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Abstract
Let F={P1,...,Pm}  be a family of sets. A partial order P(F, <) on F  is naturally defined by the

condition Pi< Pj iff Pi  is contained in  Pj.  When the elements of F are disks (i.e. circles together with

their interiors), P(F, <) is called a circle order; if the elements of F are n-polygons, P(F, <) is called

an n-gon order. In this paper we study circle orders and n-gon orders.  The crossing number of a

partial order introduced in [5] is studied here. We show that for every n, there are partial orders with

crossing number n. We prove next that the crossing number of circle orders is at most 2 and that the

crossing number of n-gon orders is at most 2n. We then produce for every n≥4 partial orders of

dimension n which are not circle orders.  Also for every n≥3, we prove that there are partial orders of

dimension 2n+2 which are not n-gon orders. Finally we prove that every partial order of dimension ≤

2n is an n-gon order.
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1.  Introduction.
The study of simple geometric figures, such as points, circles and polygons has been
the source of many interesting and important results since the beginnings of
mathematics. The study of incidence relations in collections of points, lines and
circles are found in books as far back as the famous Elements of Euclid. When
dealing with families of simple geometric objects such as circles, polygons, and so
on, a basic problem is that of determining the containment relations among the
elements of the set.   In this paper, we will study partial orders arising from
containment problems of families of simple objects on the plane.
Let F={P1,...,Pm} be a family of sets. A partial order P(X, <) on a set X={x1,...,xm}
is said to represent  F  if xi< xj iff Pi  is contained in Pj; P(X, <) is called the
containment partial order of F. Conversely, we say that F is a realization of P(X,
<).  Every partial order P(X, <) on a set X is the containment partial order of at least
one family of sets. This is easily seen by associating with each element x Œ X the set
S(x)={y Œ X: y<x} » {x}. Then P(X, <) is the containment partial order of F={S(x):
x Œ X}. When the elements of F are intervals on the real line, the partial orders thus
obtained are exactly all partial orders of dimension 2 (See[2]). In [4] it was proved
that partial orders of dimension 2n correspond to families of n-boxes in R2n. When
the elements of F are arcs of a circle, we obtain circular permutation graphs (See[7]).
In this paper we study partial orders arising from families of circles and convex
polygons with n sides, n≥3.
 When the elements of F are disks, that is circles together with their interiors, P(X,
<) is called a circle order; if the elements of F are convex n-polygons, P(X, <) is
called an n-gon order. The problem of characterizing circle orders or n-gon orders
seems to be very hard. At present, we do not even know if all partial orders of
dimension 3 are circle orders.
In section 2 of this paper, we study the crossing number of a partially ordered set.
We show that for every n, there exist partial orders with dimension n and crossing
number n-1, n≥1. This solves a problem presented in [5].
In section 3, we study circle orders. We show that the crossing number of circle
orders is at most 2.We present a 14 element poset with dimension 4 which is not a
circle order. This is the smallest poset known to us that is not a circle order.

In section 4, we show that the crossing number of n-gon orders is at most 2n. We then
show partial orders of dimension 2n+2 with (2n +2) + C(2n+2,n+1) elements and
crossing number 2n+1 which are not n-gon orders, n≥3 (where C(i,j) is the binomial



coefficient i choose j).
Finally in section 5 we prove that all posets with dimension ≤ 2n are n-gon orders,
n≥3. For the case n=2 our result easily implies a result by Fishburn and Trotter [3],
namely that all posets with dimension ≤ 4 are angle orders. We shall use the terms
circle and n-gon to denote either the circle (n-gon) or the circle (n-gon) with its
interior.  In context no ambiguity will result.

 1.2  Preliminaries and Definitions.

A binary relation < over a set X defines a partial order P(X,<) on X if for any
x,y,zŒX it satisfies

(i)   x<y, y<z implies x<z (transitivity), and
(ii)  x<x (antisymmetry).
The partially ordered set P(X,<) is a linear order if it also satisfies
(iii) x<y or y<x for all x,y Œ X.

