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CROOKED DIAGRAMS WITH FEW SLOPES

by

J. Czyzowicz, A. Pelc, I. Rival, and J. Urrutia

Ordered sets have become widespread in computational problems in scheduling,
sorting and searching.  One consequence is the increasing interest in efficient data
structures to code and store ordered sets.  Graphical data structures are particularly
useful, too, in human decision-making problems in areas as disparate as social choice or
even geography.  For ordered sets the most important graphical data structure is the
diagram, according to which the elements of an ordered set  P  are represented on the
plane by small circles, arranged in such a way that, for  a  and  b  in  P,  the circle
corresponding to  a  is higher than the circle corresponding to  b  whenever  a > b  and a
monotonic arc (usually a line segment) is drawn to connect them just if  a  covers  b,  that
is, for each  x  in  P,  a > x ≥ b  implies  x = b.  If  a  covers  b  we also write  a >— b.
Although the diagram determines the order, there is much variation possible in the actual
pictorial rendering of the diagram.

What is a "good" diagram?  For use as a structure for the presentation of ordered data,
the order among the elements must, of course, be readily apparent.  Thus, for elements  a
and  b  represented by vertices on the plane with different y-coordinates we must decide
whether there is a monotonic polygonal path consisting of line segments, from the vertex
a to the vertex  b.  A vertical path may, for instance, be the easiest to discern.

A planar diagram A non–planar diagram of the
same ordered set.

Figure 1



There are certain criteria that we may use to compare the "readability" of diagrams.
An obvious one is planarity.  Presumably a diagram inwhich line segments never cross,
and meet only at vertices, is easier to read (cf. Figure 1).  Some ordered sets have no such
diagram at all.  Indeed, the entire subject of planariuty for ordered sets is well-studied
especially for lattices (cf. [3], [6]).  Moreover, its application to a dimension theory of
ordered sets is deep and surprising (cf [4], [7]).

A diagram with three slopes 
and maximum degree three.

A diagram with three slopes
 and maximum degree two.

(a) (b)

Figure 2

Another quite natural criterion is to use few slopes in drawing the covering edges for
the diagram.  This may be quite important in comparing diagrams according to their
"drawability".  Indeed, the steepness of the line segments has for some time remained a
preoccupation of diagram drawing schemes.  For an element  a  in  P  let down degree of
a  mean the number of lower covers of  a,  that is, the number of  x  in  P  such that  a
covers  x.  Dually, let up degree of  a  mean the number of upper covers of  a.  For
simplicity let maximum degree of  P  mean the largest value from among the down
degrees and up degrees of the elements of  P.  It is obvious that for any ordered set, the
number of different slopes required in a diagram of  P  is at least maximum degree of  P
(see Figure 2)  and, although this cannot hold generally (cf. Figure 2(b)), B. Sands (1984)
had conjectured that the minimum number of slopes required to draw lattices, at any rate,
is the maximum degree.  Recently, Czyzowicz, Pelc and Rival (1987) showed that this is
not true even in the case that the maximum degree is two (see Figure 3).  Moreover,
Czyzowicz (1987) has constructed lattices of maximum degree  n,  for all  n > 2,  which
cannot be drawn using  n  slopes, thus confirming a conjecture put forth in  [2].



A lattice with maximum degree two
which requires at least three slopes.

Figure 3
These examples notwithstanding, the slope criterion seems to be in wide favour.  Our

aim in this paper is to show how the simple artifice of introducing "bends" on the line
segments joining vertices in the covering relation of the diagram enables us to draw the
diagram with only maximum degree slopes.  Actually there is already precedent for the
idea of "bends", for example, in VLSI circuit design in which a planar graph is presented
on a given rectilinear grid (cf. [9], [10]).  Thus, for instance, the ordered set illustrated in
Figure 2(b) has a diagram using "crooked" edges each with at most one bend in which
only two different slopes are ever used for all of the line segments (see Figure 4).  Such
an artifice, of course, involves relaxing the usual edge constraint, for the covering
relation need no longer be represented by a line segment.  Comparable vertices  a  and  b
will still be located at the ends of a monotonic polygonal path.

