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On k-Gons and k-Holes in Point Sets
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Abstract

We consider a variation of the classical Erdős-Szekeres
problems on the existence and number of convex k-gons
and k-holes (empty k-gons) in a set of n points in the
plane. Allowing the k-gons to be non-convex, we show
bounds and structural results on maximizing and mini-
mizing their numbers. Most noteworthy, for any k and
sufficiently large n, we give a quadratic lower bound
for the number of k-holes, and show that this number
is maximized by sets in convex position. We also pro-
vide an improved lower bound for the number of convex
6-holes.

1 Introduction

Let S be a set of n points in general position in the
plane. A k-gon is a simple polygon spanned by k points
of S. A k-hole is an empty k-gon; that is, a k-gon which
contains no points of S in its interior.

Around 1933 Esther Klein raised the following ques-
tion which was (partially) answered in the classical pa-
per by Erdős and Szekeres [12] in 1935: “Is it true
that for any k there is a smallest integer g(k) such
that any set of g(k) points contains at least one con-
vex k-gon?” As observed by Klein, g(4) = 5, and
Kalbfleisch et al. [19] solved the more involved case of
g(5) = 9. The case k = 6 was only solved as recently as
2006 by Szekeres and Peters [23]. They showed that
g(6) = 17 by an exhaustive computer search. The
well known Erdős–Szekeres Theorem [12] states that
g(k) is finite for any k. The current best bounds are
2k−2 + 1 ≤ g(k) ≤

(
2k−5
k−2

)
+ 1 for k ≥ 5; see [13, 24].
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Erdős and Guy [11] posed the following generaliza-
tion: “What is the least number of convex k-gons de-
termined by any set S of n points in the plane?” The
trivial solution for the case k = 3 is

(
n
3

)
. But for convex

4-gons this question is related to the search for the rec-
tilinear crossing number c̄r(S) of S; see the next section
for details.

In 1978 Erdős [9] raised the following question for
convex k-holes: “What is the smallest integer h(k) such
that any set of h(k) points in the plane contains at
least one convex k-hole?” As had been observed by
Esther Klein, every set of 5 points determines a convex
4-hole, and 10 points always contain a convex 5-hole, a
fact proved by Harborth [17]. However, in 1983 Hor-
ton showed that there exist arbitrarily large sets of
points containing no convex 7-hole [18]. It took al-
most a quarter of a century after Horton’s construc-
tion to answer the existence question for 6-holes. In
2007/08 Nicolás [21] and independently Gerken [16]
proved that every sufficiently large point set contains
a convex 6-hole.

Erdős also proposed the following variation of the
problem [10]. “What is the least number hk(n) of
convex k-holes determined by any set of n points in
the plane?” We know by Horton’s construction that
hk(n) = 0 for k ≥ 7. Table 1 shows the current best
lower and upper bounds for k = 3 . . . 6; see [4, 5, 7, 14]
and Section 6.

n2 −O(n)≤ h3(n) ≤ 1.6196n2 + o(n2)
n2

2
−O(n)≤ h4(n) ≤ 1.9397n2 + o(n2)
3bn−4

8
c ≤ h5(n) ≤ 1.0207n2 + o(n2)

bn−1
858
c − 2≤ h6(n) ≤ 0.2006n2 + o(n2)

Table 1: Bounds on the number hk(n) of convex k-holes.

In this paper we generalize the above questions by
allowing k-gons and k-holes to be non-convex. Thus
whenever we refer to a (general) k-gon or k-hole, unless
it is specifically stated to be convex or non-convex, it
could be either. We remark that in some related litera-
ture, k-holes are assumed to be convex.

