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tion. A G-rectangle is a rectangle at least one of whose sides is in G. We show that
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1 Introduction

In this paper we are concerned only with simple orthogonal polygons with vertices located
at lattice points in the plane. We study the impact that the existence of certain cuts of
the orhogonal polygon into rectangles have on the length of the sides of the polygon.

A problem related to our study is one that is a generalization of a problem previously
posed by A. Shen in the Mathematical Intelligencer [5]:

Problem 1.1 A simple orthogonal polygon is cut into sevaral semi-integer (i.e., either the
vertical or horizontal side is an integer) rectangles (whose sides are rectilinear). Does the
polygon have a side which is an integer?

Our study answers Problem 1.1 and provides a general result (Theorem2.1) concerning
simple orthogonal polygons without holes which can be cut by G-rectangles (these are
rectangles for which either the horizontal or vertical side has length in the set G).

Our analysis looks in detail to the case of domino tilings: this is an important concept
used throughout the paper.

Definition 1.1 A domino is a rectangle formed by two unit squares adjacent along an
edge.

It is well-known that a rectangle of integer side-lengths can be tiled by dominoes if and
only if at least one side of the rectangle is of even length [2]. The proof of this is based on
the simple observation that a region tiled by dominoes must always have an even number
of unit squares. Therefore if the tilable region is a rectangle then one of its sides must be
even.

There are several interesting ways to look for generalizations of this result: either by
generalizing rectangle to simple polygon or domino to polyomino or both. This gives rise
to the following problem.

Problem 1.2 If a simple orthogonal polygon can be tiled by dominoes does it have a side
of even length?

Along the same lines, an interesting conjecture arises from a generalization of de Bruijn’s
well-known theorem: if a rectangle is tilable by polyominoes with sides 1 × p then one of
its sides must have length which is a multiple of p (see [1, 6]).

Problem 1.3 If a simple orthogonal polygon can be tiled by 1 × p polyominoes, does it
have a side of length a multiple of p?

In this paper we answer both Problems 1.2 and 1.3. In particular, we prove that the
above stated theorem is true in a much more general form, for all orthongonal simple
polygons without holes. (If the polygon has a hole then this may not be true, as depicted
by the left picture in Figure 1.) A complication arises because an orthogonal polygon (as
opposed to a rectangle) of odd sides may not be possible to tile although it has an even
number of unit cells (see Figure 1).
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Figure 1: The polygon to the left has a hole (dashed square), it is tilable by dominoes and
all its sides have odd length. The polygon to the right is a non-tilable orthogonal polygon
with the same number of black and white unit-squares.

The technique which is described in Section 2 is applicable to both Problem 1.2 and
Problem 1.3. Section 3 focuses only to domino tilings of orthogonal polygons. The polygon
sides are drawn along chessboard lines in which case some black and white squares of the
chessboard fall within the interior of the polygon. A fundamental observation in our proof
of the main theorem for domino tilings (see Theorem 3.1) is based on the fact that a
chessboard coloring of an orthogonal polygon of odd sides cannot have the same number of
black and white squares. Thus, it cannot be tiled by dominoes, since each domino occupies
one black and one white square. This raises the question if all polygons containing the
same number of black and white cells can be tiled by dominoes. The answer is no, as the
polygon on Figure 1 shows.

Section 3 characterizes the relation between on the one hand the difference of black and
white squares covered by the polygon and on the other the parity sequence of the sequence
of lengths of the sides of the polygon. As a corollary of this relation we can observe that
an orthogonal polygon of odd side lengths covers a different number of black and white
squares. This gives a different proof to the answer of Problem 1.3.

The following definition provides useful terminology that will be used in the sequel.

Definition 1.2 Let P be an orthogonal polygon of integer side lengths. Let R be the
smallest rectangle of vertical and horizontal sides containing P . Suppose R is an n × m
rectangle. Divide R into nm unit squares, and denote by Ti,j(P ) (or simply Ti,j) the unit
square in the i-th row and j-th column. Of course, some of these cells are in polygon P ,
others are not. A chessboard coloring of an orthogonal polygon is a coloring of its unit
squares Ti,j by black and white, such that any two squares which share a side are colored
with different colors.

2 A General Tiling Theorem

In this section we consider general rectangular tiles.

Definition 2.1 Let G be a nonempty set. G is called additive if for any x, y in G their
sum x + y is also in G.