A crooked two–slope diagram

Figure 4



Our first main result is that any finite ordered set has a "one-bend" diagram using
maximum degree many slopes.  Thus, every covering edge is constructed using at most
two line segments and all line segments are parallel to one of maximum degree many
lines.  Thus, without using any bends, the ordered set illustrated in Figure 3 requires three
slopes, although its maximum degree is two.  Using bends, two slopes suffice (see Figure
5).

Figure 5

We shall see, too, from the proof of this result, that the complexity of a one-bend,
maximum degree–slope drawing is intimately linked to the complexity of edge
colourings of bipartite graphs.  It will follow that such drawings can be implemented in
O(e)  where  e  is the number of edges.  Drawing a diagram itself may take as much (cf.
[5]).

In implementing such a "crooked" diagram we may well ask whether it can be done
starting from any given diagram, keeping its vertices in place, and joining its vertices by
appropriate crooked edges.  We shall prove that the answer is yes, provided that the
maximum degree is even but, that there are diagrams with odd maximum degree, whose
vertices must be moved on the plane if they are to be joined by one-bend edges using
only maximum degree slopes.

In any case we shall prove that, for any diagram of a finite ordered set there is a
two–bend, maximum degree–slope diagram on the same set of vertices and the
praparation of these diagrams may even be simpler to implement automatically.



Are crooked diagrams useful?  It is too early to tell.  A drawback, of course, is that
covering pairs are not so easily read.  On the other hand, comparallel pairs are still the
ends of a polygonal monotonic path.

Perhaps the most important open question is this one posed in [2].  Let  f(m)  be the
smallest integer such that any ordered set with maximum degree  m  has an  f(m)–slope
diagram.  Is  f(m)  finite?  What about  f(2)?  We know only that  f(m) ≥ 2m - 1.  To see
this let  Pm  be the ordered set whose covering graph is the complete, bipartite graph
Km,m  with bipartition consisting of  m   maximal and  m  minimal vertices.  Now, in any
diagram of  Pm  there is a "left–most" edge  a  covering  b,  say.  Then  a  has  m - 1  other
lower covers and  b  has  m - 1  other upper covers.  It is easy to see that all of the line
segments used to represent these covering relations must have different slopes, that is,
2m - 1  different slopes, at least.  If we resetrict our attention to lattices then we have no
such lower bound.  For lattices  f(m) ≥ m + 2,  for  m ≥ 2.  Indeed, there is some reason to
believe that lattices may be different from the general case, for, any lattice whose
smallest cycle has  2m elements must have maximum degree at least  m  (cf. [2]).

A 5–slope diagram

Figure 6

Main Results

We shall make use of this auxiliary result which, however, seems to be of
independent interest.

PROPOSITION 1.  The covering pairs of any finite ordered set of  maximum degree  k
can be  k–coloured such that if, either  a >— b  and  a >— c,  or else,  b ≥— a  and  c
>—a,  then the edges  (a,b)  and  (a,c)  have different colours.

Proof.  Let  P  be any finite ordered set with elements  {p1,…,pn}   and of maximum



degree  k.  Construct an (undirected) bipartite graph  G  as follows:  the vertices of  G  are
{p1',…, pn, p1",…, pn"} ;  if  pj  is an upper cover of  pi  in  P  then there is an edge in  G
joining  pi"  and  pj';  G  has no other edges.  Moreover, every vertex in  G  has degree at
most  k.  Thus, according to the well–known theorem about the edge colouring of
bipartite graphs [ ], there exists a k–colouring of the edges of  G,  such that edges
adjacent to a given vertex have different colours.

Now define a k–colouring of covering pairs of  P  by this rule.  If  b >— a,  then the
pair  (a,b)  gets the colour of the edge joining  a"  to  b'  in the graph  G.  It is easy to see
that this colouring has the required property.

We can now prove our first main result.

THEOREM 2.  Every ordered set of maximum degree  k  has a one-bend, k-slope
diagram.

