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1.  INTRODUCTION
Since the pioneering research of Cook [1] and Karp [3] in computational

complexity, an enormous amount of research has been directed toward establishing
the position of problems in the complexity hierarchy:  polynomial, weakly NP-
complete, strongly NP-complete, etc.  In rough terms, the computational complexity
of a problem is an asymptotic measure of the "amount of time" needed to solve all
instances of a problem using a finite state Turing machine with an infinitely long
tape.  The complexity hierarchy as currently understood depends for its existence on
the assumption that P ≠ NP, i.e., that there are problems solvable in exponential  time
but not in polynomial  time.  Since the computational complexity for a problem   π
on any real digital computing system is bounded by a polynomial transformation of
the Turing machine complexity, it follows that the Turing machine complexity
hierarchy is equally valid for the RAM model of computation.

With the advent of distributed computer systems,  a new emphasis must be
placed upon establishing the separate complexities of local processing activities
(e.g., activities within a single processor) and of communication  activities (e.g.,
information transfers between processors).  More specifically, since communication
activities tend to be slower and less reliable than local processing activities,
algorithm designers should consider the trade-off between the two.

In this paper, we show (section 2), that NP-hard problems are intrisically
"hard" also with respect to communication activities, while (section 3) "easy" (P)
problems are intrinsically "easy" with respect to communication activities.
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2.  COMMUNICATION COMPLEXITY FOR "HARD" PROBLEMS
 Consider a computer system C=(P,S) consisting of a finite state processor P

and a countably infinite periferal storage devise  S.  Processor P has a storage
capacity of ≤ m bits, where m includes system occupied space, register space,
primary (rapid access) memory,  etc.  Define the state of C to be a (countable) vector
c = ( cp, cs), the concatenation of the state of  cpof P and the state cs of S.   Since
P contains at most m bits, there are at most 2m possible values cp could assume.

Suppose ∏ is an NP-hard problem, solvable by algorithm A on C under a
"reasonable" encoding scheme E, where algorithm A cannot cycle (As discussed in
Garey and Johnson [2], no definition of "reasonable" encoding scheme is known,
although this notion is essential to complexity results).  For any problem instance
πŒ∏, define  e(π) to be the number of bits required  to encode ∏ under E.  We shall
take as our measure of complexity the number of state transitions taking place during
execution of algorithm A, where a state transition may occur at any integer time t > 0
and involves a change in at most a constant w bits.  For example, w could be the
world length in the system C.  A communication between P and S is defined to be a
state transition involving a change in cs.

Let  h(n) = Max {number of state transitions of C to solve π | e(π) ≤ n}  and let
g(n) = Max {number of communications between p and s to solve π | e(π) ≤ n} .

Theorem 1:  Assume P ≠ NP and ∏ œ P.  Then there exist no constants a and b such
that g(n) ≤ a nb for all n > 0.
Proof:  Given a and b, set a  = 2m a.  Since ∏ œ P, there must be some value of n
such that h(n) > a nb.  Let no be such that h(no) > a  no

b.  Between any two successive
communications between P and S there can be at most 2m state transitions involving
changes to only cp (otherwise there would be cycling). Therefore  g(no)>h (no)/2m=a
no

b, from which  the result follows. []
3.  COMMUNICATION COMPLEXITY FOR 'EASY' PROBLEMS

The results in this section require for their proof a more formal approach based
directly on the Turing machine computational model.  Our presentation below is
based directly on the discussion and notation in Garey and Johnson [2].

There are five procedures which the DTM performs at each iteration; q is the
current state at the start of an iteration, and G is a finite set of tape symbols including
qo (start), qY and qN (yes and no terminate states), and a blank.
READ:  read contents g of tape square being scanned



TRANSFORM:  compute d(q, g) = (q', g',e) and set q ® q'
HALT:  if current state = qY or qN, halt execution
WRITE:  replace g with g' on tape square being scanned
POINTER:  translate read-write head (pointer) by e.

If a problem ∏ belongs to P under a "reasonable" encoding scheme E, then by
definition there is a polynomial time DTM program M that "solves" ∏ under the
encoding scheme E.  In other words, the number of steps or iterations G(π) to solve
any instance π e ∏ is bounded by a polynomial function f(e(π)), i.e. G(π) ≤ f(e(π))
for all  πŒ∏.  Subject to certain reasonably non-restrictive assumptions, we shall
show how M can be realized on a distributed system with the number of required
communication activities (to be defined) bounded by a polynomial in e(π).

In order to accomplish this, we define below a model of distributed computer
and prove the desired result for this system model. We belive the model is flexible
enough to be adapted to deal with most real systems.