Here + is a binary operation on G and may stand either for the usual sum among real
numbers, or even addition modulo m for some integer m. Typical examples of additive sets
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Figure 2: A G-rectangle R with vertices A,B,C,D.

G of reals include the set of real numbers, the set of rational numbers, the set of integers, or
for some integer m the set of integer multiples of m. Another example is addition modm.
Thus, if m = 2 and addition is mod2 then a G-rectangle is a domino [2].

Definition 2.2 For an additive set G of reals we call G-rectangle (or G-tile) a rectangle
such that the length of either its vertical or its horizontal side is in G. A G-tiling of an
orthogonal polygon P is a tiling for which the tiles are G-rectangles. An otthogonal polygon
is G-tilable if it can be tiled by G-tiles.

The main theorem of this section is the following.

Theorem 2.1 Let G be an additive set. If a simple orthogonal polygon P without holes is
G-tilable then at least one of its sides must be in G.

Proof A G-rectangle is determined by the four endpoints A,B, C, D (see Figure 2). To
any G-rectangle we associate two horizontal and two vertical “edges”:

{A,B}, {D,C} and {A,D}, {B,C},

respectively. If the width (respectively, height) of the rectangle is in G then both of
the horizontal edges (respectively, both of the vertical) edges, are in the graph; if both
horizontal and vertical lengths are in G then we select either the two horizontal or the two
vertical edges but not both. Consider a G-tiling of the orthogonal polygon. This G-tiling
gives rise to a graph on the set of vertices of the G-tiles (which also includes all the vertices
of the original poygon) that may be disconnected. The following properties of this graph
are easy to prove from the definitions.

1. The graph is planar.

2. The original vertices of the polygon have odd degree.

3. All other vertices have even degree.

We can prove the following claim.
Claim. There are two vertices on the same side of the orthogonal polygon which are
connected by a path of the graph.
Proof of the Claim. Indeed, take two vertices, say u, v, of the polygon which are
connected by a path of the graph such that the number of sides of the polygon between
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these two vertices is minimal. Assume on the contrary that u and v do not lie on the
same side of the polygon. In this case either there are two other vertices of the polygon
“between” u, v which are connected by a path or else there is a single vrtex w of the polygon
“between” u and v and a path emanating from w to another vertex w′ which by planarity
crosses the path between u and v. However, in both cases this contradicts the minimality
of the path between u and v. This completes the proof of the claim.

Returning to the proof of the theorem we argue as follows. Take two vertices u and v
of the polygon which lie on the same side, say e, of the polygon and are also connected by
a path in the graph. Using the additivity of the set G it is easy to see that the length of e
is in G. This completes the proof of the theorem.

The following corollaries are immediate from the theorem. Let Q,Z denote the sets of
rational, integer numbers, respectively.

Corollary 2.1 If a simple orthogonal polygon is tilable by Q-rectangles then one of its
sides must have length which is a rational.

Corollary 2.2 If a simple orthogonal polygon is tilable by Z-rectangles then one of its
sides must have length which is an integer.

Corollary 2.3 If for some integer p, a simple orthogonal polygon is tilable by 1 × p or
p× 1 rectangles then one of its sides must have length which is a multiple of p.

Corollary 2.4 If a simple orthogonal polygon is tilable by dominoes then one of its sides
must have even length.

3 Orthogonal Polygons Placed in a Chessboard

In this section we will suppose that the integer lattice containing the polygon is a chess-
board. The polygon sides traverse edges of the squares of the chessboard and every such
square falls entirely either inside or outside the polygon. We can ask what is the number of
white and black squares of the chessboard being inside the polygon. If the number of such
white squares is not equal to the number of black squares then we will be able to conclude
that the polygon is not tilable by dominoes. We will prove the following theorem.

Theorem 3.1 Let P be an orthogonal polygon without holes such that all sides are of odd
length. Then P cannot be tiled by dominoes.

Proof . Take a chessboard coloring of P . We are going to prove that the number of black
and white cells are not the same. This implies the theorem, since every domino occupies
one black and one white square.

We call Ti,j a corner square if Ti,j ⊂ P and at least two adjacent sides of the square fall
onto sides of P . We may suppose that one of the corner squares of P is black (otherwise
we can reverse the coloring). We will use the following two lemmas, which we prove later.
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Lemma 3.1 If one of the corner squares of P is black, then every corner square is black.

