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1. INTRODUCTION

The study of simple families of geometric objects on the plane has always been of great
interest in mathematics.  Incidence relations among families of points, lines and circles on the
Euclidean plane were studied intensely long ago.  In fact, most of what is now considered as
basic Euclidean Geometry was developed a few centuries before the advent of the Christian Era.
The Books of Euclid are an impressive product of the advances achieved in geometry in the
early days of mathematics.  In those days, special emphasis was paid to constructions realizable
with a ruler and a compass.  Three famous problems that interested the Greek mathematicians
were the trisection of an angle, squaring the circle and the duplication of the cube. As we all
know, solution of these problems using a ruler and a compass was proved to be impossible in
the nineteenth century.

With the advent of combinatorics, a new breed of results in Euclidean Geometry has resulted.
This resulted in the development of a new area of mathematics known as Combinatorial
Geometry. Two good examples of typical results in this area are the following well-known
results: Let X be a finite set of points on the plane. If in the line determined by any two elements
of X there is always a third point in X, then all elements of X are collinear. The corresponding
version of this problem for circles reads as follows: Let X be a finite set of non collinear points
on the plane. If on the circle determined by any three points of X there is always a fourth point
of X,  then all elements of  X  lie on a circle.

An excellent account of results in combinatorial geometry can be found in Hadwiger,
Debrunner and Klee's book Combinatorial Geometry in the Plane [20].

In this paper, we study a different aspect of Euclidean geometry, namely containment
relations arising from families of points, circles, triangles, squares, etc.

Let F={S1,…,Sn}  be a family of sets on the plane. We say that Si fits in Sj if there exists a
rotation, translation and a reflection that maps Si inside Sj. A partial order P(X,<) on
X={x1,…,xn}   represents F if for any  xi, xjŒX  xi < xj iff Si fits in Sj. Our problem in this case
is the following one: Given a family F={R1,…,Rn}  of rectangles determine, if possible, a set of
parameters P1,…,Pm such that rectangle Ri fits in rectangle  Rj if and only if
P1(Ri)≤P1(Rj),…,Pm(Ri) ≤Pm(Rj). Natural candidates for these parameters could be the area,
perimeter, etc. of a rectangle. The main objective of Section  2 is to show that the containment
problem for rectangles (and thus for polygons with d≥4 sides) can not be solved  by reducing it



to a vector dominance problem regardless of the choice and of the finite number of parameters .

A different approach to the study of containment problems can be taken. For instance let
F={C1,…,Cn}  be a collection of circles on the plane. A partial order  P(X,<)  on  X={x1,…,xn}
represents F if for any  xi, xjŒX  xi < xj iff  Ci  is contained in Cj.  P(X,<) is called a circle order.
Some interesting questions arise: What partial orders are circle orders?  Is there any geometric
property of circles useful to prove that a given partial order is not a circle order?  For example,
we know that two different circles intersect in at most two points.  Is there a parameter which we
can associate with a partial order to "measure" this property of circles?  Similar questions can be
asked for partial orders representing families of triangles, squares, etc. This problem is studied
in Section 3.

 In Section 4, we study containment relations among sets of points and circles.  Our aim in
this section is to prove the following result: Let Pn be a collection of points on the plane. For
every pair of points  u,v  in  Pn  let  C(u,v)  be the minimum number of elements of  Pn

contained in any  circle containing  u  and  v.  Then there exists a constant  c>0  such that the
average value of C(u,v) over all pairs  u,vŒPn  is at least  cn. Some related problems are also
studied. In particular, we conjecture that in a way this result is a characterization of the
circle.We then generalize the results on points and circles to spheres and points in higher
dimensions.

Finally in Section 5 we give two characterizations of the circle which were motivated by the
results obtained in this paper.

  2. CONTAINMENT PROBLEMS OF MOVABLE OBJECTS ON THE  PLANE

 When dealing with sets of simple figures, a basic problem is the determination of
containment relations between elements of the set. Given a family F of geometric figures, the
containment problem for F is the problem of determining for all  A,BŒF  whether  A  can be
contained in  B;  that is, whether there exists a rotation, a translation and a reflection that maps
A  into  B.

For some families F of figures, the containment problem can be easily reduced to a problem
of vector dominance. For example, ƒ(A),  defined as the area of  A,  will work for the family Pk

of regular polygons with  k≥3  sides, as well as for the family  C  of circles. A more interesting
example is the family  E  of ellipses; for each  EiŒE,  define ƒ(Ei)=(xi,yi)  where  xi  and  yi



denote the length of the minor and major axis of  Ei,  respectively.  It is easy to show that  Ei
can be contained in  Ek  if and only if  ƒ(Ei)≤ ƒ(Ek).  Similarly, two parameters (namely the
lengths of the diagonals) also suffice for rhombi.