Let P(X,<) be a poset.  A realizer of P of size  k   is a collection of linear orders
{L1(X,<1) ,  L2(X,<2) , . . . ,  Lk(X,<k) }  s u c h  t h a t
L1(X,<1)«L2(X,<2)«...«Lk(X,<k)=P(X,<),  where the intersection is defined by x<y
iff x<iy  for all i.
It can be easily proved that every poset can be obtained as the intersection of a
number of linear orders.  Dushnik and Miller [1] define the dimension of P, denoted
dim P, to be the size of the smallest possible realizer of P. Such a realizer is called a
minimum realizer of P.
Let x={f1,…,fm}  be a family of continuous functions fi:[0,1]∅¨ , i=1…m. The
family x={f1,…,fm} is called proper if the following conditions are satisfied:

a) For any pair of elements fi, fj Œ x, i≠j, the set of values S(i,j)={pŒ[0,1] :
fi(p)=fj(p)} is finite.
b) fi(0)≠fj(0), fi(1)≠fj(1); i≠j.
c) Each time the graphs of two functions intersect, they cross each other; that is if

for some p Œ [0,1] we have fi(p)=fj(p), then there exists an e>0 such that for p-e<a<
p<b< p+e, fi(a)<fj(a) and fi(b)>fj(b) or fi(a)>fj(a) and fi(b)<fj(b).

Informally speaking, a set of functions x={f1,…,fm} is proper if the graphs of any two



elements fi, fj Œ x intersect a finite number of times and each time they intersect, they
cross each other.
Let X={x1,…,xm} be a set, and P(X,<) a partial order on X. P(X,<) is called a
function order (f-order for short) if there exists a proper set of functions x={f1,…,fm}
such that  xi < xj if fi(p)<fj(p) for all p Œ [0,1]. The set of functions x={f1,…,fm} will
be called an f-diagram for P(X,<). We will also say that P(X,<) represents x. It is
easy to prove that every poset is an f-order.

2. The Crossing Number of a Partial Order.

Given two functions fi, fj of an f-diagram x={f1,…,fm}, let S(i,j)={pŒ[0,1]:
fi(p)=fj(p)}. The crossing number c(x) is now defined as the maximum over the set
{|S(i,j)|:  fi, fj Œ x}; that is the maximum number of times two elements of x intersect.
The crossing number c(P(X,<)) of a poset P(X,<) is now defined as  min{c(x):  x is
an f-diagram for P(X,<)} . Notice that if c(P(X,<))=0, then P(X,<) has an f-diagram x
in which no pair of functions of x intersect, thus P(X,<) is a linear order. It is also
easy to prove that if c(P(X,<))=1, then the dim P(X,<) is 2.

We now consider a special type of f-diagrams in which the curves are piecewise
linear.  Let X={x1,...,xm} and {L1(X,<1), L2(X,<2),..., Lk(X,<k)} be a realizer of
P(X,<). Each linear extension Li(X,<i) of P(X,<) induces a permutation  p i on
{1,...,m}, i=1,...,k. Consider k vertical lines L1, L2, . . . , L k such that each Li is
labelled from bottom to top by pi, i=1,...,k. For each j (1 ≤ j ≤ m) the curve fj consists
of the union of the k line segments which join i on Li with i on Li+1, 1 ≤ i ≤ k-1 (See
fig. 1). The next result follows easily [5]:



5

4

3

2

1

3

5

4

2

1

3

4

2

5

1

4

3

5

1

2

Figure 1.
Lemma 2.1: The crossing number c(P(X,<)) of a poset of dimension n is at most

n-1.

We now study some properties of a specific poset. Let Hn(Y,<) be the poset with
elements Y={u1,…,un ,v1,…,vn }  such that ui<vj , i≠j, and all other pairs of elements
in  Y  are not comparable. Hn(Y,<) is called the "standard" n-dimension poset. It is
well known that the dimension of Hn(Y,<) is n. In [5] it was proved that the crossing
number of  Hn(Y,<) is 2, n≥3 (See fig. 2).

In the same paper, the problem of finding posets P  with c(P)=n for every n≥3  was
posed. In the rest of this section we will show that for every n≥3 there exist posets
with crossing number n. Furthermore for every n, we will construct posets with
dimension n+1 and crossing number n. Some preliminary results will be required.
The following well-known property of Hn(Y,<) will be useful:

i ) In any linear extension of Hn(Y,<), there exists at most one index i such that ui
>vi  and for any k, l≠i,  uk <vl.
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 (a) The standard poset Hn(Y,<) on 2n vertices.

(b) An f-diagram for Hn(Y,<) with crossing number 2.
Figure 2.

