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On balanced 4-holes in bichromatic point sets
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1 Introduction

Let S = RU B be a set of n points in general position
in the plane. The elements of R and B will be called,
respectively, the red and blue elements of S. A k-hole
of S is a simple polygon with & vertices, all in S, and
containing no element of S in its interior. A 4-hole of
S is balanced if it has two blue and two red vertices. In
this paper, we characterize the set of bicolored points
S = RUB that have balanced convex 4-holes. We also
show that if the 4-holes of S are allowed to be non-
convex, and |R| = |B|, then S always has a quadratic
number of balanced 4-holes.

The study of k-holes in colored point sets was in-
troduced by Devillers et al. [2]. They obtained a
bichromatic point set S = RU B with 18 points that
contains no convex monochromatic 4-hole. Recently,
Hummer and Seara obtained a bichromatic point set
with 36 points that does not contain monochromatic
4-holes [3]. This result was improved by Koshelev [4]
to 46. Devillers et al. [2] also proved that every 2-
colored Horton set with at least 64 elements contains
an empty monochromatic 4-hole. In the same paper
the following conjecture is posed: Every sufficiently
large bichromatic point set contains a monochromatic
convex 4-hole. This conjecture remains open. On the
other hand, Aichholzer et al [1] proved that any suffi-
ciently large bichromatic point set always contains a
not necessarily convex monochromatic 4-hole.
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2 Balanced Convex 4-holes

For any two points p and ¢ on the plane, pg and £(p, q)
will denote, respectively, the line segment joining p
and ¢, and the line determined by them. If p and q
are both blue points (resp. red points), pg and ¢(p, q)
will be called a blue edge, and a blue line of S (resp.
red edge, and red line of S). Given a set X, CH(X)
will denote the convex hull of X. In all of our fig-
ures, blue points are represented with non-solid small
circles, whereas red points are represented with solid
small circles. Blue edges will be drawn with dotted
line segments, and red edges with solid line segments.

(a)

Figure 1: Point sets with no 4-balanced convex holes.

Clearly not all bicolored point sets have a balanced
convex 4-hole, see Figure 1(a), (b), and (c). The
number of blue points within the blue triangle and
hexagon in Figure 1(b), and (c) can be arbitrarily
large. We now proceed to characterize bicolored point
sets which contain balanced convex 4-holes. We as-
sume that |R|,|B| > 2.

Lemma 1 If S contains red and a blue edges that
intersect, then S contains a balanced convex 4-hole.

Proof. Suppose that S has red and blue edges that
intersect. Choose a red edge ab and a blue edge cd
such that the convex quadrilateral () with vertex set
{a,b,¢,d} is of minimum area.

If @ is not a balanced 4-hole of S, then there is a
point in S contained in the interior of ). Suppose
w.l.o.g. that @) contains a red point e € S, and that
@e intersects cd. Then {a, e, c,d} is the set of vertices
of a balanced convex quadrilateral with area smaller
than that of @, a contradiction, see Figure 2. O

Two cases arise: R and B are linearly separable, or
their are not. We analyze first the case when R and
B are not linearly separable.
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Figure 2: Crossing segments. Segment ab can be re-
placed by segment ae.

2.1 R and B are not linearly separable

Suppose that R and B are not linearly separable. We
prove now the next result:

Theorem 2 Let S = RU B, such that R and B are
not linearly separable. Then S has a balanced 4-hole
if and only if either of the following three conditions
holds:

I CH(B) C CH(R), |R| > 4, |B| > 2,
2. CH(R) c CH(B), |B| > 4, |R| > 2,
3. CH(B) and CH(R) overlap.

Proof. Suppose first that CH(B) C CH(R), and R
and B have at least four and two elements, respec-
tively. Consider a triangulation 7" of R. By Lemma 1,
all blue points have to be in one triangle ¢ of T, for
otherwise there would be a red and a blue edge of S
that cross each other. If B has exactly two elements,
then it is easy to see that two vertices of ¢, together
with the elements of B, form a balanced 4-hole. Sup-
pose then that B has at least three elements.

Since R has at least four points, T has at least
two triangles, one of which, call it ¢/, shares an edge
ab with t. Let Q = ¢t Ut, and suppose first that
Q is convex, see Figure 3(a). If the line determined
by two consecutive elements of CH(B), say v and v,
intersects ab, then two vertices of ¢ together with u
and v form a balanced 4-hole, see Figure 3(a).

