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Abstract. Let R and B be disjoint point sets such that R ∪ B is in general position. We say
that B encloses by R if there is a simple polygon P with vertex set B such that all the elements
in R belong to the interior of P .

In this paper we prove that if the vertices of the convex hull of R ∪ B belong to B, and
|R| ≤ |Conv(B)| − 1 then B encloses R. The bound is tight. This improves on results of a
previous paper in which it was proved that if |R| ≤ 56|Conv (B)| then B encloses R. To obtain
our result we prove the next result which is interesting on its own right: Let P be a convex
polygon with n vertices p1, . . . , pn and S a set of m points contained in the interior of P ,
m ≤ n− 1. Then there is a convex decomposition {P1, . . . , Pn} of P such that all points from S

lie on the boundaries of P1, . . . , Pn, and each Pi contains a whole edge of P on its boundary.

Key words. Enclosing polygon, red blue point sets.

1. Introduction

Let S be a set of n points in the plane in general position. A polygonization of S is a
simple polygon such that its vertex set is S. Finding an upper and lower bounds on the
number of polygonizations any point set admits is a problem that has been receiving much
attention since it was posed in 1979 by Akl [2] and 1980 by Newborn and Moser [13]. In [2]
a lower bound of 2.27n was proved. An upper bound of the form cn for some constant
c (ignoring polynomial terms) was conjectured by Newborn and Moser [13]. This was
proved in 1982 by Ajtai, Chvátal, Newborn, and Szemerédi [1], who proved that there are
at most 1013n crossing-free graphs on n points in a paper that had strong influence in the
latter theory of geometric graphs [3]. This bound has been improved in several papers,
and most recently for polygonizations to 86.81n by Sharir and Welzl [15].

Any simple polygon P defines two open regions on the plane, a bounded one called
the interior of P and an unbounded region called the exterior of P . The area of P is the
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area of the region bounded by P . Problems of finding polygonizations of point sets S that
maximize or minimize some parameters of the polygonization have also been studied. S.

Fekete [9] considers the problem of finding polygonizations of point sets S that mini-
mize or maximize the enclosed area. He proves that finding such polygonizations is NP -
complete. It is worth mentioning here that a tool used by Fekete, is Pick’s Theorem, a
classic result on polygonizations that for polygons with vertices on the integer lattice,
establishes an elegant relation between the area of the polygons and the number of lat-
tice points on the boundary and in the interior of such polygons [14,4]. The problem of
finding polygonizations of point sets that minimize the perimeter is the famous Euclidean
Travelling Salesman problem, and it is well known that this problem is NP -hard [11].

Fig. 1. The polygon through the points represented by small solid points encloses all of the
points represented by small empty circles.

We say that a polygon P encloses a point set S if all the elements of S belong to the
interior of P ; see Figure 1. Let R and B be disjoint point sets on the plane such that
S = R ∪ B is in general position. The elements of R (respectively B) will be called the
red points of S (respectively the blue points of S). A polygonization of B will be called a
blue polygonization. The problem of finding a blue polygonization that encloses as many
red points as possible was studied in [5].

Since any red element of S that is enclosed by a blue polygonization must belong to
the interior of the convex hull Conv(B) of B, in what follows we will assume that all the
elements of R belong to the interior of Conv(B). Under this assumption, it is proved in [5]
that there always exists a blue polygonization that encloses at least half of the elements of
R. Moreover this bound is asymptotically tight. It is also proved that there always exists
a polygon that covers at least half of the area of the convex hull of S.

Let k denote the number of vertices on Conv(B), and i the number of elements of B

in the interior of Conv(B), i + k = n. In [5] it was also proved that if |R| ≤ 56k, then
there always exists a blue polygonization that encloses R. It is easy to see that there are
red point sets contained in Conv(B) with k elements such that the whole of R cannot be
enclosed by any blue polygonization; simply let R have an element close enough to the
midpoint of each of the k edges of Conv(B), and make sure that B has at least one point
in the interior of Conv(B) as shown in Figure 2.