Let  x be an f-diagram for a poset P(X,<)  and  pŒ[0,1] such that for any fi, fj
Œx, fi(p)≠fj(p), i≠j. Then p induces a linear extension G(p) of P in which xi < xj if
fi(p)<fj(p).  When p=0, 1, G(0) and G(1) will be called the initial and final linear
extensions of P(X,<) with respect to x. The following observation will be used later:

ii) Let x be an f-diagram represented by a poset P(X,<) and fi, fj Œ x such that fi, fj
represent elements which are not comparable in P(X,<), that is the graphs of fi and
fj  intersect. Then there exists p Œ [0,1] such that fi(p)< fj (p); moreover p can be
chosen in such a way that  p induces a linear extension G(p) of P(X,<).

The next result follows trivially.

Lemma 2.2.  Let x ={f1,…,fn,g1,…,gn}  be any f-diagram for Hn(Y,<) in which ui
is represented by fi and vi is represented by gi respectively, i=1,…,n. Then there exist
n different points p1,p2,…,pn such that g1(p1)< f1(p1), g2(p2)< f2(p2),…, gn(pn)<
fn(pn).

For every n≥4, let Yn be the poset obtained from Hn(Y,<) as follows: For each
subset Sk of {1,…,n}   with exactly În/2˚ and  Î(n+1)/2˚ elements (if n is even both
values are the same, if n is odd they are different), insert in Hn(Y,<) a new element sk
such that sk>uj, j Œ Sk , sk< vi, i œ Sk and finally if Sk ⊇ Sk' then sk>sk' (See fig. 3 ).



Lemma 2.3. The dimension of Yn is n.

Proof: To prove this we notice that Yn is contained in the poset 2n (under
containment) which has dimension n. To see this, let ui represent the set {i}, vi be the
subsets {1,2,…,n} -{i} and sk the subset Sk of {1,2,…,n}. The result now follows
from the well known result that dim 2n is n.

[]
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Figure 3.

Theorem 2.1. The crossing number of Yn is n-1.

Proof: Let x ' be an f-diagram for Y n in which ui is represented by fi, vi is
represented by gi, i=1,…,n and vertices sk are represented by functions hk. Clearly x'
contains an f-diagram x for Hn(Y,<) (the one obtained considering the f and g
functions only). By Lemma 2.2, there exist n different points p1,p2,…,pn such that
g1(p1)< f1(p1), g2(p2)< f2(p2),…, gn(pn)< fn(pn). Let us assume without loss of
generality that p1<p2<…<pn. Let Sk={1,3 ,5,…} and Sk'={1,…,n } - Sk={2,4 ,6,…}.
We now prove that the graphs of hk and hk' intersect in at least n-1 points. To see this,
notice that since Sk={1, 3 , 5 ,…}, sk<v2,v4  ,v6,… . Then hk(x)<gi(x) for all xŒ[0,1],
i=2,4,6,… . Moreover since sk>u1,u3  ,u5,… , it follows that hk(x)>fi(x) for all
xŒ[0.1], i=1,3,5,… . Similarly, we can prove that hk'(x)>fi(x), i=2,4,6,… and
hk'(x)<gi(x), i=1,3,5,… . Hence for i=1,3,5,… we have hk'(pi)< gi(pi)< fi(pi)< hk(pi),
i.e. hk'(pi)< hk(pi). Similarly hk(pi)< gi(pi)< fi(pi)< hk'(pi), i.e. hk(pi)< hk'(pi),



i=2,4,6,… . However since p1<p2<…<pn, hk intersects hk' in each interval (pi,pi+1),
i=1,…,n-1, i.e. hk intersects hk' at least n-1 times. Then   c(Yn )≥ n-1. But by lemma
2.3 dim Yn=n, and by lemma 2.1 c(Yn)≤n-1. Therefore c(Yn)=n-1.

[]

3. Circle Orders.
Let X={x1,…,xm}  be a set, and P(X,<) a partial order on X. P(X, <) is called a

circle order if  there exists a family F={P1,...,Pm}  of circles in the plane such that xi
< xj  iff circle Pi is contained inside Pj. F={P1,...,Pm}  is called a normal
representation of P(X,<) if  int(P1)«…«int(Pm)≠∅; where int(S) denotes the interior
of S.