Suppose then that @) is not convex, and let ¢ be the
third vertex of ¢, see Figure 3(b). Since B has at least
three vertices, there are at least two blue vertices on
one of the half planes determined by the line £(b, c).
It is easy to see that we can always choose two of
them, call them u and v, such that the quadrilateral
Q' with vertices u,v,b,c is convex, and contains no
blue point in its interior, see Figure 3(b). It might
happen that @’ contains a red point in its interior.
In such a case, we can always choose a red point ¢’
in the interior of )’ such that the quadrilateral with
vertices u, v, b, ¢ is a balanced 4-hole, see Figure 3(c).
Our result follows. It is worth pointing out that if
CH(B) Cc CH(R) but R has only three elements, our
result is not true. Counterexamples of this are the
point sets in Figure 1(b) and (c).

(c

Figure 3: Two possible quadrilaterals including the
blue points: convex and non-convex.

Finally observe that when the convex hulls of B and
R overlap there is a red and a blue edge that inter-

sect. By Lemma 1 we can conclude that S contains a
balance 4-hole. O

2.2 R and B are linearly separable.

Suppose that R and B are in convex position, that
they are linearly separable, and that there is a line
¢ that separates R and B such that the elements in
R are to the left of ¢, and the elements in B to its
right. We will assume w.l.o.g. that ¢ is vertical. As-
sume also w.l.o.g. that there is a horizontal line ¢
that is a supporting line of CH(B) and CH(R) that
intersects them at a single point, and that R and B
are contained in the closed half-plane determined by
¢ and above it. Let r; and b; be the lowest elements
of R and B respectively. Label the elements of R
as rq,...,T., in the anti-clockwise direction around
CH(R), starting at r;. In a similar way, label the
elements of B as by,...,b, in the clockwise direction
around C'H (B) staring at b;.

Figure 4: A funnel, and a funnel with a red tail.

We say that S = RU B is a funnel if the following
conditions hold: #(r1,rs) intersects the segment b, b,
or £(by,bs) intersects the segment 7173. In the first
case, the following conditions must hold:

a) For each 7 such that the line ¢(b;,b;11) and the
segment 717,12 exist, £(b;, b;y1) intersects 7117712

b) For each i such that ¢(r;,r;+1) and b;b; 11 exist,
£(r;,miv1) intersects b;b;y1.

If ¢(b1, bo) intersects 7173, then £(r;, 7;+1) intersects
bi+1bito, and £(b;, b, 1) intersects 7T11.

The point set in Figure 4(a) is a funnel in which
each of R and B contains four elements. It is easy
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to see that if RU B is a funnel, then ||R| — |B|| < 1,
and that if we choose a red edge and a blue edge of S,
the convex hull of their vertices is a triangle, or it is
a convex quadrilateral that contains at least a point
of S in its interior.

Suppose that S is a funnel such that ¢(rq,r2) inter-
sects biby. Let T be the unbounded region bounded
by £(b1,71), £(b1,72), and £(ba, 72). A set of red points
R’ is called a red tail of S if all the elements of R’ be-
long to the interior of T, see Figure 4(b). A blue tail
is defined in a similar way when £(by,bs) intersects
).

A double funnel is defined as follows: Let R and B
be separable point sets in convex position, and let £
and ¢’ be as above. Suppose also that there is exactly
one edge in the convex hull of R or B such that the
line containing this edge separates R and B. Without
loss of generality, assume that this edge is red, and
that the blue points lie to the right of this line, see
Figure 5.

Label the elements of R as r1,...,7, in the anti-
clockwise direction around C'H(R), starting at the
lowest element of R. Label the elements of B as
b1,...,bnm in the clockwise direction around CH(B),
starting again at the lowest element of B. Suppose
that the edge of CH(R) such that the line containing
it that separates R and B joins r; and r;41 for some
i.

Let b; be the closest element of B to 7;7;11. Con-

sider the following sets of points: Ry = {ry,...,riy1},
RQ = {’I“i,...,?“n}, Bl = {bh...,bi}, B2 =
{biy-- bm}-

We say that R U B is a double funnel if the sets
By U Ry and By U Ry are funnels, see Figure 5. Note
that one of them, is an upside down funnel!

Figure 5: A double funnel.

In a similar way as we defined a tail for a funnel, we
can define a tail of a double funnel. A tail of RUB is
a tail of By U Ry, or a tail of B, U Ry. The following
result is given without proof:

Theorem 3 If R and B are linearly separable, then
S = RU B contains no convex balanced 4-holes if and
only if S is:

e a funnel with or without tail

e a double funnel, with one or two tails such that:

1. The two tails have the same color.

2. The double funnel can be splitted into two
funnels f; and fo such that one of them, say
f2 has at most two points of each color.