A set of k points in convex position obviously spans
precisely one convex k-hole. In contrast, a point set
might admit exponentially many different polygoniza-



23d Canadian Conference on Computational Geometry, 2011

numbers of k-gons numbers of k-holes

convex non-convex general convex non-convex general
min max min max min max min max

k=4
c̄r(n)
Θ(n4)

3
(
n
4

)
−3c̄r(n)

Θ(n4)

(
n
4

)
Θ(n4)

3
(
n
4

)
−2c̄r(n)
Θ(n4)

≥ n2

2
−O(n)

≤ 1.9397n2+o(n2)
Θ(n2) [5, 7]

≤ n3

2
−O(n2)

≥ n3

2
−O(n2 logn)

Θ(n3) [3]

≥ 5
2
n2−O(n)

≤ n3

2
+O(n2)

Ω(n2) [3], O(n3) [Sec. 5]

(
n
4

)
Θ(n4) [3]

k=5 Θ(n5) [6]
10

(
n
5

)
−2(n−4)c̄r(n)
Θ(n5) [4]

(
n
5

)
Θ(n5) [4]

Θ(n5)
[Sec. 2]

≥ 3bn−4
8
c

≤ 1.0207n2+o(n2)
Ω(n) [4], O(n2) [5]

≤ n!/(n−4)!
Θ(n4) [Sec. 4]

≥ 17n2−O(n)

≤O(n
7
2 )

Ω(n2) [4], O(n
7
2 ) [Sec. 5]

(
n
5

)
Θ(n5) [4]

k≥6 Θ(nk) [6]
Θ(nk)
[Sec. 2]

(
n
k

)
Θ(nk)
[Sec. 2]

Θ(nk)
[Sec. 2]

k=6:≥ bn−1
858
c − 2

O(n2) [5]
Ω(n) [Sec. 6]

k≥7: ∅ [18]

≤ n!/(n−k+1)!

Θ(nk−1) [Sec. 4]

≥ n2−O(n)

≤O(n
k+2
2 )

Ω(n2), O(n
k+2
2 ) [Sec. 5]

(
n
k

)
Θ(nk)
[Sec. 3]

Table 2: Bounds on the numbers of convex, non-convex and general k-gons and k-holes for n points and constant k.

tions (spanning cycles) [8, 15, 22], which implies that
the number of k-gons and k-holes can be larger than(
n
k

)
. This makes questions like minimizing or maximiz-

ing the number of non-convex and general k-holes more
challenging than they might appear at first glance.

Table 2 summarizes known bounds on the numbers
of k-gons and k-holes, including the results of this pa-
per. Every entry in the table shows lower and upper
bounds, also in explicit form if available. Among other
results, we generalize properties concerning 4-holes [3]
and 5-holes [4] to k ≥ 6. In Section 2 we give asymp-
totic bounds on the number of non-convex and general
k-gons. In Section 3 we consider (general) k-holes. We
show that for sufficiently small k their number is maxi-
mized by sets in convex position, which is not the case
for large k. Section 4 provides a tight bound for the
maximum number of non-convex k-holes, and Section 5
contains bounds for the minimum number of general
k-holes. In Section 6 we improve the lower bound for
convex 6-holes, and we conclude with open problems in
Section 7.

2 General k-gons

For non-convex k-gons of small cardinalty their number
can be related to the rectilinear crossing number c̄r(S)
of a set S of n points in the plane. This is the number
of proper intersections in the drawing of the complete
straight line graph on S. By c̄r(n) we denote the mini-
mum possible rectilinear crossing number over all point
sets of cardinality n. Determining c̄r(n) is a well known
problem in discrete geometry; see [6, 11] as general ref-
erences and [2] for bounds on small sets. Asymptotically
we have c̄r(n) ≈ 0.38

(
n
4

)
= Θ(n4) [1].

It is easy to see that the number of convex 4-gons
is equal to c̄r(S) and is thus minimized by sets real-
izing c̄r(n). Moreover, as four points in non-convex
position span three non-convex 4-gons, we have at
most 3

(
n
4

)
−3c̄r(n) ≈ 1.86

(
n
4

)
non-convex and at most

3
(
n
4

)
−2c̄r(n) ≈ 2.24

(
n
4

)
general 4-gons. All these bounds

are tight for point sets which minimize the rectilinear
crossing number.

