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Abstract. Let P be a set of points in the plane in general position. Any three points x, y, x 2 P
determine a triangle �(x, y, z) of the plane. We say that �(x, y, z) is empty if its interior contains no
element of P . In this paper we study the following problems: What is the size of the largest family of
edge-disjoint triangles of a point set? How many triangulations of P are needed to cover all the empty
triangles of P? What is the largest number of edge-disjoint triangles of P containing a point q of the
plane in their interior?

Introduction
Let P be a set of n points on the plane in general position. A geometric graph on P is
a graph G whose vertices are the elements of P , two of which are adjacent if they are
joined by a straight line segment. We say that G is plane if it has no edges that cross
each other. A triangle of G consists of three points x, y, z 2 P such that xy, yz, and
zx are edges of G; we will denote it as �(x, y, z). If in addition �(x, y, z) contains no
elements of P in its interior, we say that it is empty.

In a similar way, we say that, if x, y, z 2 P , then �(x, y, z) is a triangle of P , and
that xy, yz, and zx are the edges of �(x, y, z). If �(x, y, z) is empty, it is called a 3-hole
of P . A 3-hole of P can be thought of as an empty triangle of the complete geometric
graph KP on P . We remark that �(x, y, z) will denote a triangle of a geometric graph,
and also a triangle of a point set.

A well-known result in graph theory says that, for n = 6k + 1 or n = 6k + 3, the
edges of the complete graph Kn on n vertices can be decomposed into a set of

�

n
2

�

/3
edge-disjoint triangles. These decompositions are known as Steiner triple systems [18];
see also Kirkman’s schoolgirl problem [12, 17]. In this paper, we address some variants
of that problem, but for geometric graphs.

Given a point set P , let �(P ) be the size of the largest set of edge-disjoint empty
triangles of P . It is clear that, if P is in convex position and it has n = 6k + 1 or
n = 6k + 3 elements, then �(P ) =

�

n
2

�

/3. On the other hand, we prove that, for some
point sets, namely Horton point sets, �(P ) is O(n log n).

We then study the problem of covering the empty triangles of point sets with as few
triangulations of P as possible. For point sets in convex position, we prove that we need
essentially

�

n
3

�

/4 triangulations; our bound is tight. We also show that there are point
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sets P for which O(n log n) triangulations are sufficient to cover all the empty triangles
of P for a given point set P .

Finally, we consider the problem of finding a point contained in the interior of many
edge-disjoint triangles of P . We prove that for any point set there is a point contained in
at least n2/12 edge-disjoint triangles. Furthermore, any point in the plane is contained
in at most n2/9 edge-disjoint triangles of P , and this bound is sharp. In particular, we
show that this bound is attained when P is the set of vertices of a regular polygon.

Preliminary work

The study of counting and finding k-holes in point sets has been an active area of research
since Erdős and Szekeres [6, 7] asked about the existence of k-holes in planar point sets.
It is known that any point set with at least ten points contains 5-holes; e.g. see [9].
Horton [10] proved that for k � 7 there are point sets containing no k-holes. The question
of the existence of 6-holes remained open for many years, but recently Nicolás [14] proved
that any point set with sufficiently many points contains a 6-hole. A second proof of this
result was subsequently given by Gerken [8].

The study of properties of the set of triangles generated by point sets on the plane
has been of interest for many years. Let fk(n) be the minimum number of k-holes that
a point set has. Clearly a point set has a minimum of f

3

(n) empty triangles. Katchalski
and Meir [11] proved that

�

n
2

�

 f
3

(n)  kn2 for some k < 200; see also Purdy [16].
Their lower bounds were improved by Dehnhardt [4] to n2 � 5n + 10  f

3

(n). He also
proved that

�

n�3

2

�

+ 6  f
4

(n). Point sets with few k-holes for 3  k  6 were obtained
by Bárány and Valtr [2]. The interested reader can read [13] for a more accurate picture
of the developments in this area of research.