Our main goal in this paper is to show that if R has at most k − 1 points, then
there always exists a blue polygonization that encloses R. The main tool used here is a
partitioning lemma that we consider to be of interest on its own, asserting the following:
Let P be a convex polygon with n vertices, and S a point set contained in P with at most
n− 1 elements. Then there is a set of n convex polygons P1, . . . , Pn with disjoint interiors
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Fig. 2. The blue points are represented by small solid circles, the red ones by small empty
circles.

such that the elements of S belong to the boundaries of P1, . . . , Pn, each Pi contains on
its boundary exactly one edge of P , and P1 ∪ . . . ∪ Pn = P . See Figure 3.

Fig. 3. The Decomposition Lemma.

We conclude this paper showing how to construct blue and red point sets with n = i+k

and m = k − 2 + 2i elements respectively, such that any blue polygon contains exactly
n− 2 red points. Observe that when k = 3, R has exactly m = 2n− 5 elements, and thus
any blue polygonization contains exactly m+1

2
red points in its interior and m−1

2
points in

its exterior.

2. The Decomposition Lemma

Let P be a convex polygon with n vertices. We call a set of convex polygons {P1, . . . , Pn}
with disjoint interiors a convex decomposition of P if it satisfies the following conditions:

– P1 ∪ . . . ∪ Pn = P

– Each Pi has exactly one edge of P on its boundary, called the lid of Pi.

P1, . . . , Pn will be called the pockets of the decomposition. See Figure 3. In the rest of this
paper, all point sets or unions of point sets will be assumed to be in general position. If
the vertices of a polygon P are labelled p1, . . . , pn in the counter-clockwise order along its
boundary, we might refer to P as to the polygon p1p2 . . . pnp1. In this section we prove:

Theorem 1. [Decomposition lemma] Let P be a convex polygon with n vertices p1, . . . , pn

and S a set of m points contained in the interior of P , m ≤ n−1. Then there is a convex
decomposition {P1, . . . , Pn} of P such that all the points of S lie on the boundaries of
P1, . . . , Pn, see Figure 3.
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We present some preliminary results that will be useful to prove Theorem 1.

Lemma 1. Let T be a triangle with vertices p1, p2 and p3, that contains in its interior a
set S of 2 + x1 + x2 points, where x1 and x2 are any non-negative integers. Then, there is
a point t in the interior of T such that one of the following situations happens:

(a) The union of the segments tp1, tp2 and tp3 covers exactly two points from S, and there
are x1 and x2 points from S in the interior of the triangles tp1p2 and tp2p3, respectively.

(b) Each one of the segments tp1, tp2 and tp3 covers exactly one point from S, and there are
x1−1 and x2 points from S in the interior of the triangles tp1p2 and tp2p3, respectively.

(c) Each one of the segments tp1, tp2 and tp3 covers exactly one point from S, and there are
x1 and x2−1 points from S in the interior of the triangles tp1p2 and tp2p3, respectively.

Proof. Let t0 be a point on the segment p1p3 such that the triangles t0p1p2 and t0p2p3

have, respectively, x1 + 1 and x2 + 1 points from S in their interior (Figure 4, left).
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Fig. 4. Decomposing a triangle: first step.

We consider a point t that moves along the segment t0p2, with initial position t = t0,
until some point from S is encountered by one or both of the segments tp1 and tp3.

If two points are simultaneously found, one by tp1 and the other by tp3 we are in
situation (a). Our result follows, see Figure 4, right.

Suppose then that a point q1 from S is intersected by the segment p1t (the case q1 ∈
p3t is identical). Let t1 be the intersection point of the lines generated by p1t and p2p3

(Figure 5, left); now we move the point t towards t1 along the line segment p1t1. If one
point from S is met by either of tp3 or tp2 we are again in case (a) and we are done
(Figure 5, center). If two points are simultaneously met by tp3 and tp2, we are in situation
(c) (Figure 5, right).
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Fig. 5. Decomposing a triangle: second step.
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Proof of Theorem 1
Observe that we can assume that m = n−1, for otherwise we can add (n−1)−m dummy
points to the set S, obtain a convex partition, and then remove the dummy points.