Let the computer system C=(So,S) consist of a finite state processor So and a
countable set S of periferal storage devices  Sj (j= +1, +2,...). Sj (j≠0) has a storage
capacity of mj+1≥m words (m≥1 an integer), each word having at least Max{
Èlog2(mj+1)˘, h}  where h is the number of bits  required to store the bit-wise longest
element of G.  So will have a reserved storage area consisting of one word whose
content is denoted by So(1), and of bit lenght at least h. The words in Sj (j≠0) are
addressed by the numbers from 0 to mj; and Sj(i) denotes the contents of the word in
Sj whose address is i.  Note that word length at site j≠0 is sufficiently large to
accommodate the binary expansion of mj .  Included in  Sj is a small processor Pj

whose functions are described later.
The sites Sj (j = 0, +1, + 2, ...) are serially linked by two-way communication

lines, so that for all j, Sj has the capability to communicate directly (send to and
receive messages from) Sj-1 and Sj+1.  No other communication lines exist between
the sites.

An equivalence between the DTM tape positions and the positions in the sites
Sj is defined as follows, where the empty sum by definition =0.

- for j ≥1,  Sj (h) corresponds to DTM tape position ¬i=1,j-1 mi + h for ((1≤ h ≤
mj), 1≤ j),

- for j ≤ -1, Sj(h) corresponds to DTM tape position ∑ i=1,j-1 m-i -h for ((1≤ h ≤
mj , j ≤ 1)

- S0(1)  corresponds to tape position 0.  The first word Sj (0) (j≠0) is a pointer;



the set of pointers provides the distributed system with the position of the "square"
currently being scanned, as described later.  For any DTM tape square t, define S(t) =
Sj where Sj contains the image of t, and let T(t) = address in S(t) of the image of tape
square t.  The vector (S(t), T(t)) is called the position of tape square t.

The processor So  plays the role of the finite state control, and "contains" the
transition function d and the current state indicator q. So contains sufficient storage
to execute the tasks assigned to it; e.g., calculation of d, message transmission and
reception.

A basic communication activity (BCA) is the sending from Sj and reception by
Sj-1 or Sj+1 of a message of the form (a,b) where a Œ G  ª  {0}  and bŒ{-1,0,1}
(without loss of generality, assume 0 is not in G).   It is assumed that all sites Sj have
the capability of sending and receiving messages as described.

The execution of algorithm M on C is straightforward.  Initially, the system
memory is assumed to have contents as follows:

(i)  the DTM input string x is stored in positions (S(1), T(1)) = (1,1) to
      (Sh, T(|x|) = (S(|x|), T(|x|).
(ii)  Sj (0) = 0,   j≠ 0
(iii)  Sh(i) = blank; T(|x|) < i ≤ mh
(iv) Sj (i)  = blank, ((i ≤ i ≤ mi  ), j œ {1, ..., h} )
(v)  Current state q= qo

The execution of algorithm M on C is accomplished by exploiting the
correspondence between the memory storage of the processors and tape positions;
any time an operation (read, write, transform) must be executed by M at tape
position t a control token (as well as the specification of the function to be applied)
will be sent from Po to the processor Pj having the storage device associated with
tape position t;  Pj will then execute the operation and send the control token and the
result of the operation back to Po which will determine the next step to be performed.
In a similar manner, a move operation can be executed.

A formal description of the simulation of algorithm M on C can be found in
the appendix, where Table 1 describes the five procedures READ, TRANSFORM,
HALT, WRITE,  and POINTER, and Table 2 specifies precisely the messages
transferred from site to site. Column 1 of Table 1 gives an upper bound on the
number of BCA's required for eachj procedure, where n=|x|, f(n) is the DTM
complexity function, and the precise description of the system communication rules
is given in Table 2. k= È(f(n)+1/m˘  is a constant of the problem.



Theorem 2:  Let M be a  DTM algorithm that requires at most f(n) iterations to solve 
any problem whose encoding x has length ≤ n, where x is the "reasonable" encoding 
of pŒ P. Then the distributed version of algorithms M on C = (S0, S) requires at
most 1+Èf(n)+1/m˘ f(n) basic communication activities.

Proof: Clearly, f(n) is an upper bound on the number of iterations, and hence f(n) +1 is
an upper bound on the number of positions in memory required.  Thus,  È(f(n)+1) / m ˘ is
an upper bound on the number of sites Sj (j≠0) accessed during execution.
Examination of Table I in the appendix makes it evident that the sequence of procedures
READ, TRANSFORM, HALT, WRITE, POINTER will require at most one message in
each direction between each two adjacent sites during any complete iteration.  Thus, an
upper bound of 1 + f(n)È(f(n)+1) / m ˘ BCA's is required to execute M on C, where 1
corresponds to the initial message from S0  to S1.   []

We have explored the relationship between the serial computational complexity of
a problem ∏ and the communications complexity of solving ∏ on a distributed system.
In broad terms, the communication complexity hierarchy is "inherited" from the serial
complexity, that is, a problem which is NP hard with respect to serial complexity has
been shown to be NP hard with respect to the communication complexity and any
algorithm with polynomial serial complexity can be realized in a distributed system with
polynomial communication complexity.  The latter result is based upon a particular
model of a distributed system.

REFERENCES
[1] S. Cook, "The complexity of theorem-proving procedures", Proc. 3rd ACM

Symp. on Theory of Computing, 1970, 151-158.
[2] M.R. Garey, D.S. Johnson, "Computers and Intractability: a Guide to the Theory

of NP-Completeness", Freeman, San Francisco.
[3] R.M. Karp, "Reducibility among combinatorial problems", in "Complexity of

Computer Computations", Pergamon Press, New York, 1972.



