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Abstract

A classical result of Wagner states that any two (unlabelled) planar triangulations with the
same number of vertices can be transformed into each other by a finite sequence of diagonal
flips. Recently Komuro gives a linear bound on the maximum number of diagonal flips needed
for such a transformation. In this paper we show that any two labelled triangulations can
be transformed into each other using at most O(n log n) diagonal flips. We also show that
for planar triangulations a linear number of flips suffice. We will also show that any planar
triangulation with n > 4 vertices has at least n − 2 flippable edges. Finally, we prove that if
the minimum degree of a triangulation is at least 4 then it contains at least 2n + 3 flippable
edges. These bounds are tight.

1 Introduction

A planar simple graph T with n ≥ 4 vertices is called a planar triangulation if it has exactly 3n− 6
edges. This terminology follows from the fact that any embedding of any such graph on the plane
partitions it into a set of triangular faces, i.e. faces bounded by three edges of T . That the faces
of T are well defined follows from a well known result of Whitney [18] that up to isomorphisms
maximal planar graphs have a unique embedding on the plane.

This allows us to define the concept of flipping edges on planar triangulations as follows: let vivj

be an edge of a planar triangulation T , and {vi, vj, vk} and {vi, vj, vl} be the vertices of the faces of
G containing vivj on their boundaries. We say that vivj is flippable if vk and vl are not adjacent in
T . By flipping vivj, we mean the operation of removing it from T followed by the insertion of vkvl

into T . It is easy to see that this produces a new graph T ′ which is also a planar triangulation; see
Figure 1. This operation is called a diagonal flip on vivj.

A classical result of Wagner states that any two planar unlabelled triangulations with the same
number of vertices can be transformed into each other by a sequence of diagonal flips.

Let Tn be the set of all planar unlabelled triangulations with n vertices. The diagonal flip

adjacency graph denoted by GT (Tn) is the graph with vertex set Tn, two members of Tn being
adjacent if and only if one can be transformed into other by a single diagonal flip. In this language
Wagner’s result implies that GT (Tn) is connected.
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Figure 1: Flipping an edge in a planar triangulation

Let V = {v1, . . . , vn} be a set of n labelled vertices and Tn the set of all planar triangulations
on V = {v1, . . . , vn}. We define Gl

T
(Tn), the graph of labelled triangulations of V = {v1, . . . , vn},

to be the graph with vertex set Tn in which two triangulations are adjacent if one can be obtained
from the other by means of a diagonal flip.

Dewdney [5], Negami and Watanabe [14] have shown similar results for triangulations of the
torus, the projective plane and the Klein bottle. It is easy to see that Wagner’s result extends
to labelled planar triangulations. However it is not always true for labelled triangulations on
the projective plane, and the torus, since there are different triangular embeddings of a labelled
complete graph in each of these surfaces. For triangulations in general surfaces, GT (Tn) need not be
connected even for unlabelled triangulations [12]. However, Negami [13] showed that for any surface
Σ, there is a constant L, such that Gl

T
(Tn) is connected for labelled triangulations with at least L

vertices. Recently Komuro, Nakamoto and Negami [11] obtained similar results for triangulations
with minimum vertex degree at least 4. Diagonal flips preserving some specified properties are
discussed in [4].

A closely related subject, i.e. the study of triangulations of point sets has been studied indepen-
dently by a different group of researchers; see [2, 3, 4, 6, 7, 8, 9, 15]. A triangulation T of a point
set Pn is a partitioning of the convex hull of Pn into a set of triangles such that the vertices of these
triangles are elements of Pn, and no triangle of T contains an element of Pn in its interior. The
edges of the triangles of T are straight line segments joining pairs of elements of Pn; see Figure 2.
In this context an edge pq of a triangulation is flippable if the points p and q are contained in the
boundary of two triangles such that their union is a convex quadrilateral C; see [8]. By “flipping
pq” we understand the operation of removing pq from a triangulation and replacing it by the other
diagonal of C to obtain a new triangulation of Pn; see Figure 2.