We prove our result by induction on n; the base case n = 3 follows from Lemma 1 with
x1 = x2 = 0. Suppose that the vertices of P are labeled p1, . . . , pn in the counter-clockise
direction along its boundary such that the lower vertex of P is precisely pn, and pn lies
on the origin, (refer to Figure 6). Every point q can be described by its polar coordinates
(r(q), ϕ(q)), where r(q) is the distance from q to the origin and ϕ(q) is the angle from the
positive axis +x to the ray through q with apex at the origin.

p
1

p
2

p
n-1

p
n

r

Fig. 6. Choice of the reference.

For every value α in the interval [0, π] we define a function g as follows:

g(α) = |{q ∈ S | ϕ(q) < α}| − |{pi | ϕ(pi) < α, 1 ≤ i < n}|.

Therefore, in particular,

g(ϕ(p1)) =0 − 0 = 0;

g(ϕ(pn−1)) =(n − 1) − (n − 2) = 1;

g(ϕ(pi)) =|{q ∈ S | q is in the interior of the polygon with vertices pn, p1, . . . , pi}| − (i − 1).

Let j be the smallest index such that j > 1 and g(ϕ(pj)) ≥ 0; such an index must exist
because g(ϕ(pn−1)) = 1. Several cases arise.

Case 1 : g(ϕ(pj)) = 0. In this case the number of points from S inside the polygon
pnp1 . . . pjpn is exactly j − 1 and we have g(ϕ(pi)) < 0 for all the values of i such that
1 < i < j, see Figure 7.

The polygon P̂ = pnpjpj+1 . . . pn−1pn has n − j + 1 vertices; let Ŝ be the set of points

of S that are interior to P̂ . Since |Ŝ| = (n − 1) − (j − 1) = n − j < n − 1, we can apply

induction to the polygon P̂ and the point set Ŝ and obtain a convex partitioning Π of P̂ ;
let Q ∈ Π be the pocket of P̂ whose lid is pnpj . Let Qj−1 be the convex polygon obtained
by the union of polygons Q and pnp1p2 . . . pjpn; note that Qj−1 contains exactly j − 1

points from S, namely the set Sj−1 = S \ Ŝ.
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Fig. 7. First step in Case 1.

Let us consider a moving point t that travels counterclockwise on the boundary of Qj−1,
starting at pj. Before t reaches pn some point q ∈ S must be met by the segment pj−1t,
otherwise we would have j − 1 points of S inside pnp1 . . . pj−1pn and then g(ϕ(pj−1)) > 0,
contradicting the choice of j.

We add the chord of Qj−1 through pj−1 and q to the decomposition of P that we are
constructing and remove from Qj−1 the region swept by pj−1t until q was found; in this
way we obtain a new convex polygon Qj−2 that contains exactly j − 2 points from S in
its interior, namely the set Sj−2 = Sj−1 \ {q} (Figure 8, left ). We repeat the preceding
construction by sweeping with a chord of Qj−2 having one endpoint anchored at pj−2 and
so on, until the claimed decomposition of P is completed (Figure 8, right).
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Fig. 8. Iterative step and final construction for Case 1.

Case 2 : g(ϕ(pj)) > 0. In this case the number of points from S inside the polygon
pnp1 . . . pjpn is at least j and we have g(ϕ(pi)) < 0 for all the values of i such that
1 < i < j.

Let y1 and y2 be the number of points of S in the interior of the polygons pnp1p2 . . . pj−1pn

and pnpjpj+1 . . . pn−1pn, respectively. From the preceding observations we see that y1 ≤
j − 2 and that (n − 1) − y2 ≥ j; i.e., y2 ≤ n − 1 − j.

If we define the numbers

x1 = j − 2 − y1, x2 = n − 1 − j − y2,
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we see that the number x of points from S interior to the triangle pnpj−1pj is

x = (n − 1) − (y1 + y2) = (n − 1) + (x1 − j + 2) + (x2 − n + 1 + j) = x1 + x2 + 2 ≥ 2.
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Fig. 9. First step for Case 2.

Therefore, we can apply Lemma 1 to the triangle with the numbers x1 and x2 associated
to the sides pnpj−1 and pnpj, respectively. Let q be the point such that the segments qpn,
qpj−1 and qpj splits triangle pnpj−1pj as in Lemma 1.