Lemma 3.2 Suppose P has more than one row, and all corner squares of P are black.
Then one can cut off n cells C = {T1, . . . , Tn} (n > 0) from the polygon P , so that the
following conditions are satisfied:

(i) P −C is a set of orthogonal polygons P ∗
1 , . . . , P ∗

k , all of which have odd side lengths
(k ≥ 1) and all corner squares of all of them are black.

(ii) If there is only one remainder polygon (k = 1), then C contains at least as many
black squares as white ones.

(iii) If there are more than one remainder polygons (k ≥ 2), then C contains at most
one more white square than black one.

It is easy to see that Lemma 3.2 implies Theorem 3.1. Indeed, we can keep recursively
cutting off cells from the remainder polygon or polygons. In the end polygons with at most
one row remain, where the length of the row is always odd. Therefore the excess number of
black squares is the same as the number of polygons. In the process, when the number of
polygons increases, we cut off at most one more white cell than black one, thus the original
polygon contained more black cells than white ones. This completes the proof of Theorem
3.1 assuming the two lemmas.

Now all that is left is the proof of the two lemmas.

Proof of Lemma 3.1. Let us divide each edge of the polygon into unit segments. Color
the segments by the color of the squares (in P ) those segments are the sides of.

First, observe that each edge has its first and last segment colored by the same color,
because the consecutive segments have alternating colors, and the length of the edge is
odd. Also, any two segments joining at a corner (positive or negative) must have the same
color. It follows that since at least one edge has its first segment colored black, all edges
have their first and last segments colored black, therefore all internal corner squares are
black. This completes the proof of Lemma 3.1.

As before, one can observe (using similar arguments) that all external corner squares
are white. By external corner square we mean a square not in P but adjacent to two
perpendicular edges of P .

Proof of Lemma 3.2. Suppose first that the polygon contains a square (Tx,y), which is
bounded on 3 sides by the boundary of P . Without loss of generality, we may assume that
the only neighbor of Tx,y inside the polygon P is Tx+1,y. It is clear that Tx,y is black, while
Tx+1,y is white. It is easy to see that there are only 3 distinct cases (up to rotation and
symmetry) depending upon what neighbors of Tx+1,y are inside the polygon (see Figure 3
(a), (b) and (c)).

In cases (a) and (b) (see Figure 3) we may take the cut C = {Tx,y, Tx+1,y}, which
satisfies the conditions of the lemma. Indeed, in both cases some sidelengths of P are
decreased by 2 (thus they remain odd) and all new sides are of length 1. Also, all new
corner squares of P are black.
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Figure 3: The four cases considered in the proof of Lemma 3.2.

T1,k T2,k+r+1T2,k+r

T3,kT3,k T3,k+s T3,k+s

T T1,k+1 1,k+s

P

T T T1,k+11,k 1,k+s

P

(a) (b)

Figure 4: Two subcases in the proof of Lemma 3.2.

In case (c) we simply cut off C = {Tx,y} (see Figure 3(c)). The newly created edge of P
along the bottom of Tx,y will have odd length, since it’s length is the sum of two previous
edge lengths plus 1. No new corner squares have been created.

Therefore we may suppose that all squares in the polygon have at least two neighbors
inside P . Let T1,k be the leftmost square of the first row which is inside P (so T1,k−1 6⊂ P ).
Let s be the number for which

{T1,k, T1,k+1, . . . , T1,k+s} ⊂ P but T1,k+s+1 6⊂ P.

Clearly, s ≥ 2, s is an even number, and T1,k+s is black. We also know that T2,k ⊂ P .
Suppose first that T2,k−1 ⊂ P . The proof of Lemma 3.1 implies that all external corner

squares are white, therefore T2,k+1 ⊂ P (see Figure 3(d)). Then we can take the cut
C = {T1,k, T1,k+1}. This shortens an edge by 2 and lengthens another by 2. The two
potential new corner squares are T1,k+2 and T2,k+1, both black. Thus C is a good choice.

The only case left is when T2,k−1 6⊂ P . We can similarly suppose that T2,k+s+1 6⊂ P .
The fact that all edges are of odd length enforce that T3,k ⊂ P and T3,k−1 6⊂ P . Again we
similarly conclude that T3,k+s ⊂ P and T3,k+s+1 6⊂ P . Thus, we have (see Figure 4)

{T2,k, T3,k, T2,k+s, T3,k+s} ⊂ P, and {T2,k−1, T3,k−1, T2,k+s+1, T3,k+s+1} ∩ P = ∅.