The graph of triangulations GT (Pn) of a point set Pn is the graph whose vertex set is the set of
triangulations of Pn. Two triangulations are adjacent if one can be obtained from the other by an
edge flip. It is known that the graph of triangulations of a point set is connected, and that there
are collections of points Pn such that the diameter of GT (Pn) is O(n2); see [8]. In the same paper,
it is shown that any triangulation of a point set contains at least dn−4

2
e flippable edges.

It is also well known that rooted triangulations of polygons correspond to rooted binary trees
and that diagonal flips in such triangulations correspond to rotations in the corresponding binary
trees. Let Cn be the set of all triangulations of a convex n-gon. Sleator, Tarjan and Thurston [16]
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Figure 2: A triangulation T of a point set. Edge pq is flippable in T ; edge qr is not.

proved that the diameter of the diagonal flip adjacency graph of Cn is 2n − 10 for all sufficiently
large n.

At this point, we point out that Wagner’s original argument for unlabelled planar triangulations
gives a quadratic bound on the diameter of GT (Tn). That the diameter of GT (Tn) is linear was
recently proved by Komuro [10]. The difference in the diameter of GT (Tn) and the diameter of
graph of triangulations of point sets leads in a natural way to the study of Gl

T
(Tn) for labelled

graphs: the positions of the elements of a point set make them labelled points in a natural way. To
be more precise, in this paper we study the following problem. Let V = {v1, . . . , vn} be a set of
vertices, and G and G′ be two planar triangulations with vertex set V . How many edge flips are
needed to transform G into G′? In Figure 3 we show two labelled triangulations on {v1, . . . , v6}
such that to transform one into the other requires 2 flips. Notice that as unlabelled triangulations,
the triangulations shown in the same figure are isomorphic, and no flipping is needed to transform
one into the other, however as labelled triangulations they are different.

v3

v1

v5 v4

v2 v3

v1

v5 v4

v2

Figure 3: Two labelled triangulations at distance 2

In this paper we prove that any labelled triangulation on n vertices can be transformed into any
other labelled triangulation using at most O(n log n) flips. To end this paper, we prove that that
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any planar triangulation with n vertices contains at least n−2 flippable edges, and that this bound
is tight. We point out that using results proved by Ando and Komoro [1] it is easy to prove that any
planar triangulation with n vertices contains at least dn

2
e flippable edges. In the rest of this paper,

all triangulations considered will be assumed to be labelled triangulations on V = {v1, . . . , vn}.

2 The diameter of Gl(Tn)

Given two vertices vi and vj, a triangulation T will be called a ∆(i, j) triangulation if vi and vj

are both adjacent to all vertices of T ; see Figure 4. We now prove the following result that mirrors
Lemma 2 in Komuro’s paper [10]:

vi

k

vj

v

Figure 4: A ∆(i, j) triangulation.

Theorem 1 Let T be a triangulation and let vi, vj be adjacent vertices in T . Then we can transform

T into a ∆(i, j) triangulation with at most 4n − 16 diagonal flips. Moreover let F be one of the

triangular faces of T containing edge vivj. Then ∆(i, j) can be chosen such that F is also a face in

∆(i, j) and the edges bounding F are never flipped.

Proof: To prove our result, we use the following concept introdced by Komuro [10]. Let F be one
of the two faces of T containing edge vi vj, and let vk be the third vertex of F . We define the
potential of T by

pT (i, j) = 3deg(vi) + deg(vj),

and show that if T is not a ∆(i, j) triangulation, then by performing some diagonal flips we can
increase pT (i, j). Note that pT (i, j) ≤ 4(n − 1) with the equality holding only when deg(vi) =
deg(vj) = n − 1, i.e. T is a ∆(i, j) triangulation.