Let Qj−2 be the convex polygon obtained as union of the triangle pnpj−1q and the
polygon pnp1p2 . . . pj−1pn; let Qj+1 be the convex polygon obtained as union of the tri-
angle pnqpj and the polygon pnpjpj+1 . . . pn−1pn (Figure 9). Three subcases arise, that
we describe separately; in all of them the segments qpn, qpj−1 and qpj are used for the
decomposition of P .

Subcase 2.1 : The union of the segments qpn, qpj−1 and qpj covers two points from S and
triangles qpnpj−1 and qpjpn contain x1 and x2 points from S, respectively, in their interior.

Let Sj−2 and Sj+1 be the set of points interior to Qj−2 and Qj+1, respectively. We have
|Sj−2| = x1 + y1 = j − 2 and |Sj+1| = x2 + y2 = n − 1 − j (Figure 10, left).
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Fig. 10. Initial situation in Subcase 2.1 and decomposition of Qj−2.

For the decomposition of Qj−2 we consider a segment with one endpoint at pj−2 and
the other one at a moving point t that travels counterclockwise on the boundary of Qj−2,
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with starting position t = pj−1; a point from S must be found by the sweeping chord
before t reaches pn, and we proceed as in the proof of Case 1 achieving the decomposition
of Qj−2(Figure 10, right).

For the decomposition of Qj+1 we consider a segment with one endpoint at pj+1 and
the other one at a moving point t that travels clockwise on the boundary of Qj+1, with
starting position t = pj. If some point of Sj+1 is found before t reaches pn, we cut off the
swept area and iterate as in the previous situation; if this keeps happening we arrive at
the decomposition of Figure 11, left.
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Fig. 11. Decomposition of Qj+1 in Subcase 2.1.

If t reaches pn and no point from Sj+1 has been encountered, all points from Sj+1 must

lie in the interior of the polygon P̂ = pnpj+1pj+2 . . . pn−1pn; this polygon has n − j =

|Sj+1| + 1 vertices and hence we can apply induction to P̂ and Sj+1. In the final step,
we obtain the overall decomposition of P by considering the pocket (with lid the edge
pjpj+1) formed by the union of the triangles pnqpj and pjpj+1pn, together with the pocket

corresponding to pnpj+1 in the decomposition of P̂ (Figure 11, right).
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Fig. 12. Subcases 2.2 and 2.3.

Subcase 2.2 : Each one of the segments qpn, qpj−1 and qpj covers one point from S and
the interior of the triangles qpnpj−1 and qpjpn contain, respectively, x1 − 1 and x2 points
from S.

Let Sj−2 be the set of points of S interior to Qj−2 together with the point from S covered
by the segment qpn, and let Sj+1 be the set of points of S interior to Qj+1 (Figure 12,
left). We again have |Sj−2| = (x1 − 1) + y1 + 1 = j − 2 and |Sj+1| = x2 + y2 = n − 1 − j

and continue with the sets Sj−2 and Sj+1 as in Subcase 2.1 .
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Subcase 2.3 : Each one of the segments qpn, qpj−1 and qpj covers one point from S and
the interior of the triangles qpnpj−1 and qpjpn contain, respectively, x1 and x2 − 1 points
from S.

Let Sj−2 be the set of points of S interior to Qj−2 and let Sj+1 be the set of points of
S interior to Qj+1 together with the point from S covered by the segment qpn (Figure 12,
right). We again have |Sj−2| = x1 + y1 = j − 2 and |Sj+1| = (x2 − 1) + y2 + 1 = n− 1− j

and continue with the sets Sj−2 and Sj+1 as in Subcase 2.1.

3. Main Result

We recall an observation made in [5].

Observation 1 Let P be a convex polygon, pipj an edge of P , and S a set of points in
the interior of P . Then there is a simple polygonal starting at pi and ending at pj such
that its vertex set is {pi, pj} ∪ S, see Figure 13.

p
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p
j

p
i

p
j

Fig. 13. The polygonal within a pocket.

We can now prove:

Theorem 2. Let R and B be two point sets such that S = R ∪ B is in general position
and R is contained in the interior of Conv(S). Then, if the number of vertices of Conv(S)
is k and |R| < k, there is a blue polygon enclosing all points of R. This result is tight.