Proof.  We split the proof according to the parity of  k.  First suppose that  k  is even, say
k = 2m.  Take any diagram  D  of  P  with vertices  p1,…, pn  and let  s1,…., sr  be all the
slopes of lines formed by pairs of vertices in this diagram.  Select  m  positive slopes
t1,…, tm  larger than all of the  pi  and  m  negative slopes  tm+1,…, tk  smaller than all of
the si.  We construct a one-bend diagram D*  of  P  whose vertices are the same as in  D
and whose crooked edges follow the slopes  ti. Find a k–edge colouring of D, by
Proposition 1 such a colouring exists.  Let  pj >— pi  and  denote by  c  the colour
assigned to this covering pair.  Draw the lower half–line with slope  tc  and origin  pj  and
the upper half–line with slope  tk+1-c  and origin  pi.  By the choice of slopes  ti  these
lines must intersect in a point  x  not a vertex in D  and no other vertex of the D lies on
any of them.  We plot the polygonal line pi•pj  as the crooked, one–bend edge joining the
covering pair  (pi,pj).  It follows from the property of the k–colouring that for distinct
upper covers of a vertex in  P  the respective crooked edges will not have common parts.
This concludes the proof in the case that the maximum degree  k  is even.

If the maximum degree  k  is odd, the difficulty is with the "central slope".  The
construction outlined above must be modified.  We are no longer able to keep the vertices
of the newly constructed diagram in their original positions (the half–lines constructed
above might not intersect).  Nevertheless, we shall situate the vertices more conveniently
and construct a one–bend, k–slope diagram in this case as well.

Let  k = 2m + 1  and let  (p1,…, pn)  be any linear extension of the ordered set  P.
Take any set  t1,…, tm  of positive slopes between  1  and  2,  as  tm+1  take the vertical
and, take any set  tm+1,…,tk  of negative slopes between  –2  and  –1.  For any  i ≤ n  let  Ij



be the unit horizontal interval with centre having coordinates  (0, 2j).  The intervals  Ij
form "shelves" on which we will place the vertices of our crooked diagram:  pj  will be
placed on  Ij.

First place all minimal elements on their shelves so that no two of them are on the
same vertical.  Once an element  pi  is already placed consider an upper cover  pj.  Let  c
≤ k  be the colour of the covering pair  (pi, pj)  from Proposition 1.  If  c = m + 1  (and
hence  tk+1–c = tc  is vertical), place  pj  on the shelf  Ij  vertically above  pi  and join the
vertices  pi  and  pj by a vertical segment.  If  c ≠ m + 1,  place  pj  on the shelf  Ij

avoiding all verticals passing through previously constructed vertices.  Draw the lower
half–line with slope  tc  and origin  pj  and the upper half–line with slope  tk+t–c  and
origin  pi.  As before, those lines must intersect on a point  x  and (by the choice of
slopes) they do not intersect any shelf.  Again  pi•pj  is the new crooked, one–bend edge
joining the ends of the covering pair  (pi, pj).  This concludes the proof.

In the case that the miximum degree is even, the argument presented above actually
proves a stronger result.

THEOREM 3.  Let  D  be any diagram of a finite ordered set of even maximum degree  k.
Then there exists a one–bend, k–slope diagram  D*  of it whose vertices are the same as
in  D.

Theorem 3 cannot be generalized to include the case of odd maximum degree  k.  Our
next result provides an example of a diagram of an ordered set which cannot be corrected
using one–bend,  k  slopes, as long as the vertices remain fixed.  Once vertices may be
rearranged, it can be done in light of Theorem 2.

THEOREM 4.  There exists a diagram  D  of a finite ordered set of maximum degree
three such that no one–bend, three–slope diagram of it has the same vertices as  D.

Proof.  Consider the bipartite graph illustrated in Figure 7.
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In order to prove the theorem, we consider the diagram illustrated in Figure 8, which is an
orientation of this graph. (To keep the figure clear, the lines joining primed points are not
drawn.)

E F G H B B' H' G' F' E'

J' I' D' C' A C D I J

Figure 8

Suppose, by symmetry, that among the three available slopes descending from a point  X,
the middle one, according to Figure 9, is on the left–hand side of the vertical line passing
through the point  X.

