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Abstract. Let P be a simple polygon on the plane. Two vertices of P are visible if the open line
segment joining them is contained in the interior of P . In this paper we study the following questions
posed in [6, 7]: (1) Is it true that every non-convex simple polygon has a vertex that can be continuously
moved such that during the process no vertex-vertex visibility is lost and some vertex-vertex visibility is
gained? (2) Can every simple polygon be convexified by continuously moving only one vertex at a time
without losing any internal vertex-vertex visibility during the process?

We provide a counterexample to (1). We note that our counterexample uses a monotone polygon.
We also show that question (2) has a positive answer for monotone polygons.

Introduction
Let P be a simple polygon with vertices {p

1

, . . . , pn}. We say that two vertices of P
are P -visible if the relative interior of the line segment joining them is contained in the
interior of P . The visibility graph V G(P ) of P is the graph with vertex set {p

1

, . . . , pn}
in which two vertices of P are adjacent if they are P -visible. A classical problem in
computational geometry is that of convexifying simple polygons; that is, using a given
fixed set of transformations that can be applied to the vertices and edges of P , try
to transform P into a convex polygon in such a way that some properties of P are
preserved. The first formulation of a problem of this kind was proposed by Erdős [4],
who proposed a strategy to convexify a non-convex polygon by using flipturns. Perhaps
the most celebrated result in this area concerns the solution of the Carpenter’s Rule
conjecture [3, 10]; see also [1, 2, 8, 9].

1Partially supported by the FWF under grant S9205-N12.
2Supported by CONACYT Grant 106432.
5Supported by CONACYT Grant 80268 and project MTM2006-03909 (Spain).

CRM Documents, vol. 8, Centre de Recerca Matemàtica, Bellaterra (Barcelona), 2011

35



36 Convexifying monotone polygons while maintaining internal visibility

Our starting point is the following question posed by Satyan L. Devadoss in the Open
Problem Session at CCCG 2008 [6, 7]:

Question. Given a simple polygon P and its visibility graph V G(P ), can the vertices
of P (one at a time or simultaneously) be moved continuously along paths so that:

• the simplicity of the polygon P is maintained all the time, and
• the visibility graph of P never loses edges, only gains them.

In discussions after the workshop, the following specific questions were raised [5]:

(1) Has every non-convex simple polygon a vertex p that can be continuously moved
so that V G(P ) gains at least one extra edge, and never loses any?

(2) Can every simple polygon be convexified by continuously moving several vertices
in sequence, but only one at a time, such that V G(P ) never loses any edge?

We will prove that Question (2) has a positive answer for monotone polygons. On the
other hand, we give an example that shows that the answer to Question (1) is negative,
even for monotone polygons. For recent results on this topic, see also [7].

1 Polygons and visibility

Let P be a simple polygon as defined above. The interior of P is the area bounded by P
and we consider this area as an open set, i.e., vertices and edges of P do not belong to
the interior of P . Let u and v be the leftmost and rightmost vertices of P . There are
two edge-disjoint paths contained in P joining u to v, which are called the upper chain
of P , and the lower chain of P , respectively. If any vertical line intersects the interior of
P in at most one connected component then P is x-monotone, where, for simplicity, we
will simply use the term monotone. Finally, we suppose without loss of generality that
no vertical line passes through two vertices of P .

A basic operation that we use in this paper is to move the vertices of P around the
plane. Strictly speaking, the polygon P defined by its vertices changes. Nevertheless,
abusing our terminology a bit, we will always refer to it as P . Moreover, we will restrict
our point moves to those that do not destroy the simplicity of P .

We say that the two vertices u and v of P are P -visible if the relative interior of the
line segment uv joining them is contained in the interior of P . We call {u, v} a visibility
pair. Note that, according to our definition, consecutive vertices of P are not visible. Let
N (P ) be the set of pairs of vertices of P that are not P -visible. As consecutive vertices
of P are not P -visible, |N (P )| � n. Note that if the vertices of P move, the set of visible
pairs of P may change, and in turn the visibility graph V G(P ) may also change.

We say that a vertex move is visibility-preserving if the following holds: If pj and pk
were P -visible, they remain P -visible while pi moves. If in addition the number of edges
of V G(P ) increases, then we call it a visibility-increasing vertex move.