Proof. The fact that |R| is less than k follows from the example depicted in Figure 2. By
Theorem 1, we can obtain a convex decomposition {P1, . . . , Pk} of Conv(B) such that all
the points in R belong to the boundaries of P1, . . . , Pk. By the previous observation, in
each Pi we can find a polygonal contained in Pi, that starts and ends at the vertices of Pi

in Conv(B) and contains only all the elements of B in the interior of Pi. Concatenate the
polygonal chains thus obtained. It is clear that this way we obtain a blue polygon that
encloses all the elements of R, see Figure 14.

4. Revisiting Enclosed Point Sets and Areas

It was proved in [5] that given S = R ∪ B as before, there always exists a blue polygo-
nization that encloses at least half of the elements of R, and that this value is essentially
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Fig. 14. Construction of the enclosing polygonization.

tight. The proof of the latter fact combined an argument on the sums of the external and
internal angles of a simple polygon, and the placement of an extremely large set of red
points, evenly spaced on infinitesimally small circles centered at the blue points (those
outside Conv(B) are discarded). This gives a construction in which any blue polygoniza-
tion would enclose almost half of the elements of R. We provide next a new proof of this
result which is simpler and yields tight bounds.

Fig. 15. The points represented by the empty circles cover the triangles with solid black point.

We recall that k and i denote the number of elements of B on the boundary of Conv(B),
and the number of elements of B in the interior of Conv(B).

Given a set B of blue points, we say that a set of red points R covers all the triangles
of B if any triangle determined by three elements of B contains at least one element
of R in its interior. We recall the following result proved first by Katchalsky [12], and
independently a few years later by Czyzowicz et al [6].

Theorem 3. Let B be a set of blue points. Then there exists a set R consisting of k+2i−2
red points in the interior of Conv(B) that covers all the triangles of B, the bound is tight.
See Figure 15.

Since any triangulation of B consists of k − 2 + 2i triangles, it also follows from the
same observation that any triangle with vertices in B, containing no element of B in its
interior, contains exactly one element of R in its interior. If any such triangle t had two or
more elements of R, any triangulation of B having t as one of its elements, would include
some triangle empty of elements from R. Since any triangulation of a polygon with n

vertices contains exactly n − 2 triangles we get:



On polygons enclosing point sets II 11

Lemma 2. Let B be a point set with n = k + i elements. Then if R has m = k − 2 + 2i
elements and covers all the triangles of B, any blue polygonization encloses n−2 = k+i−2
elements of R in its interior and leaves i elements of R in the exterior.

When we have k = 3 in the situation of the preceding Lemma (i.e., when the convex
hull of B is a triangle), R has m = 2n − 5 elements, and thus any blue polygonization
encloses n−2 = m+1

2
elements of R exactly. Therefore taking these sets R and B we arrive

to the following result:

Theorem 4. There are sets of points B and R with n and m points respectively, R ⊂
Conv(B), such that any blue polygonization encloses m+1

2
elements of R.

In [5] it was also proved that given any point set S in general position there always
exist two polygonizations of S such that the union of the regions they enclose is the whole
interior of the convex hull of S. Therefore one of them contains at least half of the area
of Conv(S). How tight is this bound? Inspired by the techniques in [9], we conclude this
work observing that by using Pick’s Theorem and allowing collinearities we can show that
the mentioned bound, up to a constant, is tight. We state first Pick’s theorem; recall that
a point with integer coordinates is called a lattice point.

Theorem 5. Lat P be a simple polygon such that its vertices are lattice points. Let i(P )
and b(P ) be the number of lattice points in the interior and on the boundary of P respec-
tively, and let A(P ) be the area enclosed by P . Then:

A(P ) =
1

2
b(P ) + i(P ) − 1.

Now notice that if i(p) = 0 then the area of P is 1

2
b(P ) − 1. Let L(n) be the set of

lattice points p = (i, j) such that 1 ≤ i, j ≤ n. Then L(n) contains n2 lattice points, and
the area of the convex hull of L(n) is (n − 1)2. It now follows by Pick’s Theorem that
any polygonization of L(n) has area n2

2
− 1. As n grows, the area of any polygonization

of L(n) approaches half of the area of Conv(L(n)).
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