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Abstract

Given a set S of n points in R2, we study the number of different ways of drawing n non-
crossing rays, each one emanating from a point of S. If we denote by r(S) this number, and call
r(n) = max|S|=n r(S), we prove that lim r(n)1/n = 4. We also consider the related problem of
counting in how many different ways the points in S can be connected to a given curve by means
of pairwise non-crossing segments.

1 Introduction

Let S be a set of n points in the plane, labelled {p1, . . . , pn}, or simply {1, . . . , n} when this can cause
no ambiguity, with no three of them on a line. Consider for each point pi a ray ri with apex pi in such
a way that the rays ri are pairwise non-crossing. Then any circle enclosing S is cut by the rays in a
cyclic order rπ(1), . . . , rπ(n), where π is a permutation of 1, . . . , n in which we can take π(1) = 1. We
are interested in studying the number r(S) of different cyclic permutations that can be obtained in
this way from the point set S (see Figure 1). Counting exactly this number appears to be as a quite
difficult problem even for very regular configurations of points, therefore we focus on obtaining tight
bounds for r(S), and looking for configurations of points achieving the extremal value, that we denote
by

r(n) = max
|S|=n

r(S).

To the best of our knowledge this natural problem has not been previously studied, in spite of the
fact that counting configurations consisting of non-crossing segments connecting points in the plane,
such as polygons, trees, matchings or triangulations, has been a very active area of research for several
years [1, 2, 3, 4, 6, 8, 9, 13, 14, 15, 16] that keeps attracting substantial attention.

A related problem consists of, given a point set S = {p1, . . . , pn} and a simple curve γ, induce
a permutation on γ by connecting the points in S with γ by means of pairwise non-crossing line
segments; when γ is a closed Jordan curve, we would consider the cyclic permutations induced on γ
(see Figure 2). We call this problem the γ-matching permutation problem. One may think of it as a
special case of the non-crossing rays problem in which we stop the rays as they hit the curve.

The paper is organized as follows. We consider the γ-matching permutation problem in Section 2
for the case in which γ is a line and all the points of S lie in one of the halfplanes defined by γ, and
in Section 4 for points sets S enclosed by a convex curve γ. The results from Section 2 are used in
Section 3 for studying the non-crossing rays problem, which we visit again in Section 5 for point sets
evenly distributed on a circumference.
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Figure 1: Cyclic permutations induced by non-crossing rays.
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Figure 2: Two permutations induced by a point set on a curve.

2 The γ-matching permutation problem for halfplanes

Let l be a line and S = {p1, . . . , pn} be a set of points lying on a halfplane H limited by l. Without loss
of generality we can assume that l is a horizontal line, H its upper halfplane, and that the points pi

are sorted in decreasing order of their ordinates. An l-matching permutation (or matching permutation
for short) is defined as follows: Each point pi is joined with a segment to a distinct point on the line l
in such a way that the segments are pairwise non-crossing (see Figure 3). By traversing l from left to
right we find first a point matched with some pi1 ∈ S, then a point matched with pi2 ∈ S, and so on.
The sequence of indices i1, i2, . . . , in is the matching permutation induced by the set of segments. We
say that a permutation of the numbers 1, 2, . . . , n is a feasible permutation when it can be obtained
as a matching permutation. The number of feasible permutations will be denoted by rl(S) and the
extremal value that we study here is

rl(n) = max
|S|=n

{rl(S)}.

Notice that rl(1) = 1. For convenience, we define as well rl(0) to be 1.

Notice that if two points have equal y-coordinates they must be connected to l in the order of their
abscissae; in particular only one l-matching is possible if all the points of S lie on a line parallel to l.
In the next statement we exclude these situations to avoid trivial lower bounds, yet observe that the
upper bound applies to all configurations. We denote by Cn the n-th Catalan number Cn = 1

n+1

(
2n
n

) ∈
Θ(4nn−

3
2 ), [18].

Lemma 2.1. Let S any set of n points in the plane such that no two of them have equal y-coordinate.
Then

2n − n ≤ rl(S) ≤ Cn.
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Figure 3: Feasible permutation 321465.
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Figure 4: A configuration that achieves the maximum number of matchings.

Theorem 2.2. The maximum of the values rl(S) when |S| = n is

rl(n) = Cn.

The bound rl(n) ≤ Cn is implied by Lemma 2.1; in order to prove equality, a specific set S with
rl(S) = Cn is constructed (see Figure 4); its description is omitted from this extended abstract.

The point set construction used in the proof of the previous result has two additional properties:
On one hand, any feasible permutation can be realized using matching segments that if extended
downwards become pairwise noncrossing. On the other hand all these rays may be taken inside a cone
of directions forming an angle as small as desired with the +x-axis.

Combining the first property with Theorem 2.2, we obtain the following result:

Corollary 2.3. Let r(S) be the number of different cyclic permutations that can be obtained shooting
a set of pairwise noncrossing rays from a given set S of n points. Then

r(n) = max
|S|=n

{r(S)} ≥ Cn.

The lower bound given in Lemma 2.1 is not tight for n ≥ 5, because in that proof only permutations
corresponding to some sets of rays are counted. However, the following proposition shows that in fact
the bound is quite tight. The proof requires the construction of a special point set and is omitted from
this abstract.

Proposition 2.4. There are point sets S of n points such that rl(S) ≤ (8/5)2n.