We distinguish 2 subcases, depending on what elements of the second row are in P .

(i) {T2,k, . . . , T2,k+s} ⊂ P .
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Take C = {T1,k, . . . , T1,k+s, T2,k, . . . , T2,k+s} (see Figure 4(a)). This set contains an
equal number of black and white squares, and by cutting off C, we decrease each of
two side-lengths by 2. To see that all corner squares remain black, note the following.
At least two new corner squares (besides T3,k and T3,k+s) are created if T3,i 6⊂ P for
some k < i < k + s. But, since all first and last unit segments of each edge has been
colored black, it follows that each square inside P and next to an edge in line 3 must
be black. But those are exactly the squares that become corner squares. The fact
that all new corner squares are black implies that all new edge lengths are odd.

(ii) {T2,k, . . . , T2,k+r} ⊂ P , but T2,k+r+1 6⊂ P for some r (r < s) (see Fig. 3(b)).

Now take C = {T1,k, . . . , T1,k+s, T2,k, T2,k+s}. In this case there are one more white
squares in C than black ones, but T2,k+r+1 6⊂ P guarantees that the polygon falls into
two parts after the cut. Following a similar reasoning as for case (i), we can again
conclude that all new corner squares are black, in particular T2,k+r must be black,
therefore the new side lengths are all odd. Thus, C satisfies the conditions of the
lemma.

This concludes the proof of Lemma 3.2.

3.1 Black versus white squares

We are now in a position to characterize the difference between the number of black and
the number of white squares in an orthogonal polygon all of whose sides are odd. First we
need to prove a simple lemma.

Lemma 3.3 Every orthogonal polygon with sides of odd length has a total of 4n sides for
some integer n.

Proof . Let us define a coordinate system such that the origin corresponds to one of
the vertices of the polygon. If we go around the boundary of the polygon in clockwise
order, jumping from one vertex to the next, then the horizontal and vertical jumps are
alternating, so it is enough to prove that the number of horizontal jumps is even. But
after every horizontal jump, the parity of the x-coordinate of the vertex will change, while
during vertical jumps it remains the same. So since the start and goal coordinates are 0,
we must make an even number of horizontal jumps.

The following definition will be important in the sequel.

Definition 3.1 Let Nb−w(P ) denote the number of black squares minus the number of
white squares covered by a polygon P . Let S(P ) denote the number of sides of P .

Theorem 3.2 In an orthogonal polygon P of odd side lengths S(P ) = 4 · |Nb−w(P )|. In
other words, if P has 4n sides, the difference of the number of black and white squares in
P is n.
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Proof . Without loss of generality we may suppose that Nb−w(P ) ≥ 0. Observe, that if an
orthogonal polygon P has only one row, then it has 4 sides, so S(P ) = 4 and Nb−w(P ) = 1.
Thus, the theorem is true for all polygons with only one row. Therefore, by using induction,
it is enough to prove that if we make a cut satisfying the conditions of Lemma 3.2, then∑

i S(P ∗
i ) = 4 ·∑i Nb−w(P ∗

i ) implies that S(P ) = 4 ·Nb−w(P ).
There are 6 different cuts described in the proof of Lemma of 3.2. For the cuts on

Figures 3 (a), (b) and (d)
∑

i Nb−w(P ∗
i ) = Nb−w(P ) and also

∑
i S(P ∗

i ) = S(P ). For the
cut on Fig. 2(c)

∑
i Nb−w(P ∗

i ) = Nb−w(P )− 1, but
∑

i S(P ∗
i ) = S(P )− 4, so those cuts all

satisfy the conditions.
For the cut on Figure 4(a),

∑
i Nb−w(P ∗

i ) = Nb−w(P ) and
∑

i S(P ∗
i ) = S(P ), because if

originally there were m distinct horizontal edges between the second and third rows, then
all those disappear in addition to the upmost edge, while m + 1 new edges are created
between the second and third rows.

Finally, for the cut on Figure 4(b)
∑

i Nb−w(P ∗
i ) = Nb−w(P ) + 1 and

∑
i S(P ∗

i ) =
S(P ) + 4, this latter because in place of the uppermost edge and the m edges between the
first and second row there are 5 + m new edges.

This proves that all cuts preserved the equality S(P ) = 4 · Nb−w(P ), therefore the
original polygon must satisfy the same equality.