Our main results are the following:

Theorem 1.1. There are polygons that have no visibility-increasing vertex moves.

Theorem 1.2. Every monotone polygon can be convexified with a sequence of visibility-
preserving moves.
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2 A counterexample to Question (1)
Consider the monotone polygon P shown in Figure 1. The coordinates of the vertices of
P are a = (�100, 0), b = (�63, 40), c = (�61, 40), d = (�33, 2), and e = (0, 45). The
points {f, g, h, i} are obtained from the points {a, b, c, d} by reflecting them along the
y-axis. Points b0 to h0 are obtained from the points b to h by a reflection along the x-axis.
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Figure 1. A monotone polygon without visibility-increasing vertex moves.
Shaded areas indicate visibility-preserving regions. For point a, dashed lines
indicate the boundary of its visibility-preserving region.

To show that P does not admit any visibility-increasing vertex move, it is sufficient
to consider the vertices of P in the set {a, b, c0, d, e}. The remaining cases follow by
symmetry. For each of these vertices, we show in Figure 1 the open shaded region into
which any of these points can be translated without losing any visibility pairs in P . It is
now easy to see that there is no single vertex move that is visibility-increasing.

3 Visibility-preserving vertex moves
For a point q 2 R2 and some � > 0, we denote by B�(q) the closed disk with radius �
with center at point q. Let P = {p

0

, . . . , pn�1

} be a set of points in the plane in general
position. We say that � > 0 is a safe threshold of P if there are no three elements pi,
pj , and pk of P such that B�(pi), B�(pj), and B�(pk) are all intersected by a line `.
Equivalently, we can say that � is a safe threshold of P if there are no three points
pi, pj , pk 2 P such that when we translate each of them to a point within � distance of
them, they become aligned.

It is not hard to see that every point set in the plane in general position has a safe
threshold � and that if a vertex move is not visibility-preserving, then at some point
while moving the vertex it becomes collinear with two other vertices of P . However, the
following lemma shows that collinearity is no problem for our approach. With V �(P ) we
denote the set of vertices interior to the convex hull of P .
Lemma 3.1. Let P be a monotone polygon. Then there is a sequence of visibility-
preserving vertex moves of some vertices of P such that at the end of the sequence, the
vertices of P are in general position, P remains monotone, and |V �(P )| + |N (P )| does
not increase during the vertex movements.

We are now ready to give a brief sketch of the proof of Theorem 1.2. By Lemma 3.1,
we can assume that V (P ) is in general position. We proceed by induction on the sum
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of the number of interior vertices plus the number of non-visible pairs. If the vertices
of P are in convex position, there is nothing to prove. Observe that P is convex if
|V �(P )| + |N (P )| = n. Suppose then that |V �(P )| + |N (P )| > n and assume that the
theorem holds for all polygons Q with |V �(Q)| + |N (Q)| < |V �(P )| + |N (P )|.

Since P is not convex, suppose without loss of generality that there are k � 1 interior
vertices of P on its upper chain. Relabel them as v

1

, v
2

, . . . , vk, in increasing order with
respect to their x-coordinate. Let � > 0 be a safe threshold for the initial position of
V (P ). Our algorithm starts by executing the following basic procedure BP:

BP: One at a time from left to right, move v
1

, v
2

, . . . , vk upwards, by a distance �.

Once v
1

, v
2

, . . . , vk have all been moved, we execute BP repeatedly (using always the
same �!) until one of the following occurs: (1) a vertex in {v

1

, v
2

, . . . , vk} reaches the con-
vex hull of P , (2) a new visible pair occurs, or (3) the visibility-preserving property is lost.
If we stop because (1) or (2) occurs, then we are done, by our induction hypothesis. Using
monotonicity of P we can show that (3) does not happen before a visibility-increasing
event, which proves the theorem. Details are omitted in this extended abstract.

4 Conclusion
Several open questions arise from our work: How many vertex moves do we need to
convexify a monotone polygon? Can this number be bounded by a polynomial? If we
allow only vertical moves we can construct a polygon where the number of vertex moves
is unbounded, but how about general moves? What happens if we allow more than one
vertex to move at a time? We conclude with the following conjecture.
Conjecture 4.1. Every simple polygon can be convexified by a sequence of visibility-
preserving 1-vertex moves.
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