) ∧ (x2 ∨ x2,4) ∧ (x2 ∨ x2,5) ∧ (x2 ∨ z2,1)

∧(x3 ∨ x3,5) ∧ (x3 ∨ z3,1) ∧ (x3 ∨ z3,2) ∧ (x4 ∨ x4,4) ∧ (x4 ∨ x4,5) ∧ (x4 ∨ z4,1)

∧(x1,1 ∨ x3,1 ∨ x4,1) ∧ (x2,2 ∨ x3,2 ∨ x4,2) ∧ (x1,3 ∨ x2,3 ∨ x3,3)

(1)

Theorem 6 Let s1, s2, . . . sn be n sensors initially located at positions p1, p2, . . . , pn respectively,
and let b1 between (0, 0) and (L1, 0) and b2 between (0, 0) and (0, L2) be the two perpendicular
barriers to be covered. Then the problem of finding a covering assignment using perpendicular
movement for the two barriers is NP-hard.

Proof. Given an instance f of monotone 3-SAT we show how to obtain a corresponding instance
P of the barrier coverage problem with two perpendicular barriers so that f is satisfiable iff there
exist a covering assignment using perpendicular movement for P . Given a monotone 3-SAT formula
f , we use the construction described in Lemma 2 to obtain a formula f ′ = f ′1 ∧ f ′2 satisfying the
properties stated in Lemma 2 with clauses ordered as described in Property 7. Let f1 have i1
clauses, and f2 have i2 clauses, and assume the clauses in each are numbered from 1, . . . , i1 and
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1, . . . , i2 respectively. We create an instance P of the barrier coverage problem with two barriers
b1, the line segment between (0, 0) and (2i1, 0) and b2, the line segment between (0, 0), and (0, 2i2).

For each variable xi of the original formula f we have a sensor si of sensing range m located
in position pi = ((2i − 1)m, (2i − 1)m), i.e., on the diagonal. Figure 6 illustrates the instance of
barrier coverage corresponding to the 3-SAT formula from Example 5 above. Each of the variables
xi,j , yi,j , zi,j is represented by a sensor of sensing range 1, denoted si,j , s

′
i,j , and s′′i,j respectively,

and is placed in such a manner that the sensors corresponding to variables associated with the
same si collectively cover the same parts of the two barriers as covered by sensor si. Furthermore,
sensors corresponding to variables that appear in the same clause of size three cover exactly the
same segment of a barrier. A sensor corresponding to a new variable xi,j that occurs in the pth
clause in f ′1 and in the qth clause in f ′2 is placed in position (2p − 1, 2q − 1). For example the
sensor s1,3 corresponding to the variable x1,3 appears in the second clause of f ′1 and the fifteenth
clause of f ′2, and hence is placed at position (3, 29). Similarly, the sensor s2,4 corresponding to the
variable x2,4 appears in the thirteenth clause of f ′1 and the fourth clause of f ′2, and hence is placed
at position (25, 7). A sensor corresponding to variable yi,j which occurs in the `th clause in f ′1 is
placed in position (2` − 1,−1) and sensor corresponding to variable zi,j which occurs in the `th
clause of f ′2 is placed in position (−1, 2`− 1).

Observe that in this assignment of positions to sensors, for any i, there is a one-to-one corre-
spondence between the line segments of length 2 in b1 and b2 and clauses in f ′1 and f ′2 respectively.
In particular, the sensors that potentially cover the line segment from (2i − 2, 0) to (2i, 0) on the
barrier b1 correspond to variables in clause i of f ′1. Similarly, the sensors that potentially cover the
line segment from (0, 2i− 2) to (0, 2i) on the barrier b2 correspond to variables in clause i of f ′2.

Assume f ′ is satisfiable, and consider a satisfying assignment for f ′. We move every sensor si
in P to the barrier b1 if the corresponding variable is assigned True and we move it to the barrier
b2 if the corresponding variable is assigned False. Since every variable in f ′ is set to either true
or false, every sensor in P will either move horizontally or vertically. Since every clause in f ′1 is
satisfied in the assignment, the corresponding sensor will cover the line segment from (2i− 2, 0) to
(2i, 0) of b1. With a similar argument it can be shown that every segment from (0, 2i− 2) to (0, 2i)
on b2 is also covered, and the assignment forms a covering assignment.