Let vj, vσ(1), vσ(2), . . . , vσ(l−1), vσ(l) = vk be the neighbors of vi in T in the anticlockwise order.
For convenience, we set vσ(0) = vi. Let m be the largest integer such that vσ(1), vσ(2), . . . vσ(m) are
all adjacent to vj in T , and each triangle vjvσ(i−1)vσ(i) bounds a face for i = 1, 2, . . . , m. If m = l,
then T is a ∆(i, j) triangulation and no diagonal flip is needed. Otherwise let vjvσ(m)u be the other
face incident with the edge vjvσ(m) with u 6= vσ(m+1). We distinguish the following two cases.
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Case 1: u is not a neighbor of vi. If m = 1 we can flip vjvσ(1), and increase pT (i, j) by 2. If m > 1,
we can flip vjvσ(m) and then vσ(m−1)vσ(m), and increase pT (i, j) by 2.

Case 2: u = vσ(s) for some m + 2 ≤ s ≤ l. In this case vσ(m)vσ(s) can be flipped and pT (i, j)
increases by 1.

By iterating the above process, we transform T into a ∆(i, j) triangulation in which F remains
a face. Notice that the total number of diagonal flips involved does not exceed 4(n − 1) − pT (i, j),
and that the edges bounding F are never flipped. Our result follows.

Let T be a ∆(i, j) triangulation. Notice that T − {vi, vj} is a path P . Assume without loss
of generality that the vertices of P are labelled {vσ(1), . . . , vσ(n−2)}. If the elements of P are such
that σ(1) < σ(2) < . . . < σ(n − 2) we say that T is sorted. A ∆(i, j) triangulation T ′ is called a
transpose of T if T ′ −{vi, vj} is a path P ′ obtained from P by transposing two consecutive vertices
of P ; see Figure 5.

vjvi

v =
k

σ(1)v
σ(2)v
σ(3)v

σ(4)v

vjvi

v =
k

σ(1)v

σ(2)v

σ(3)v

σ(4)v

Figure 5: A ∆(i, j) triangulation and a transposition of it.

The next lemma is easy to prove:

Lemma 1 Let T be a ∆(i, j) triangulation, and T ′ a transposition of T . Then T ′ can be obtained

from T by flipping at most 4 edges.

A ∆(1, 2) triangulation such that the vertices of one of its faces are precisely v1, v2, vn will be
called a normal triangulation. We now prove:

Lemma 2 Within O(n) diagonal flips, any planar triangulation T with n vertices can be trans-

formed into a normal ∆(1, 2) planar triangulation T ′.

Proof: Let vi be any neighbour of v1. By Theorem 1 we can transform this triangulation into a
∆(1, i) triangulation using O(n) diagonal flips. Since vertex v2 is adjacent to v1, again by Theorem 1,
we can transform this triangulation into a ∆(1, 2) triangulation with a linear number of flips. Using
Lemma 1, we can now perform a linear number of transpositions until v1, v2 and vn belong to the
same face.
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Notice that using this lemma, together with Lemma 1, we can prove that any planar triangulation
can be transformed to the sorted ∆(1, 2) triangulation with a quadratic number of transpositions,
i.e. a quadratic number of flips. We now proceed to show how to accomplish this in at most
O(n log n) flips.

2.1 The binary triangulation

To achieve our goal, we define a special type of triangulations which we call binary triangulations.
A planar triangulation with vertex set {v1, . . . , vn} is called binary if:

1. The vertices of a face of T are v1, v2, vn

2. The dual graph of T − {vn} (excluding the vertex corresponding to the only face of T − {vn}
that is not a triangular face) is an almost balanced binary tree, i.e. it is a tree obtained by
removing some leaves from a balanced binary tree; see Figure 6.

v2v1

v
n

v2v1

Figure 6: A binary triangulation.

We now proceed to show how a binary triangulation can be transformed into the sorted normal
triangulation in at most O(n log n) flips.

A 2 ∆ triangulation is a triangulation consisting of two sorted triangulations ∆(i, j) and ∆(j, k),
having two common vertices, vj and vs glued along the edge joining vj to vs plus the edge joining
vi to vk. We further require s to be the largest subindex of all the vertices of the 2 ∆ triangulation;
see Figure 7(a).