3.2 Polygons with odd and even sides

In this section we prove that for a polygon with arbitrary integer edge lengths Nb−w(P )
depends only on the parities of the sequence of its edges.

Definition 3.2 Let P denote any orthogonal polygon with n sides. Let us follow the edges
of P in a clockwise order (starting at an arbitrary position) and write down a letter ’e’
whenever we encounter an edge of even length, and write an ’o’ for an odd edge. Let us
call such a sequence of ’e’s and ’o’s the parity sequence of polygon P . Two sequences are
considered equivalent, if they can be derived from the same polygon by choosing a different
starting position.

Similarly, follow the edges of P in clockwise order, and write down a letter ’c’, when
there is a clockwise turn at a vertex, and write an ’r’ for each reverse (counter-clockwise)
turn. Let us call the resulting sequence the turn sequence of polygon P .

As an example, the polygon on Figure 1 has parity sequence

’ooooeoooooeo’=’eoooooeooooo’=...

and turn sequence
’crccrccrccrc’=’rccrccrccrcc’=... .

Observe that every turn sequence contains 4 more ’c’ than ’r’. Also, every polygon with
more than 4 edges has at least one ’r’ in its turn sequence.
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Figure 5: Four consecutive edges of a polygon.

Theorem 3.3 Every orthogonal polygon P with Nb−w(P ) 6= 0 (with odd and/or even
sides) can be transformed into an orthogonal polygon P ∗ with odd side lengths only, where
Nb−w(P ∗) = Nb−w(P ).

For the proof of Theorem 3.3 we will need the following lemma.

Lemma 3.4 Suppose that e1, e2, e3 and e4 are four consecutive edges of a polygon P (in
clockwise order) and the vertices enclosed by the above edges are v2, v3 and v4 (see Figure
5.). Suppose that v2 and v3 are represented by ’cr’ in the turn sequence. Then we can
transform P into P ′ such that

(a) The only difference in the turn sequences of P and P ′ is that in P ′ v2 and v3 are
represented by ’rc’ instead of ’cr’.

(b) The parity sequences of P ′ and P are the same.
(c) Nb−w(P ′) = Nb−w(P ).

Proof of Lemma 3.4. Suppose that the coordinates of v2 and v3 are (x2, y2) and (x3, y3)
respectively. Without loss of generality we may suppose that e1 is a vertical edge. Define
the broken line l as the line connecting the points (x3 − ε,∞), (x3 − ε, y3 + ε), (x2 − ε, y2 +
ε), (x2 − ε,−∞), where ε is a small number (see Figure 5). Clearly, l doesn’t go through
any vertices of P , and it intersects only horizontal edges.

Get polygon P1 from P by shifting all vertices of P to the left of l by the vector
u = 2−−→v3v2. The length of the vertical edges of P will not change, while those horizontal
edges, which were intersected by l will be extended by |u|, an even number. Thus, the
turn sequences and parity sequences of P and P1 are the same. Also, since every row of
P is either unchanged, or had been extended by |u|, an even number, we conclude that
Nb−w(P1) = Nb−w(P ).

As a result of the above transformation, there is no vertex now in the box B with lower
right corner at v3 and with horizontal edge length |u| and vertical edge length |−−→v3v4|. On
the boundary of B, the only vertices are v2, v3 and v4.

Now get P ′ from P1 by shifting v3 and v4 by u. This transformation doesn’t change
the length of any edges except for e4. If v4 was a ’c’ turn, then the length of e4 is increased
by |u|, if it was an ’r’ turn, then the length of e4 is decreased by |u|. Note, that in the
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Figure 6: Transforming the turn sequence of the polygon.

latter case e4 had just been increased by |u| in the previous step, so it is always possible
to decrease its length by |u|.

The parity sequences of P1 and P ′ are the same. However v2 is changed into an ’r’
turn, while v3 is changed into a ’c’ turn. The volume of P1 is changed by the squares
in box B, but since there is an equal number of black and white squares in this box,
Nb−w(P1) = Nb−w(P ′). This proves Lemma 3.4.
Proof of Theorem 3.3. As any polygon P with four sides and Nb−w(P ) 6= 0 must have
all sides of odd length, so we may suppose that P has more than four sides. We are going
to show an algorithm for transforming P into P ∗, a polygon with odd sides, whenever
Nb−w(P ) 6= 0. Without loss of generality we suppose that Nb−w(P ) > 0.