A similar relation has been obtained for the number
of non-convex 5-gons in [4]: Any set of n points has at
most 10

(
n
5

)
−2(n−4)c̄r(n) ≈ 6.2

(
n
5

)
non-convex 5-gons,

and again this bound is obtained for sets minimizing
the rectilinear crossing number. Note that this number
exceeds the maximum number of convex 5-gons. For
the number of general 5-gons, and for non-convex and
general k-gons with k ≥ 6, no such direct relations to
c̄r(n) are possible.

n
2 points

n
2 points

Figure 1: The so-called double chain DC(n).

Polygonizations, also called spanning cycles, can be
considered as k-gons of maximal size (i.e., k = n).
Garćıa et al. [15] construct a point set with Ω(4.64n)
spanning cycles, the so-called double chain DC(n),
which is currently the best known example; see Fig-
ure 1. The upper bound on the number of spanning
cycles of any n-point set was improved several times
during the last years, most recently to O(70.21n) [22]
and O(68.664n) [8], neglecting polynomial factors in the
asymptotic expressions. The minimum is obtained by
point sets in convex position, which have exactly one
spanning cycle.

For the number of general k-gons this implies a
lower bound of

(
n
k

)
, as well as an upper bound of

O
(
68.664k

(
n
k

))
. For constant k, we obtain Θ(nk). On
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the other hand, the double chain provides Ω(nk) non-
convex k-gons, where k ≥ 4 is again a constant. To
see this, choose one vertex from the upper chain of
DC(n) and k − 1 ≥ 3 vertices from the lower chain of
DC(n), and connect them to a simple, non-convex poly-

gon. This gives at least n
2

(
n/2
k−1
)

= Ω(nk) non-convex
k-gons. As the lower bound on the maximal number
of non-convex k-gons asymptotically matches the upper
bound on the maximal number of general k-gons, we get
our first result.

Lemma 1 Let S be a set of n points in the plane in gen-
eral position and k ≥ 3 a constant. Then the maximum
number of non-convex k-gons in S is Θ(nk) and the
maximum number of general k-gons in S is also Θ(nk).

3 Maximizing the number of (general) k-holes

In [3] it is shown that the number of 4-holes is max-
imized for point sets in convex position if n is suffi-
ciently large. It was conjectured that this is true for
any constant k ≥ 4. The following theorem settles this
conjecture in the affirmative.

Theorem 2 For every k ≥ 4 and n ≥ 2(k−1)!
(
k
4

)
+k−1,

the number of k-holes is maximized by a set of n points
in convex position.

Proof. Every non-convex k-hole has as its vertex set a
non-convex k-tuple, and every non-convex k-tuple has
at least one triangle formed by three extreme points
(i.e., points on the convex hull of the k-tuple) that con-
tains points of the k-tuple in its interior. So consider
such a non-empty triangle ∆. We count the number of
non-convex k-holes having the three vertices of ∆ as ex-
treme points. Note that any such k-hole can be reduced
to a (not necessarily simple) non-empty (k−1)-gon by
removing a reflex vertex from its boundary.

Denote by K the set of (not necessarily simple) non-
empty (k−1)-gons having the vertices of ∆ on their
convex hull. First, |K| can be bounded from above by
the number of (not necessarily simple) possibly empty
(k−1)-gons having the three vertices of ∆ on their

boundary, which is (k−2)!
2

(
n−3
k−4
)
.

Further, every (k−1)-gon in K can be completed to
a (simple) non-convex k-hole in at most k−1 ways by
adding a reflex vertex. Thus the number of non-convex
k-holes having all vertices of ∆ on their convex hull is
bounded from above by

(k − 1)
(k − 2)!

2

(
n− 3

k − 4

)
=

(k − 1)!

2

(
n− 3

k − 4

)
.