The following lemma will be essential to prove our main result:

Lemma 3 Any 2 ∆ triangulation can be transformed into a sorted triangulation with a linear num-

ber of flips.

Proof: Let ∆(i, j) and ∆(j, k) be the sorted triangulations forming T , and let vs be the common
neighbour of vi and vk, as in Figure 7(a). Let vα(1), . . . , vα(r) and vβ(1), . . . , vβ(t) be the vertices in
∆(i, j) and ∆(j, k) respectively, different from vi, vj, vk, and vs.
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Figure 7: A 2 - ∆ triangulation and the resulting merged triangulation.

Assume without loss of generality that α(1) < β(1). Then by performing two flips, we can
obtain a triangulation in which vα(1) is adjacent to vi, vj and vk; see Figure 8(b). It is now easy to
see that using three flips at a time, we can move the remaining vertices of ∆(i, j) and ∆(j, k) so
that in the end we get an almost sorted ∆(i, k) triangulation; see Figure 8(c),(d). The only vertex
out of place is perhaps vj. This can be fixed by performing a linear number of transpositions until
vj moves to its correct position.

We are ready to prove:

Lemma 4 Let T be a binary planar triangulation with n vertices such that the vertices of the

external face are v1, v2, and vn. Then T can be transformed into the ∆(1, 2) sorted triangulation

by performing O(n logn) diagonal flips.

Proof: Our theorem is true for 22 ≤ n ≤ 23. Suppose that our result is true for 2i−1 ≤ n ≤ 2i.
We now show that it also holds for 2i ≤ n ≤ 2i+1. Let 2i ≤ n ≤ 2i+1 and let T be a binary
triangulation with n vertices. Observe that T splits into two binary triangulations T ′ and T ′′ with
n1 and n2 vertices, 2i−1 ≤ n1, n2 ≤ 2i. By induction on i, T ′ and T ′′ can be transformed into
sorted ∆ triangulations in O(n1 log n1) and O(n2 log n2) flips. By Lemma 3 we can transform the
resulting triangulation into a sorted ∆(1, 2) triangulation with a linear number of flips. Our result
now follows .

We proceed to prove our main result:

Theorem 2 Let T and T ′ be any two labelled planar triangulations. Then T can be transformed

into T ′ using O(n log n) flips, i.e. the diameter of Gl(Tn) is at most O(n logn).

Proof: To prove our result it is enough to show that T can be transformed to the sorted ∆(1, 2)
triangulation using O(n logn) flips. By Lemma 2, within O(n) diagonal flips we can transform T
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Figure 8: Illustrating Lemma 3.

into a not necessarily sorted ∆(1, 2) triangulation T1 whose three exterior vertices are v1, v2, vn.
’Next by Theorem 1, we can transform T1 into a binary triangulation T2 using O(n) flips. Finally
by Lemma 3, we can transform T2 into the sorted ∆(1, 2) triangulation. Our result follows.

3 The minimum vertex degree of Gl
T (Tn)

Any planar triangulation contains a large number of flippable edges. In [8] it is proved that any
triangulation of a set of n points in general position contains at least dn−4

2
e flippable edges. In this

section we give a tight bound on the number of flippable edges of planar triangulations, namely we
prove:

Theorem 3 Any planar triangulation T with n > 4 vertices contains at least n− 2 flippable edges.

If T has minimum vertex degree at least 4, then T contains at least min{2n + 3, 3n − 6} flippable

edges. Our bounds are tight.
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Proof: A triangle in a triangulation T is called separating if there are vertices inside as well as
outside the triangle. Two edges are called cofacial if they belong to the boundary of a face of T .
Let F (F̄ ) be the set of flippable (nonflippable) edges in T . Define a relation R ⊆ F̄ ×F as follows:

(e, f) ∈ R ⇐⇒ e ∈ F̄ , f ∈ F, and e and f are cofacial.