3 Counting configurations of non-crossing rays

We focus here in this section in the first problem mentioned in this paper: S is a set of n points in the
plane, labelled {p1, . . . , pn}, no three on a line, and from each point pi we shoot a ray ri to infinity, in



such a way that the rays ri are pairwise non-crossing. We are interested in bounding the the number
r(S) of different cyclic permutations that such sets of rays can generate and in the extremal value.
r(n) = max|S|=n r(S).

First of all, observe that any given configuration of non-crossing rays can be transformed into what
we call a canonic configuration that induces the same feasible permutation, by clockwise rotating all
the rays as much as possible (see Figure 5). In this way the ray from a point pi is rotated until another
point pj is found, or until it is parallel to another ray in the direction of a line pjpk. Notice that in a
canonic position the rays can only have one of the

(
n
2

)
directions the points define.
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Figure 5: The canonic configuration of the permutation 12357486.

The technique in the proof of our next result permutation uses a distinction between feasible permu-
tations that are called separable and those that are nonseparable. The first type are the permutations
such that can be realized by some configuration of rays in such a way that it is possible to draw some
line l in the plane that doesn’t cross any ray.

Proposition 3.1. There are polynomials p(n) and p′(n) such that deg(p) ≤ 9, deg(p′) ≤ 2, and for
any set S with n points we have

p′(n)2n ≤ r(S) ≤ p(n)Cn.

We believe the lower bound in the preceding proposition is quite tight; in fact we think possible
to find sets S with n points such that r(S) < q(n)2n where q(n) is some fixed polynomial, but the
proof remains elusive to us. As for the upper bound, we know from Corollary 2.3 that it is tight up to
polynomial terms, hence we can state the following result:

Theorem 3.2. Let r(S) be the number of different cyclic permutations that can be obtained shooting
sets of pairwise noncrossing rays from a given set S of n points, and let us consider the extremal value
r(n) = max|S|=n. Then

lim r(n)1/n = 4.

4 The γ-matching permutation problem for convex regions

Let C be a closed Jordan curve bounding a convex region RC , and let S = {p1, . . . , pn} be a set
of points inside RC . A C-matching permutation (or matching permutation for short) is defined as
follows: Each point pi is joined with a segment to a distinct point on the curve C in such a way that
the segments are pairwise non-crossing (see Figure 6). By walking on C, say clockwise, we find first a
point matched with some pi1 ∈ S, then a point matched with pi2 ∈ S, and so on. The cyclic sequence
of indices i1, i2, . . . , in is the matching permutation induced by the set of segments. We say that a
cyclic permutation of the numbers 1, 2, . . . , n is a feasible permutation when it can be obtained as a
matching permutation. The number of feasible permutations will be denoted by rC(S) and we give in
this section bounds for this number.

Observe that if we take an increasing sequence of nested convex regions, RC = RC0 ⊂ RC1 ⊂ RC2 . . .
then rC0(S) ≥ rC1(S) ≥ rC2(S) ≥ . . .. In addition, if Ci encloses all the intersection points between



Figure 6: The γ-matching permutation problem inside a convex region.

pairs of lines passing through two points of S, then rCi(S) = r(S), where r(S) is the number of non-
crossing rays configurations from S studied in previous section, as we have seen there that it suffices
to consider canonic sets of rays. Therefore when looking for point sets S and convex regions RC such
that rC(S) reaches a minimum value, we see that this happens for the same configurations such that
r(S) is minimized.

As for an upper bound, since rC(S) increases the more C tightens around S, in order to obtain
a maximum value for rC(S) we can assume that C is precisely the convex hull of S. A specially
interesting case arises when all the points of S are in convex position, i.e., C is a convex polygon with
vertices p1, . . . , pn given in clockwise order, and each point pi is matched with a point qi on C, and
we are interested in counting the possible orders for the points q1, . . . , qn. Notice that in this case the
number of feasible permutations doesn’t change if we replace the polygon C by any convex curve C
containing the n points, or if we move the points of S to other positions on C without changing their
order. Hence, in this case, rC(S) only depends on the number of points of the convex set S, and we will
use the notation rconv(n) for this amount. The following proposition proves that we can characterize
in this case the feasible permutations and count them.

Proposition 4.1. Let C be the boundary of a convex polygon with vertices p1, . . . , pn. A permutation
π is feasible as C-matching permutation, if and only if, any five indices i1 < i2 < i3 < i4 < i5
neither appear in the cyclic order i1i3i5i2i4 nor in the cyclic order i1i4i2i5i3, and any six indices
i1 < i2 < i3 < i4 < i5 < i6 do not appear in the cyclic order i1i4i5i2i3i6. The value of rconv(n) is
asymptotically

rconv(n) ≈ 125
√

5
54
√

π
n−3/25n.

When the points of S are in general position, and C is the convex hull of S, we can provide the
following bound:

Proposition 4.2. rC(S) ≤ 4nCn for any set S of n points and any convex C enclosing S.

5 Configurations of non-crossing rays from the vertices of reg-
ular polygons

In this final section we study how many different configurations of pairwise non-crossing rays can be
obtained when the apices are a point set S consisting of the vertices of a regular n-gon. The number
r(S) depends only on n, and will be denoted by rreg(n). We do not know exact formulas for rreg(n),
but we have been able to obtain an asymptotic estimate:

Theorem 5.1. Let rreg(n) be the number of different cyclic permutations that can be obtained shooting
sets of pairwise noncrossing rays from the vertices of a regular n-gon. Then

lim sup |rreg(n)|1/n ≥ 2.2453.
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