Considering convex k-holes, observe that every k-
tuple gives at most one convex k-hole. Denote by N the
number of k-tuples that do not form a convex k-hole,
and by T the number of non-empty triangles. Then we

get (1) as a first upper bound on the number of (general)
k-holes of a point set.(

n

k

)
−N +

(
(k − 1)!

2

(
n− 3

k − 4

))
· T (1)

To obtain an improved upper bound from (1), we need
to derive a good lower bound for N . To this end, con-
sider again a non-empty triangle ∆. As ∆ is not empty,
none of the

(
n−3
k−3
)
k-tuples that contain all three vertices

of ∆ forms a convex k-hole. On the other hand, for such
a k-tuple, all of its

(
k
3

)
contained triangles might be non-

empty. We obtain T ·
(
n−3
k−3
)
/
(
k
3

)
as a lower bound for

N , and thus (2) as an upper bound for the number of
k-holes.(

n

k

)
+

(
(k − 1)!

2

(
n− 3

k − 4

)
−
(
n−3
k−3
)(

k
3

) ) · T (2)

For n ≥ 2(k − 1)!
(
k
4

)
+ k − 1 this is at most

(
n
k

)
, the

number of k-holes of a set of n points in convex position,
which proves the theorem. �

The above theorem states that convexity maximizes
the number of k-holes for k = O( logn

log logn ) and suffi-
ciently large n. Moreover, the proof implies that any
non-empty triangle in fact reduces the number of empty
k-holes. Thus it follows that, for k = O( logn

log logn ) and
n sufficiently large, the maximum number of convex
k-holes is strictly larger than the maximum number of
non-convex k-holes; see also the next section.

At the other extreme, for k≈n the statement does not
hold: As already mentioned in the introduction, a set
of k points spans at most one convex k-gon, but might
admit exponentially many different non-convex k-gons.

Theorem 3 The number of k-holes in the double chain
DC(n) on n points is at least(n−4

2
n−k
2

)
· n− k + 2

2
· Ω(4.64k).

Proof. Recall that DC(n) admits Ω(4.64n) polygo-
nizations. Thus, for a double chain on k points
(k/2 points on each chain), we have Ω(4.64k) different
k-polygonizations. We distribute the remaining n − k
points among all possible positions, meaning that for
each k-polygonization, we obtain the double chain on
n points with a k-hole drawn, as shown in Figure 2.

In their proof, Garćıa et al. count paths that start at
the first vertex of the upper chain and end at the last
vertex of the lower chain. Before the first vertex on the
lower chain, they add an additional point q to complete
these paths to polygonizations. We slightly extend this
principle, by also adding an additional point p on the
upper chain after the last vertex. Then we complete
each path C to a polygonization in one of the following
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p1 p

pk
2−1

qk
2−1

q1
q

Pp

p1 p

pk
2−1

qk
2−1

q1
q

Pq

Figure 2: Two ways to complete a path to a polygoniza-
tion.

ways: Either we add p to C directly next to p k
2−1

and

then complete C via q, obtaining Pq, or we add q to C
directly next to q1, and close the polygonization via p,
obtaining Pp.

Note that this changes the number of polygonizations
only by a constant factor and thus does not influence
the asymptotic bound. However, the interior of Pq is
the exterior of Pp, meaning that if we place a point
somewhere on the double chain and it lies inside Pq,
then it lies outside Pp, and vice versa. It follows that, in
one of the two polygonizations, at least half of the k+ 2
positions to insert points are outside the polygonization.
Hence we can distribute the n−k

2 points on each chain

to at least k
2 + 1 possible positions in total. Now, on

one of the two chains we have at least k
4 + 1 positions;

see again Figure 2. More precisely, there are k
4 + j + 1

positions on this chain (where 0 ≤ j < k
4 ), and on the

other chain there are (at least) max{2, k
4 − j} positions.