We claim that each nonflippable edge is related to at least two flippable edges. Let e = vivj be
any nonflippable edge in T , and let {vi, vj, vk} and {vi, vj, vl} be the vertices of the two triangular
faces of T incident with vivj. Since vivj is nonflippable, vk and vl are adjacent in T . Since T has
more than four vertices, vertices vi and vj cannot both have degree 3. If vertex vi has degree at
least 4, then both edges vivk and vivl are flippable; if vertex vj has degree at least 4, then both
edges vjvk and vjvl are flippable. On the other hand, each flippable edge is incident with exactly
two faces, and hence is related to at most four nonflippable edges. Therefore we have:

2|F̄ | ≤ |R| ≤ 4|F |.

Since the total number of edges in T is 3n − 6, it follows that the number of flippable edges is
at least (3n − 6)/3 = n − 2.

Examples of planar triangulations that acheive this bound can be constructed as follows: Let
T ′ be any planar triangulation with m vertices. Thus T ′ contains 2m − 4 triangular faces. Let T
be the triangulation obtained as follows: In the middle of each of these triangular faces, insert a
vertex adjacent to the vertices of the face. See Figure 9(a). It is easy to see that the only edges of
T that are flippable, are exactly the edges of T ′, i.e. 3m − 6 edges. On the other hand T contains
exactly m + 2m − 4 = 3m − 4 vertices. Taking n = 3m − 4 yields the desired result. This proves
the first part of our theorem.

(a) (b)

Figure 9: Two triangulations, the first with n − 2 flippable edges, and the second with minimum
degree 4 and 2n + 3 flippable edges.

The argument in the previous paragraph shows that if T has more than four vertices and a
nonflippable edge, then T contains a separating triangle. Thus the second part of our result holds
if T contains no separating triangles. Assume that T has minimum vertex degree at least 4 and T
contains a separating triangle. The above argument shows that each nonflippable edge is related
to exactly four flippable edges, i.e. 4|F̄ | = |R|. Also, if {vi, vj, vk} are the vertices of a face of
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T such that vivj is a flippable edge, then at least one of vivk and vjvk is flippable. (Otherwise,
the above argument implies that vk has degree 3.) Hence each flippable edge is related to at most

two nonflippable edges. Now we show that T contains at least 18 flippable edges which are not
related to any nonflippable edge, and there are at least 3 extra flippable edges which are related to
at most one nonflippable edge. Let vivjvk be a separating triangle in T such that the triangulation
T (vivjvk), which consists of the triangle vivjvk and all its interior vertices, contains no separating
triangles. Since T has no vertex of degree 3, T (vivjvk) contains at least 6 vertices. Since T (vivjvk)
contains no separating triangle, all edges of T (vivjvk) are flippable in T . Therefore, all edges inside
vivjvk (there are least 9 such edges) are not related to any nonflippable edges. Similarly, T contains
at least 9 flippable edges outside vivjvk which are not related to any nonflippable edge. Notice also
that each of the three edges vivj, vjvk, vivk is related to at most one nonflippable edge. Thus we
obtain:

4|F̄ | = |R| ≤ 2(|F | − 18 − 3) + 3.

Using |F̄ | + |F | = 3n − 6, we obtain |F | ≥ 2n + 2 + 1/2, i.e. |F | ≥ 2n + 3.
Triangulations that achieve this bound can be obtained as follows. Let T ′ be a ∆(i, j) triangu-

lation with n − 6 vertices. Insert a triangle in each of the two faces incident with vi and vj in such
a way that the degree of the six new vertices is four; see Figure 9(b). The reader can easily verify
that the resulting triangulation achieves the previous bound. Our result follows.

4 Conclusions and open problems

In this paper we proved that any planar labelled triangulation can be transformed into any other
labelled planar triangulation performing O(n log n) flips. We do not know if this bound is optimal.
Neverteless we conjecture:

Conjecture 1 There are labelled triangulations T and T ′ on n vertices such that to transform T
into T ′ requires O(n log n) flips.

We also proved that any planar triangulation with n vertices contains at least n − 2 flippable
edges, and that any triangulation with minimum degree 4 contains at least 2n + 3 flippable edges.
These bounds are tight.
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