1
2

3

X

Y

Figure 9



Obviously, any crooked edge using segments drawn down from  X  along the slopes  1
and  2  will reach only points situated inside the angle between the lines  1  and  2  drawn
down from  X.  Consequently, in order to draw a one–bend, crooked edge joining  A
with  B,  (situated, as in Figure 9, between the lines  2  and  3)  we have to use the slope
3  (either for the lower or the upper part of the crooked edge).

According to the observation above, when the segments  BA,  BC  and  BC  are
replaced by one–bend crooked edges, every such edge must use the slope  3  for its lower
or upper part.  The upper part may be drawn along slope  3  only once in these three
cases, as all these crooked edges are joined in  B.  Hence one of the two crooked edges,
one of which joins  B  with  C,  and the other joining  B  with D,  must use for its lower
part the slope  3.

Suppose that  C  is the vertex for which the part entering it is drawn along the slope
3.  As the crooked edges replacing segments  CE  and  CF  must also use the slope  3,  the
upper part of of each of them must be drawn along the slope  3.  The vertices  E  and  F
are joined with the point  I  and once more we have to use the slope  3  when plotting
crooked edges.  As the slope  3  going down from  E  and  F  is already occupied and the
slope  3  going up from point  I  may be used just once, this is clearly impossible.  This is
a contradiction.

The same argument holds when it is the point  D  which must use the slope  3  for the
lower part of the crooked edge joining  D  with  B.  We must then use the points  G  and
H  instead of  E  and  F,  and  J  instead of  I.

In the symmetrical case, when the middle available slope  2  is situated on the
right–hand side of the vertical line (as opposed to the case for Figure 3) an identical proof
applies to the primed vertices from Figure 1 and Figure 2.

In view of the example above, it is impossible to generalize Theorem 2 to include the
case of odd maximum degree, at least for arbitrary finite orders.  Nevertheless, we are
able to prove such a result from an important class of orders; dismantlable lattices —
without restricting the parity of the maximum degree.  Before we proceed, a short
discussion of dismantlable lattices seems appropriate.

Let  L  be a finite lattice with at least two elements.  Let  t  stand for the top element
and  b  for the bottom element.  Thus, every element  x  satisfies  b ≤ x ≤ t.  An  element
x  satisfying  b < x < t  has  degree two just if it has precisely one lower cover  x  and
precisely one upper cover  x.  In algebraic terms such an element is said to be
supremum–irreducible (for, if  x = u+v  then either  x = u  or  x = v) and,
infimum–irreducible (for, if  x = u . v  then either  x = u  or  x = v).  In particular,  L – {x}



is a sublattice of  L,  that is, for each  u, v Œ L – {x} ,  u + v Œ L – {x}   and  u . v Œ L –
{x} .  Let  D(L)  stand for the set of all such elements of the lattice  L.  Say that  L  is
dismantlable  if its elements can be enumerated  L = {x1,x2,…,xn}   in such a way that,
for each  i ≤ n–2,
xi Œ  D(L–{ x1,x2,…,xi–1} ),  xi = b, and, xi = t.  Thus, a dismantlable lattice can be
decomposed, one element at a time, into a succession of sublattices, each with one less
element that before, arriving finally at the two-element sublattice  {b<t} .

L  =L  –{x  }

x6x4

x3

x5

x2
x1

x  =t8

x  =b7

x3

x4

x2

x5

L  =L  –{x  }2 1 2

L  =L  –{x  }3 2 3 5 4 5

L  =L0 L  =L  –{x  }1 0 1

6 5 6L  =L  –{x  }={b<t}

x6

L  =L  –{x  }4 3 4

Figure 10

Notice too that the covering edges of any sublattice so obtained need not be actual
covering edges of  L.  Thus in  L1,  x3 >— x4  although not in  L0;  in  L5,  x8 >— x6
although not in  L4  (and hence not in  L= L0) and, of course,  t = x8 >— x7 = b  at the
very last step  L6,  although not at any preceding stage.

We will need the following lemma from [ ].

LEMMA 5.  Let  L  be a finite dismantlable lattice.  Then there is a a partition  C1,
C2,…, Ck  of  L  such that, for each  j ≥ 1,  Ci  is a covering chain of  L  each of whose
internal vertices has degree two in  C1ª…ª Cj  and  b, t  are vertices in  C1.