The next result follows:

Lemma 3.1. Any circle order P(X,<) has a normal representation.

Proof:  Let F={P1,...,Pm} be a circle representation of P(X,<). Let a be the
maximum distance between the centers of pairs of circles in F. For any circle Pi with
radius ri in F, let Pi(2a) be the circle concentric with Pi with radius ri+2a. Then Pi is
contained inside Pj if and only if Pi(2a )  is contained in Pj(2a). Hence
F'={P1(2a),...,Pm (2a)}  is also a circle representation for P(X,<). It is now easy to
see that F'={P1(2a),...,Pm (2a)} is a normal representation of P(X,<).

[]

Theorem 3.2. The crossing number of a circle order is at most two.

Proof:  Let F ={P1,...,Pm} be a normal representation of a circle order P(X,<). Let
Q be a point in the common intersection of P1,...,Pm and LQ a ray starting at Q which
does not meet any point in which two circles of F ={P1,...,Pm}  intersect (See fig. 4).
Then using what in topology is known as surgery, cut the plane along  LQ and stretch
it so that one side of the cut goes to the Y-axis and the other to the line x=1. Then we
obtain an f-diagram x for P(X,<) in which every circle Pi of F  is mapped into a
function fi (See fig. 4). Moreover, since any two circles intersect in at most two
points, any two functions of x intersect in at most two points. Then c(x)=2 and
c(P(X,<))≤2.

[]
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Figure 4.

As a consequence we obtain the following result:

Theorem 3.3. For every n≥4 there are partial orders of dimension n which are not
circle orders.

Proof: The crossing number of Yn is n-1>2, n≥4.
[]

For n=4, this proves that Y4 is not a circle order. It is easy to verify that Y4 is
critical in the sense that if we delete any element from it, the partial order thus
obtained becomes a circle order. Moreover, Y4 is the smallest partial order known to
us that is not a circle order. We conjecture that Y4 is the smallest poset which is not a
circle order.

4. N-gon Orders.

Let X={x1,…,xm}  be a set, and P(X,<) a partial order on X. P(X, <) is called an n-
gon order if  there exists a family F={P1,...,Pm}  of n-polygons on the plane such that
xi < xj if polygon Pi is contained in Pj. We will assume that each time two polygons
intersect, they cross each other (as we did in the definition of normal families of
functions) and that no vertex belongs to two different elements of F. For the case
when the elements of F={P1,...,Pm} are triangles, P(X,<) is called a triangle order.
We can now prove the following result:



Theorem 4.1. The crossing number of n-gon orders is at most 2n.

Proof:  We will prove our result for the case when P(X,<) is a triangle order. The
general case can be easily obtained from this case. We first notice that the boundaries
of two different triangles intersect in at most six points. Thus if P(X,<) has a normal
representation, the result follows in the same fashion as in theorem 3.2. Suppose then
that P(X,<)  has a non-normal representation F={P1,...,Pm} .  For each triangle Pi Œ

F let Pi(a)={(x, y)ŒR2: the Euclidian distance between (x, y) and Pi is smaller than
or equal to a} . Then for any two triangles Pi ,Pj Œ F there exists a number b  large
enough that Pi(b)´Pj(b)≠∅  and the boundaries of Pi(b) and Pj(b) intersect in at
most six points. Furthermore if Pi is contained in Pj  then Pi(b) is also contained in
Pj(b). Let C be a circle of radius a  that contains all the elements of F. Then
P1(a)´P2(a)´…´Pm(a)≠∅. Moreover, the boundaries of P1(a),P2(a),…,Pm(a)
form closed curves such that any pair of them intersect in at most six points. Using
surgery again, we obtain an f-diagram x for P(X,<) with crossing number at most six.
The proof generalizes easily for n-gons, thus obtaining the desired result.

[]
Using similar arguments as in Theorem 3.3 we obtain the following result:

Theorem 4.2. For every n there are partial orders of dimension 2n+2 which are not
n-gon orders.

[]
5. N-gon Orders and 2N-dimensional Partial Orders.

The main objective of this section is to prove the following result:

Theorem 5.1. Every poset with dimension  ≤ 2n is an n-gon poset, n≥3.