Using this, we obtain(n−k
2 + k

4 +j
n−k
2

)
·max

{(n−k
2 +1
n−k
2

)
,

(n−k
2 + k

4−j−1
n−k
2

)}
possibilities to place the remaining points on the two
chains. This factor is minimized for j = k

4 − 2, which
yields the claimed lower bound for the number of k-holes
of DC(n). �

4 An upper bound for non-convex k-holes

The following theorem shows that, asymptotically, the
maximum number of non-convex k-holes is smaller than
the maximum number of convex k-holes.

Theorem 4 For any constant k ≥ 3, the number of
non-convex k-holes in a set of n points is bounded by
O(nk−1) and there exist sets with Θ(nk−1) non-convex
k-holes.

Proof. We first show that there are at most O(nk−1)
non-convex k-holes by giving an algorithmic approach
to generate all non-convex k-holes. We represent a non-
convex k-hole by the counter-clockwise sequence of its
vertices, where we require that the last vertex is reflex.
Note that any non-convex k-hole has r ≥ 1 such repre-
sentations, where r is the number of its reflex vertices.
Thus the number of different representations is an upper
bound on the number of non-convex k-holes.

We have n possibilities to choose the first vertex v1,
n−1 for the second vertex v2, and so on. Several of the
sequences obtained might lead to non-simple polygons,
but we are only interested in an upper bound. For the
second-last vertex vk−1 we have n− k + 2 possibilities,
but the last vertex vk is uniquely defined. As vk is
required to be reflex and the polygon has to be empty,
we have to use the inner geodesic connecting vk−1 back
to v1. Only if this geodesic contains exactly one point,
namely vk, we do obtain one non-convex k-hole (again
ignoring possible non-simplicity). Thus we obtain at
most n!/(n−k+1)! = O(nk−1) non-convex k-holes.

Figure 3: A set with Θ(nk−1) non-convex k-holes.

For an example which achieves this bound see Fig-
ure 3. Each of the four indicated groups of points con-
tains a linear fraction of the point set; e.g. n

4 points.
It is sufficient to only consider the k-holes with trian-
gular convex hull of the type indicated in the figure,
which sums to Ω(n3 ·

(
n

k−4
)
) = Ω(nk−1) non-convex

k-holes. �

5 On the minimum number of (general) k-holes

Every set of k points admits at least one polygonization.
Using this obvious fact, we obtain the following result.

Theorem 5 Let S be a set of n points in the plane in
general position. For every c < 1 and every k ≤ c · n, S
contains Ω(n2) k-holes.
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Proof. We follow the lines of the proof of Theorem 5
in [3]. Consider the point set S in x-sorted order,
S = {p1, . . . , pn}, and sets Si,j = {pi, . . . , pj} ⊆ S. The
number of sets Si,j of cardinality at least k is

n−k+1∑
i=1

n∑
j=i+k−1

1 =
(n− k + 1)(n− k + 2)

2
= O(n2).

For each Si,j use the k− 2 points of Si,j\{pi, pj} which
are closest to the segment pipj to obtain a subset of k
points including pi and pj . Each such set contains at
least one k-hole which has pi and pj among its vertices.
Moreover, as pi and pj are the left and rightmost points
of Si,j , they are also the left and rightmost points of
this k-hole. This implies that any k-hole of S can count
for at most one set Si,j , which gives a lower bound of
Ω(n2) for the number of k-holes in S. �

Theorem 6 For every constant k ≥ 4 and every
n = m2 ≥ k, there exist sets with n points in general po-
sition that admit at most O(n2(

√
n log n)k−3) k-holes.

Proof. The point set S we consider is the squared Hor-
ton set of size

√
n × √n; see [25]. Roughly speaking,

S is a grid which is perturbed such that every set of
originally collinear points forms a Horton set. It can
be shown that for any two points p, q ∈ S, the num-
ber of empty triangles in S that contain the edge pq is
O(
√
n log n), regardless of the choice of p and q; details

will be given in the full version of this paper.
To estimate the number of k-holes in S, we will use

triangulations and their dual: For a triangulation of
a k-hole, the dual is a binary tree where every node
represents a triangle. It can be rooted at any triangle
that has an edge on the boundary of the k-hole; see [20].