Now assume there is a covering assignment for P . For every variable in f ′ we set it to true if
the corresponding sensor moves to the barrier b1 in the covering assignment, and false otherwise.
From the construction of the arrangement we know that if a sensor covers the line segment from
(2i − 2, 0) to (2i, 0) in the covering assignment then the corresponding variable in f ′ satisfies the
clause i in f ′1. Since every such segment on b1 is covered, all clauses in f1 are satisfied. A similar
argument shows that all clauses of f ′2 are satisfied. Therefore f ′ evaluates to true and is satisfiable.

It follows from the proof that the problem is NP-complete even when the sensors are in integer
positions and the ranges are limited to two different sizes 1 and m. The proof works for m ≥ 4 since
it is easy to see that any instance of monotone 3-SAT problem can be transformed into one in which
no variable occurs more than 4 times. It is also clear from the proof that the perpendicularity of
the barriers is not critical. The key issue is that the order of intervals covered by the sensors in one
barrier has no relationship to those covered in the other barrier. In the case of parallel barriers,
this property does not hold. The exact characterization of barriers for which a polytime algorithm
is possible remains an open question.

We now turn our attention to restricted versions of barrier coverage of two perpendicular barriers
where a polytime algorithm is possible. For S a set of sensors, and barriers b1, b2, we call (S, b1, b2)
a non-overlapping arrangement if for any two sensors si, sj ∈ S, the intervals that are potentially
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Figure 6: Barrier coverage instance corresponding to the monotone 3-SAT instance of Example 1
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covered by s1 and s2 on the barrier b1 (and b2) are either the same or disjoint. This would be the
case, for example, if all sensor ranges are of the same diameter equal to 1 and the sensors are in
integer positions. We show below that for a non-overlapping arrangement, the problem of finding
a covering assignment is polynomial.

Theorem 7 Let S = {s1, s2, . . . , sn} be a set of sensors located in the plane in positions p1, p2, . . . , pn
and let b1 and b2 be two perpendicular barriers to be covered. If (S, b1, b2) form a non-overlapping
arrangement, then there exists an O(n1.5) algorithm that finds a covering assignment, using only
perpendicular movement or reports that none exists.

Proof. If there exists a segment of either of the barriers that is not covered by any of the
sensors, then clearly there is no covering assignment. Otherwise, the problem of finding a covering
assignment in this case can be reduced to the problem of maximum matching in a bipartite graph.
Create one node for each sensor and one node for each segment of each barrier that is potentially
covered by a sensor. Since (S, b1, b2) is a non-overlapping arrangement, the segments are disjoint
and together they cover both barriers. We put an edge between a node representing a barrier
segment and a node representing a sensor if the sensor can cover the segment. Clearly, the problem
of finding a covering assignment is equivalent to finding a matching in which each node representing
a segment of the barrier is matched with a node representing a sensor. Since each node representing
a sensor has degree two, this can be done in time O(n1.5) using the Hopcroft-Karp algorithm.

6 Conclusions

It is known that the problem of minimizing the maximum movement to cover a line segment barrier
when the sensors are initially located on the line containing the barrier is solvable in polynomial
time [3]. In contrast, our results show that the MinMax barrier coverage problem becomes NP-hard
when sensors of arbitrary ranges are initially located in the plane and are allowed to move to any
final positions on the barrier. It remains open whether this problem is polynomial in the case when
there is a fixed number of possible sensor ranges.

If sensors are restricted to use perpendicular movement, the feasibility, MinMax, and MinSum
problems are all polytime solvable for the case of k parallel barriers. However, when the barriers
are not parallel, even the feasibility problem is NP-hard, even when sensor ranges are restricted
to two sizes. It would be therefore interesting to study approximation algorithms for MinMax
and MinSum for this case. Characterizing the problems for which barrier coverage is achievable in
polytime remains an open question.
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