We will need some results before proving this theorem.
Let P(X, <) be a poset of dimension 2 on the set {1,…,m}  and {L1(X, <1), L2(X,

<2)}  a realizer of P(X, <). Then L1(X, <1) and L2(X, <2) define two permutations
∏1={π1(1),…,π1(m)} and ∏2={π2(1),…,π2(m)}  on {1,…,m} .  Using ∏1 and ∏2 we
construct a "caged" representation  D( P(X, <)) of P(X, <) as follows:

Let ¨(h, k) be a rectangle with width h, length k > 1 and sides S1, S2, S3 and S4.
Divide each of the two opposite sides S1, S3 of ¨ (h, k) of length h into m+1
segments of length h/(m+1) using points p1,…,pm in  S1 and q1,…,qm in S3 (See fig.



5).  Place π1(i) on pi and π2(i) on qi, i=1,…,m.  Finally if π1(i) = π2(j) join pi to qj by a
line segment L(pi, qj)
(See fig. 5).
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Figure 5.
Lemma 5.1. Let p be the intersection point of any two line segments L(pi, qj) and

L(pk, ql) in D(P(X,<)). Then the distance of p to each of S1 and S3 is at least k/m.

Proof: The result follows immediately from the fact that the triangles with vertices
{pi, p, pk}  and the triangle with vertices {qi, p, ql}  are similar, and that the
maximum ratio between the distance of pi to pk  and the distance between qj and ql is
at most m.

[]
For example in fig. 5, the distance between any such p and S1 and S3 is at least k/4.

Corollary 5.2. If k ≥ 2m then the distance between p and S1 and S3 is at least 2.
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We are now ready to prove Theorem 5.1.

Proof:  We carry out the proof for the case n=4.  For different values of n the proof
easily generalizes. Let P(X,<) be a poset with dimension 8 and {L1(X,<1),...,
L8(X,<8)}  be a realizer of P(X, <). Assume that X={1,…,m} . Then each  Li(X,<i)
defines a permutation Pi on X, i=1,…,8. Let Pi,i+1(X, <i,i+1)= Li(X,<i) « Li+1(X,<i+1)
and  D( Pi,i+1(X, <i,i+1)) be a caged representation using a rectangle with width 1 and
length 2m, i=1,3,5,7.   Let  W4 be a square on the plane with sides labelled  w1,w3,
w5,w7 of length 2m. Place D( Pi,i+1(X, <i,i+1)) in the interior of W4 in such a way that
the top of D( Pi,i+1(X, <i,i+1)) lies on wi, i=1, 3,5,7 (See fig. 6 ).

For each x Œ X there is a segment  L i(x) in D( Pi,i+1(X, <i,i+1)), i=1,3,5,7. If we
take
C(x)=L1(x) » L3(x) » L5(x) » L7(x) it divides the plane into two regions one of
which (the interior of C(x)) is the interior of an n-gon N(x); x Œ X. Since:

P(X,<)= P1,2(X, <1,2) « P3,4(X, <3,4) « P5,6(X, <5,6) « P7,8(X, <7,8)

it follows now that N(x) is contained in N(y) iff x<y in P(X,<).



[]

When the dimension of P(X,<) is 4, we have two caged representations D( P1,2(X,
<1,2)) a n d  D( P3,4(X, <3,4) ) of L1(X,<1) « L2(X,<2)  and L3(X,<3) « L4(X,<4)
respectively. In this case, using only two adjacent sides of our square and properly
respacing the elements pi and qi in D( P1,2(X, <1,2)) and D( P3,4(X, <3,4)), i=1,…n,  we
obtain angle orders [2].

6. Conclusions and Open Problems.

The crossing number of circle orders and n-gon orders was studied in this paper.
We proved that the crossing number of circle orders is 2. We then proved that for
every n≥4 there are posets with dimension n that are not circle orders. An open
question remains:

Are all posets of dimension 3 circle orders?

All posets with crossing number 2 that we have analysed are circle orders. This
lead us to formulate the following conjecture:

Conjecture 1.  All posets with crossing number 2 are circle orders.

 Notice that if conjecture 1 is true, this would imply that all posets with dimension
3 are circle orders.

We also proved that the crossing number of n-gon orders is at most 2n. It was then
proved that all posets with dimension 2n are n-gon orders and that there are posets of
dimension 2n+2 which are not n-gon orders. For posets with dimension 2n+1 we pose
the following open problem:

 Problem 1. Are there posets with dimension 2n+1 which are not n-gon orders?
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