Lemma 3.4 implies that any ’cr’ in the turn sequence can be transformed into an ’rc’,
and similarly any ’rc’ can be transformed into a ’cr’. Since we have at least one ’r’ and
at least five ’c’s in the turn sequence, any three consecutive positions in the turn sequence
can be transformed into ’crc’.

First we show that any polygon P whose parity sequence is ’xoeoy’ (where x and y
are any sequence of ’o’s and ’e’s), can be transformed into a polygon P ′ with the parity
sequence ’xey’, such that Nb−w(P ′) = Nb−w(P ).

Indeed, suppose that the 3 edges in P corresponding to ’oeo’ are e1, e2 and e3. Without
loss of generality we may suppose that e1 is a vertical edge. Suppose e1, e2, e3 and e4 are
adjacent to the five vertices v1, v2, v3, v4 and v5. By Lemma 3.4, the turn sequence can be
transformed in such a way that v2, v3, v4 corresponds to ’crc’ (as in Figure 6(a).).

Define a broken line l the same way as in the proof of Lemma 4. Let u = −−→v3v2 and shift
every vertex to the left of l by u as it is shown on Figure 6 (a). There will be no vertex
and no edge inside box B′. Suppose we get P1 by the above transformations. As u is of
even length, clearly Nb−w(P1) = Nb−w(P ).

Let w be the point where the lines along the edges e1 and e4 meet (see Fig. 5(b)). Let
e∗1 be the edge v1w and e∗4 be wv5. Now replace edges e1, e2, e3 and e4 by e∗1 and e∗4. Since
the length of e∗1 is the sum of the lengths of e1 and e3, both of which were odd, e∗1 is of
even length. The length of e∗4 is the sum of the lengths of e4 and e2, so since e2 was of even
length, e∗4 has the same parity as e4.
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Figure 7: The polygon depicted in the left-hand (respectively, right-hand) side has 8 (re-
spectively, 12) sides such that if we remove 2 (respectively 3) dashed squares it is not
tilable.

Thus, if we get P ′ from P1 by changing e1, e2, e3 and e4 to e∗1 and e∗4, then the parity
sequence changes from ’xoeoy’ to ’xey’. The difference in the area of polygon P1 and P ′

is box B′, whose horizontal side is of even length. Therefore Nb−w(P ′) = Nb−w(P1) =
Nb−w(P ).

We can similarly show that a sequence ’xeey’ can be changed into ’xy’. By using the
notation on Figure 6(b), suppose now that e2 and e3 are of even length, and again that
v2, v3 and v4 correspond to ’crc’. In this case we find that e∗1 and e∗4 have the same parity as
e1 and e4, therefore P ′ has the parity sequence ’xy’. Again, the difference box B′ contains
an equal number of black and white squares, therefore Nb−w(P ) = Nb−w(P ′).

Thus, by applying the above two transformations (changing the parity sequence from
’xoeoy’ to ’xey’ or from ’xeey’ to ’xy’) several times, we can either

(a) get rid of all ’e’s in the parity sequence, thus getting a polygon P ∗ which satisfies
the conditions of the theorem; or

(b) get a polygon P ∗ with four sides, at least two of which are of even length. But then
Nb−w(P ∗) = 0, thus proving the theorem.

Corollary 3.1 The number |Nb−w(P )| may be computed by a linear time procedure using
only the parity sequence of P .

The proof of Corollary 3.1 follows from the proof of Theorem 3.3.

3.3 Additional observations

It is known that if we take a rectangle R of odd sides with Nb−w(R) > 0, and remove one
of its black squares, then the resulting set can always be tiled by dominoes. For the proof
one has to observe that the resulting set can always be dissected into 4 or less rectangles
each of which has at least two even sides (see [2]).

One can ask if a generalization of this theorem holds: Take a polygon P of 4n sides all
of whose lengths are odd, and suppose Nb−w(P ) > 0. Remove n black squares from the
chessboard coloring. Can the resulting set P ′ be always tiled by dominoes? The answer
for n ≥ 2 is no, as shown by the counterexample in Figure 7.

The following example also shows that a simple generalization of Theorem 3.1 in 3-
dimensional space does not hold. Let a 3d-domino be a 2 × 1 × 1 polytope. There is a
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Figure 8: A polytope which can be tiled by 3d-dominoes but all of whose sides are odd.

polytope in 3 dimensional space all of whose edges are of odd length, but which can be
tiled by 3d-dominos. The polytope is depicted in Figure 8.
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