Chromatic variants of the Erdős-Szekeres problem have recently been studied by
Devillers, Hurtado, Károly, and Seara [5]. They proved among other results that any bi-
chromatic point set contains at least n

4

� 2 compatible monochromatic empty triangles.
Aichholzer et al. [1] proved that every bi-chromatic point set contains ⌦(n5/4) empty
monochromatic triangles; this bound was improved by Pach and Tóth [15] to ⌦(n4/3).
Due to lack of space, we will omit the proofs of all of our results.

1 Sets of edge-disjoint empty triangles in point sets
Let P be a set of n points on the plane, and �(P ) the size of the largest set of edge-disjoint
empty triangles of the complete graph K(P ) on P . For any integer k � 1, let Hk denote
the Horton set with 2k points; see [10]. We will prove:

Theorem 1.1. Let n = 2k, and let Hk be the Horton set with n = 2k elements. Then
�(Hk) is O(n log n).

Conjecture 1.2. Every point set P in general position with n elements contains a set
with at least O(n log n) edge-disjoint empty triangles.

2 Covering the triangles of point sets with triangulations
An empty triangle t of a point set P is covered by a triangulation T of P if one of the
faces of T is t. In this section we consider the following problem:



XIV Spanish Meeting on Computational Geometry, 27–30 June 2011 17

Problem 2.1. How many triangulations of a point set are needed so that each empty
triangle of P is covered by at least one triangulation?

We start by studying Problem 2.1 for point sets in convex position, and then for point
sets in general position. We will prove first:

Theorem 2.2. The set of triangles of any convex polygon can be covered with

(1) 1

4

h

�

n
3

�

+ n(n�2)

2

i

triangulations for n even, and

(2) 1

4

h

�

n
3

�

+ n(n�1)

2

i

triangulations for n odd.

This bound is tight.

Thus the number of triangulations needed to cover all the triangles of P is asymptot-
ically

�

n
3

�

/4. The next result follows trivially:

Corollary 2.3. Let P be a set of n points in convex position, and p any point in the
interior of CH(P ). Then p belongs to the interior of at most 1

4

�

n
3

�

+O(n2) triangles of P .

Next we prove:

Theorem 2.4. ⇥(n log n) triangulations of Hk are necessary and sufficient to cover the
set of empty triangles of Hk.

Conjecture 2.5. At least ⌦(n log n) triangulations are needed to cover all the empty
triangles of any point set with n points.

3 A point in many edge-disjoint triangles
The problem of finding a point contained in many triangles of a point set was solved by
Boros and Füredi [3]. They proved:

Theorem 3.1. For any set P of n points in general position, there is a point in the
interior of the convex hull of P contained in 2

9

�

n
3

�

+ O(n2) triangles of P . The bound
is tight.

We consider the following problem:

Problem 3.2. Let P be a set of points on the plane in general position, and q 62 P a
point of the plane. What is the largest number of edge-disjoint triangles of P such that q
belongs to the interior of all of them?

We will prove:

Theorem 3.3. In any point set in general position there is a point q for which the
inequalities 1

12

n2  ⌧(q)  1

9

n2 hold. Moreover, ⌧(q)  1

9

n2 for every q.

3.1 Regular polygons

By Theorem 3.3, any point in the interior of the convex hull of a point set is contained
in at most n2/9 edge-disjoint triangles of P . We now show that the upper bound in
Theorem 3.3 is achieved when P is the set of vertices of a regular polygon. Proving this
result proved to be a nice challenging problem. In what follows, we will assume that
n = 9m with m � 1. We will prove:



18 Empty edge-disjoint triangles

Theorem 3.4. Let P be the set of vertices of a regular polygon with n = 9m vertices, and
let c be its center. If m is odd, then |⌧(c)| � 1

9

n2, and if m is even, then |⌧(c)| � 1

9

n2 �n.

We conclude our paper by proving:

Theorem 3.5. There are point sets P such that every q /2 P is contained in at most a
linear number of empty edge-disjoint triangles of P . This bound is tight.

We conclude with the following:

Conjecture 3.6. Let P be a set of n points in general position on the plane. Then there
is a point q on the plane which is contained in at least log n edge-disjoint triangles of P .
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