It is well known that there are Ck−2 = O(4k ·k− 3
2 ) such

rooted binary trees [20]. Although exponential in k, this
bound is constant in the size n of S.

Now pick an empty triangle ∆ in S and an arbitrary
rooted binary tree B. Consider all k-holes which con-
tain ∆ and admit a triangulation that is represented
by B rooted at ∆. As the number of empty triangles
incident to an edge in S is O(

√
n log n), each of the n−3

edges in B yields O(
√
n log n) possibilities to continue

a triangulated k-hole, and we obtain an upper bound
of O((

√
n log n)k−3) for the number of triangulations of

k-holes for ∆ that represent B.
Multiplying this by the (constant) number of rooted

binary trees of size k−2 does not change the aysmptotics
and thus yields an upper bound of O((

√
n log n)k−3) for

the number of all triangulations of all k-holes contain-
ing ∆. As any k-hole can be triangulated, this is also an
upper bound for the number of k-holes containing ∆.

Finally, there are O(n2) empty triangles in S (see
again [5]), and thus we obtain O(n2(

√
n log n)k−3) as

an upper bound for the number of k-holes in S. �

Note that the Horton set has Ω(n3) 4-holes. A general
super-quadratic lower bound for the number of 4-holes
would solve a conjecture of Bárány to the positive, show-
ing that every point set contains an edge that spans a
super-constant number of 3-holes; see e.g. [6], Chap-
ter 8.4, Problem 4. This would also imply a quadratic
lower bound for the number of convex 5-holes. So far,
not even a super-linear bound is known for the latter
problem [6].

6 An improved lower bound for convex 6-holes

Gerken [16] showed that each set of at least 1717 points
in general position contains a convex 6-hole. This imme-
diately implies that each set of n points contains a linear
number of convex 6-holes, namely at least b n

1717c. In the
following we slightly improve on this bound. We start
by showing a result for monochromatic convex 6-holes
in two-colored point sets.

Lemma 7 Each set of r red points and b blue points in
general position in the plane with r ≥ 1716

⌈
b
2

⌉
+ 1717

contains a convex red 6-hole.

Proof. Consider a non-crossing perfect matching of the
blue points; if b is odd, then allow one isolated point p.
We extend the segments (in both directions) one by one,
until each segment either hits another segment, the line
of a previously extended segment or goes to infinity. If
b is odd, we take an arbirtary segment through p and
extend it as well. Altogether, this results in a decom-
position of the plane into

⌈
b
2

⌉
+ 1 convex regions. As

the red points lie inside these regions, it follows by the
pigeon-hole principle that at least one of these regions
contains 1717 red points, and thus a red convex 6-hole
by [16]. �

Theorem 8 Each set S of n points in general position
in the plane contains at least bn−1858 c − 2 convex 6-holes.

Proof. We prove the statement by contradiction. As-
sume that the point set S contains strictly less than
bn−1858 c− 2 convex 6-holes, and color the points of S red.
Now we eliminate all red convex 6-holes by placing an
additional blue point inside each of them, such that the
resulting two-colored point set is in general position.
By this, at most b ≤ bn−1858 c − 3 blue points are added.
Therefore the number n of red points is at least

n ≥ 858(b + 3) + 1 ≥ 1716

⌈
b

2

⌉
+ 1717.

By Lemma 7, any such two-colored point set contains a
convex red 6-hole, a contradiction. �
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7 Conclusion

We have shown various lower and upper bounds on the
numbers of convex, non-convex, and general k-holes and
k-gons in point sets. Several questions remain unset-
tled. For example, some of the presented bounds are not
tight, like the classic question for the minimum number
of convex k-holes for k ≤ 6. Maybe the most intriguing
open question in this context is whether there exists a
super-quadratic lower bound for the number of general
k-holes for k ≥ 4.
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[14] A. Garćıa. A note on the number of empty triangles.
In Proc. XIV Encuentros de Geometŕıa Computacional
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