The point is that the "dismantling" of  L  can be carried out in such a way that, at each



stage, a sublattice is obtained whose diagram is indeed a subdiagram of the original
diagram and, which is itself obtained by removing a chain of elements each of degree
two, at that stage (see Figure 11).  The chains are removed in order  Ck, Ck–1,… C1.
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L  =L  –{x  }3 2 4L  =L  –{x  }2 1 3L  =L  –{x   ≤  x  }1 0 1 20L  =L

Figure 11

THEOREM 5.  Let  D  be any diagram of a finite dismantlable lattice  L  of maximum
degree k.  Then there exists a one–bend, k–slope diagram  D*  of  L  whose vertices are
the same as in  D.

Proof.  Let  D  be a given diagram of  L  with vertices  p1,…,pn  and let  s1,…,sr  be all
the slopes of lines formed by couples of vertices in this diagram.  Choose as  t1  any
positive slope larger than all of the  s1,…,sr  and as  tk  any negative slope smaller than all
of the  s1,…,sr.  As  t2,…,tk–1  take any distinct slopes between  t1  and  tk,  different from
all  si.
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We construct the crooked diagram  D*  by consecutively plotting the covering chains  Cj
between the vertices already placed.  Suppose  C1,…,Cj  are already plotted following the
slopes ti.  We now have to plot the chain  Cj+1  with endpoints  a > b  and  internal
vertices  v1,…,vm  already placed.  Let  ti  be a (possibly unique at this time) free slope
downward from  a.  If  ti  is positive, the lower half–line with slope  ti  and origin  a  must
intersect the upper half–line with origin  vi  and slope  t1 in a point  x.  If  ti  is negative,
tk  instead of  t1  will do.  Since all slopes from  v1  are free at this time, we can plot the
polygonal line  axv1  as the crooked edge joining  a  and  v1.  A similar argument works
for the covering pair  (b,vm).  For covering pairs  (vi,vi+1)  this is even simpler:  since all
slopes down from  vi  and up from  vi+1  are free, we can always use, say, the extremal
slopes  t1  and  tk  for each crooked edge.  Thus all the chains  Cj  can be plotted
inductively and the crooked diagram  D*  is ready.

Although we are not able to produce a one–bend, k–slope diagram with the same
vertices as in a given diagram  D  of an arbitrary ordered set  P  of maximum degree  k,
our next result shows that two–bend edges are always sufficent.

THEOREM 6.  Let  D  be any diagram of an ordered set  P  of maximum degree  k.  Then



there exists a two–bend, k–slope diagram  D*  of  P  whose vertices are the same as in
D.

Proof.  Let  D  be a given diagram of  P.  Choose slopes  t1,…, tk  as in the proof of
Theorem 2.  We plot the two–bend edges one by one.  Suppose that  a > b is a covering
pair and that the slopes  t1  downward from  a  and  t1  upward from  b  are "free".  Let
Hu' be the lower half–lines with slopes  tu  and origin  a  and  Hu"  the upper half–lines
with slopes  tu  and origin  b.  Denote by  R  the parallelogram with sides H1', Hk', H1",
Hk".  If the half–lines  Hi'  and  Hj"  intersect in a point  q  inside  R  then plot the
ploygonal line  aqb  (with one bend) as the crooked edge joining the covering pair  (a,b).
If not, (that is  Hi'  and  Hj"  intersect outside of  R or else are parallel), then either  Hj"
intersects  H1'  and  Hi'  intersects  H1"  (see Figure 13)  or  Hj"  intersects  Hk'  and  Hi'
intersects  Hk".  In the first case there are infinitely many couples (x,y)  of points such
that  x Œ Hi',  y Œ  Hj"  and the line  xy  has slope  t1.  In the second case there are
infinietly many such couples with  xy  of slope  tk.  In each case we choose  x, y  so that
no vertex of the diagram lies on the line  xy.  The polygonal line  axyb  (with two bends)
is as required and can be plotted as the crooked edge joining the covering pair  (a,b).
This concludes the proof.
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