3 Non-convex balanced 4-holes

It is not hard to see that if R and B have at least
two elements each, then S always contains 4-balanced
holes which are not necessarily convex. In fact, it
is easy to see that a double funnel contains O(n?)
balanced non-convex 4-holes. In this section we will
prove that if |R| = |B| = n, then S = RU B always
contains a quadratic number of balanced, not neces-
sarily convex 4-holes. In the rest of this section, we
will assume that |R| = |B| = n.

We give our proof only for the case when R and B
are linearly separable. Our proof can be modified to
prove that for any two points sets R and B, RU B
always has a quadratic number of balanced holes. We
omit these not so trivial changes.

Suppose that there is a horizontal line ¢ that sepa-
rates R from B, and that the elements in R are above
£, and the elements of B below it. We further assume
that the y-coordinates of all of the elements of S are
different.

Given two points p and ¢, p — ¢ will denote the
ray staring at p, and passing through g. We now color
edges joining blue and red points as follows:

An edge rb joining a red point 7 to a blue point
b is colored green if it is an edge, or a diagonal of a
balanced 4-hole of S. An edge b, not colored green,
is colored red if when we rotate the ray r — b around
r in the clockwise direction, it hits a red point before
it hits a blue point. It is not hard to see that in this
case, if we rotate r — b in the anti-clockwise direction,
it also hits a red point before it hits a blue point, for
otherwise rb would be green. Moreover if we rotate
b — r in the clockwise, or anti-clockwise direction, it
will also hit red points before it hits blue points. See
Figure 6.

Figure 6: A red and a green edge.

In a similar way we color rb blue if when we rotate
r — b around b it hits a blue point before it hits a red
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point. We will prove that the number of green edges
is quadratic. Theorem 9 follows easily from this.

Let r be a red point. Sort and relabel the blue
points from left to right in the anti-clockwise direction
around r as {by,...,b,}. The following lemmas, are
given without proof:

Lemma 4 There are no consecutive edges rb; and
rb;+1 such that one is blue, and the other is red.

In other words between a red and a blue edge there is
a green edge.

Let i such that rb; and M are both red, and let
A be the triangle bounded by ¢, rb;, and 7b; ;.

Lemma 5 A contains at least three red points of S,
see Figure 7.

Y

bi—|—1
Figure 7

Observe that this Lemma implies that the set
{rb;;i = 1,...n} contains at most 7 consecutive red
edges.

Suppose next that we have a block B of k consec-
utive red edges 7b;, ..., rbiy1_1 incident to r, such
that rb;_; and 7b; 1 are green. Then we can associate
to B at least 3k — 1 red points that lie in the triangle
bounded by ¢, rb;, and rb; ,_1, plus the red points
hit by rb; and rbi+r—1 when we rotate them in the
clockwise, and anti-clockwise direction respectively.

It is easy to see that the sets of red points associated
to different blocks of consecutive red edges incident to
r are disjoint.

Suppose now that the red edges incident to r are
grouped into s blocks of consecutive red edges with
cardinalities tq,...,ts.

Label the red points r4,...,r, from bottom to top
according to their y-coordinate. The next result fol-
lows:

Lemma 6 The number of red edges incident to r; is
at most (3t; —1)+---+ (3ts — 1) — 2.

The worst case is when each ¢; = 1, in which case
the previous Lemma yields 2s — 2. From here we get:

Lemma 7 The number of red edges incident to r;, is
at most [51] + 1.

Thus we have:

N

Theorem 8 There are at most 2(1+- - -
red edges.

[25h)) ~ 2

A simmetric argument shows that the number of
blue edges is ~ %.

Since there are exactly n? edges joining red and blue
points, it follows that at least approximately half of

them are green, which proves:

Theorem 9 The number of balanged bichromatic 4-

holes of S is at least &, were t ~ 2-.

Our argument can be modified to prove:

Theorem 10 Let S = RUB be a set with 2n points,
n red, and n blue. Then S always has at least a
quadratic number of balanced bichromatic 4-holes.

We observe that our bound is asymptotically tight,
as in examples as that shown in Figure 8, any bal-
anced 4-hole has to be convex, and there are only a
quadratic number of these 4-holes.

3 3

o

o

Figure 8: Any balanced 4-hole uses two consecutive
red, and two consecutive blue points.
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