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Abstract. Let P be a set of points in the plane in general position. Any three points z,y,z € P
determine a triangle A(z,y, z) of the plane. We say that A(z,y, z) is empty if its interior contains no
element of P. In this paper we study the following problems: What is the size of the largest family of
edge-disjoint triangles of a point set? How many triangulations of P are needed to cover all the empty
triangles of P? What is the largest number of edge-disjoint triangles of P containing a point g of the
plane in their interior?

Introduction

Let P be a set of n points on the plane in general position. A geometric graph on P is
a graph G whose vertices are the elements of P, two of which are adjacent if they are
joined by a straight line segment. We say that G is plane if it has no edges that cross
each other. A triangle of G consists of three points z,y,z € P such that zy, yz, and
zx are edges of G; we will denote it as A(x,y,z). If in addition A(z,y,z) contains no
elements of P in its interior, we say that it is empty.

In a similar way, we say that, if x,y,2 € P, then A(x,y,z) is a triangle of P, and
that zy, yz, and zz are the edges of A(x,y, z). If A(z,y, 2) is empty, it is called a 3-hole
of P. A 3-hole of P can be thought of as an empty triangle of the complete geometric
graph Kp on P. We remark that A(x,y, z) will denote a triangle of a geometric graph,
and also a triangle of a point set.

A well-known result in graph theory says that, for n = 6k + 1 or n = 6k 4 3, the
edges of the complete graph K, on mn vertices can be decomposed into a set of (Z)/ 3
edge-disjoint triangles. These decompositions are known as Steiner triple systems [18];
see also Kirkman’s schoolgirl problem [12, 17]. In this paper, we address some variants
of that problem, but for geometric graphs.

Given a point set P, let §(P) be the size of the largest set of edge-disjoint empty
triangles of P. It is clear that, if P is in convex position and it has n = 6k + 1 or
n = 6k + 3 elements, then 6(P) = (5)/3. On the other hand, we prove that, for some
point sets, namely Horton point sets, §(P) is O(nlogn).

We then study the problem of covering the empty triangles of point sets with as few
triangulations of P as possible. For point sets in convex position, we prove that we need
essentially (g) /4 triangulations; our bound is tight. We also show that there are point
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sets P for which O(nlogn) triangulations are sufficient to cover all the empty triangles
of P for a given point set P.

Finally, we consider the problem of finding a point contained in the interior of many
edge-disjoint triangles of P. We prove that for any point set there is a point contained in
at least n?/12 edge-disjoint triangles. Furthermore, any point in the plane is contained
in at most n?/9 edge-disjoint triangles of P, and this bound is sharp. In particular, we
show that this bound is attained when P is the set of vertices of a regular polygon.

Preliminary work

The study of counting and finding k-holes in point sets has been an active area of research
since Erdds and Szekeres [6, 7] asked about the existence of k-holes in planar point sets.
It is known that any point set with at least ten points contains 5-holes; e.g. see [9].
Horton [10] proved that for & > 7 there are point sets containing no k-holes. The question
of the existence of 6-holes remained open for many years, but recently Nicolas [14]| proved
that any point set with sufficiently many points contains a 6-hole. A second proof of this
result was subsequently given by Gerken [8].

The study of properties of the set of triangles generated by point sets on the plane
has been of interest for many years. Let fi(n) be the minimum number of k-holes that
a point set has. Clearly a point set has a minimum of f3(n) empty triangles. Katchalski
and Meir [11] proved that () < f3(n) < kn? for some k < 200; see also Purdy [16].
Their lower bounds were improved by Dehnhardt [4] to n? — 5n + 10 < f3(n). He also
proved that ("53) +6 < fy(n). Point sets with few k-holes for 3 < k < 6 were obtained
by Barany and Valtr [2]. The interested reader can read [13] for a more accurate picture
of the developments in this area of research.

Chromatic variants of the Erd@s-Szekeres problem have recently been studied by
Devillers, Hurtado, Karoly, and Seara [5|. They proved among other results that any bi-
chromatic point set contains at least § — 2 compatible monochromatic empty triangles.
Aichholzer et al. [1] proved that every bi-chromatic point set contains Q(n°/*) empty
monochromatic triangles; this bound was improved by Pach and Toth [15] to Q(n*/?).
Due to lack of space, we will omit the proofs of all of our results.

1 Sets of edge-disjoint empty triangles in point sets

Let P be a set of n points on the plane, and 0(P) the size of the largest set of edge-disjoint
empty triangles of the complete graph K(P) on P. For any integer k > 1, let Hj, denote
the Horton set with 2* points; see [10]. We will prove:

Theorem 1.1. Let n = 2%, and let Hy, be the Horton set with n = 2F elements. Then
d(Hy) is O(nlogn).

Conjecture 1.2. FEvery point set P in general position with n elements contains a set
with at least O(nlogn) edge-disjoint empty triangles.
2 Covering the triangles of point sets with triangulations

An empty triangle t of a point set P is covered by a triangulation T of P if one of the
faces of T is t. In this section we consider the following problem:
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Problem 2.1. How many triangulations of a point set are needed so that each empty
triangle of P is covered by at least one triangulation?

We start by studying Problem 2.1 for point sets in convex position, and then for point
sets in general position. We will prove first:

Theorem 2.2. The set of triangles of any convex polygon can be covered with
(1) % [(g) + W] triangulations for n even, and
(2) & [(g) + %] triangulations for n odd.

This bound is tight.

Thus the number of triangulations needed to cover all the triangles of P is asymptot-
ically (%)/4. The next result follows trivially:

Corollary 2.3. Let P be a set of n points in convex position, and p any point in the
interior of CH(P). Then p belongs to the interior of at most i(g) +0O(n?) triangles of P.

Next we prove:

Theorem 2.4. O(nlogn) triangulations of Hy are necessary and sufficient to cover the
set of empty triangles of Hy.

Conjecture 2.5. At least Q(nlogn) triangulations are needed to cover all the empty
triangles of any point set with n points.

3 A point in many edge-disjoint triangles

The problem of finding a point contained in many triangles of a point set was solved by
Boros and Fiiredi [3|. They proved:

Theorem 3.1. For any set P of n points in general position, there is a point in the
interior of the convex hull of P contained in %(g) + O(n?) triangles of P. The bound
18 tight.

We consider the following problem:

Problem 3.2. Let P be a set of points on the plane in general position, and ¢ € P a
point of the plane. What is the largest number of edge-disjoint triangles of P such that ¢
belongs to the interior of all of them?

We will prove:

Theorem 3.3. In any point set in general position there is a point q for which the
inequalities %nQ <7(q) < énQ hold. Moreover, T(q) < %nQ for every q.

3.1 Regular polygons

By Theorem 3.3, any point in the interior of the convex hull of a point set is contained
in at most n%/9 edge-disjoint triangles of P. We now show that the upper bound in
Theorem 3.3 is achieved when P is the set of vertices of a regular polygon. Proving this
result proved to be a nice challenging problem. In what follows, we will assume that
n = 9m with m > 1. We will prove:
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Theorem 3.4. Let P be the set of vertices of a reqular polygon with n = 9m vertices, and
let ¢ be its center. If m is odd, then |7(c)| > &n?, and if m is even, then |7(c)| > $n* —n.

We conclude our paper by proving:

Theorem 3.5. There are point sets P such that every q ¢ P is contained in at most a
linear number of empty edge-disjoint triangles of P. This bound is tight.

We conclude with the following:

Conjecture 3.6. Let P be a set of n points in general position on the plane. Then there
is a point q on the plane which is contained in at least logn edge-disjoint triangles of P.
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