APPENDIX

TABLE 1

PROCEDURE UPPER BOUND HOW PROCEDURE IS ACCOMPLISHED
ON     NUMBER (Note:  "Messages" from So to So are executed
OF  BCA'S  PER internally in S0)
ITERATION

______________________________________________________________________________________
READ K Set Sj= S(t).  Sj sends the message  g=Sj(T(t)) to  So.
TRANSFORM 0 Internally, S0  computes d (q, g  ) = (q', g ', e  ), 

where y =q and   g  is the contents of the position 
(S(t), T(t)) currently being scanned.

S0 sets q ® q'

HALT 0 Internally, S0 determines if q = either qY  or qN.  If 
yes, S0 terminates execution.

WRITE K S0 sends the message (g ', e) to S(t).

S(t) writes g' at position  (S(t), T(t)).

POINTER Let Sj = S(t) and Sk = S(t+e).  Necessarily, k = (j-1), 
j, or (j+1)

Case 1:0 Case 1:  j=k≠0
Sj   sets Sj (0) ® Sj (0) + e

Case 2:1 Case 2:  j ≠ 0, k≠0, j≠k
Sj sets Sj (0) ® 0.  There are four cases:

j < 0 j > 0
________________________________________________
k = j-1 Sj sends message to Sj-1 Sj sends message to Sj-1 
to set Sj-1(0) = 1 and to set Sj-1(0) =mj-1 and 

commence READ commence READ
________________________________________________
k = j+1 Sj sends message to Sj-1 Sj sends message to Sj-1 
to set Sj-1(0) =mj+1 and to set Sj-1(0) =1 and 

commence READ commence READ
_________________________________________________

Case 3: Case 3:  (j=-1,k=0) or (j=+l,k=0).  This case is special,
1=2/2  and includes in addition to the initial POINTER
(2 BCA's. procedure, a complete iteration.
But  Sj sets Sj(0) ®1 and sends message to S0 that current



      POINTER position being scanned is S0(1).
procedure    Internally, S0 executes READ, TRANSFORM, HALT
is executed and WRITE.  Let TRANSFORM result  in (q', g', e'),

 for two        and let  Sh = S(e).
iterations.) S0 sends message to Sh to set Sh(0)=1 and commence      
 READ

TABLE 2 - MESSAGE DEFINITION

Receiving  Transmitting  Message         Response  Associated Procedures
  site   site   (Table 1)
______________________________________________________________________________________

S0 S1  (g,1) (i) S0 computes d(q,g)=(q',g',e)  TRANSFORM
(ii) q ®q'     "
(iii) If q=qy or qN, stop. HALT
(iv) Message (g',e) sent to S1 WRITE, POINTER

S1 (0,0) Note: this occurs when pointer
goes from S1 to S0
(0) S0 sets g= S0(1)    POINTER, READ
(i) as above ⊇  as above
(ii)  as above Ã  as above
(iii) as above À  as above
(iv) S0 sets S0(1) ®g'    WRITE
(v) Message (0,0) sent to S(e)    POINTER

S-1 (g,1) (i) as above   ⊇ as above
(ii) as above   Ã as above
(iii) as above   À as above
(iv) Message (g',e) sent to S-1    WRITE, POINTER

S-1 (0,0) Note: this occurs when pointer
goes from S-1 to S0
(0) S0 sets g= S0(1)    POINTER, READ
(i) as above  ⊇  as above
(ii) as above  Ã  as above
(iii) as above  À  as above
(iv) S0 sets S0(1)®g'    WRITE
(v) Message (0,0) sent to S(e)    POINTER

Sj(j≥1) Sj-1 (g,e) (i) If Sj(0)=0 send (g,e) to Sj+1    WRITE, POINTER
(ii) If Sj(0)≠0 then Sj(T(t))    WRITE
    ®g,  and (a), (b), or (c) is
     executed as required:



    (a) If S(t+e)=Sj
         Set Sj(0)= Sj(0)+e    POINTER
         Set g= Sj( Sj(0)) and send
         message (g,1) to Sj-1    READ
    (b) If S(t+e)= Sj+1
         Set Sj(0)=0    POINTER
         Send message (0,0) to Sj+1      POINTER
    (c) If S(t+e)=Sj-1
          Set Sj(0)=0    POINTER
          Send message (0,0) to Sj-1        POINTER

Sj-1 (0,0) (i) Set Sj(0)=1    POINTER
(ii) Set g= Sj(1)    READ
(iii) Send message (g,1) to Sj-1             READ

Sj+1 (g,1) Send message (g,1) to Sj-1    READ

Sj+1 (0,0) (i) Set Sj(0)=mj    POINTER
(ii) Set g=Sj(mj)    READ
(iii) Send message (g,1) to Sj-1    READ

S(-j)(j≥1) .....................     Reverse the sign of all subscripts in  .................
the table for Sj (j≥1) to get the cor-
responding entries for S(-j)(j≥1).