It is thus natural to ask, for a given family F of geometric figures, which function  ƒ: FÆRn

(if any) would reduce the containment problem in F to vector dominance (i.e., find a mapping
ƒ:F ÆRn  such that  ƒ(A)≤ƒ(B)  if and only if  A  can be contained in  B). From a computational
point of view, reductions to vector dominance are desirable due to the existence of efficient
tools to solve vector dominance problems (e.g., see [7, 10, 23, 24, 25, 26, 28, 29, 41]).

 Furthermore, since the complexity of vector dominance algorithms is a function of the
dimension of the vectors, it is desirable to determine a  ƒ: FÆRn  where  n  is as small as
possible.

Consider the family F of plane rectangles.  In this case, the above question becomes:  Is it
possible to characterize each rectangle  Ri  by an  n-vector  ƒ(Ri)=(ƒ1(Ri),...,ƒn(Ri))  in such a
way that  Ri  can be immersed in  Rj  if and only if  ƒk(Ri)≤ƒk(Rj)  for  k=1,...,n?  Natural
candidates for our parametric functions  fk(Ri)  are the length, width, area, diagonal, perimeter,
etc. of  Ri.  The educated guess that any two of them suffice is, unfortunately, incorrect. For any
choice of these functions, a counter-example can be found.

In [34], it was proved by using analytical tools that two parameters are not sufficient to solve
this problem. A different way in which we can prove that two parameters do not suffice to solve
the containment problem for rectangles is as follows: The existence of 2 parameters (k
parameters) to solve the containment problem for rectangles implies that the dimension of any
finite partial order obtained from a family of rectangles (under containment) is at most 2 (k
respectively) [for a definition of the dimension of a partial order, see Section 3 of this paper].
The reader can verify for himself that there are six rectangles  R1,...,R6  such that the partial
order generated by them is the partial order  H3  shown in Figure 1. However it is a well known
fact that  H3  has dimension 3.
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Figure 2.1

 Our main objective in the rest of this section is to show that the containment problem for
rectangles (and, thus, for polygons with d≥4 sides) can not be solved by reducing it to a vector
dominance problem regardless of the choice and of the finite number of parameters fk. On the
other hand, it is shown that the reduction for rectangles is possible if a countable number of
parameters are used. These results were proved in [34].

2.1 Geometry of Plane Rectangles

Given a rectangle  Ri,  denote by  ai  and  bi  the width and the length of  Ri,  respectively.
Unless otherwise stated, assume  0≤ai≤bi.

There is an obvious one-to-one correspondence between the set R of all rectangles and points
(x,y)  in P={(x,y) : 0≤x≤y} . Using this correspondence, associate with each  Ri  a region  S(Ri)
consisting of all points  (x,y)ŒP  representing rectangles that fit in  Ri  (see Figure 2.2); in the
following, the notations  (ai,bi)  and  Ri  will be used interchangeably.

(a  , b  )i     i

S(R  )i

Figure 2.2
Given two rectangles  Ri,RjŒR,  Ri  is said to fit in  Rj if there exists a rotation and a



translation that immerses  Ri  in  Rj,  and to fit tightly in  Rj  if there does not exist any rectangle
Rk  (Rj≠Rk≠Ri)  such that  Ri  fits in  Rk  and  Rk  fits in  Rj.

From the definition of fit and tight fit, the following properties trivially follow:

Lemma 2.1: If  Ri  fits in  Rj  then
(i) ai ≤ aj;
(ii)there is a concentric immersion of  Ri  in  Rj.

[]
Lemma 2.2:  If  Ri  fits tightly in  Rj,  Ri≠Rj,  then
(i) bi > bj;
(ii)in any immersion of  Ri  in  Rj,  the vertices of  Ri  lie on distinct sides of  Rj.

[]

Given a square  C=(u,u),  define  ∂(a,u)  to be the largest length among the rectangles of
width  a  which fit in  C. The following result can be easily proved:

Lemma 2.3: ∂(a,u) = Max{√2 l - a, u}   for 0≤a≤u.
               []
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Figure 2.3

The curve in P defined by  ∂(a,l)  for  a≤l,  is called the containment curve of  C=(u,u).  From
the previous result, it follows that the region  S(C)  has the shape illustrated in Figure 2.3.  The



line segment  L  joining the points  (0,√2 u)  up to and excluding  ((√2-1)u, u)  corresponds to the
rectangles  R(a,∂(a,l))  that fit tightly in  C, and the line segment  B  joining  ((√2-1)u,u )  to
(u,u)  represents the other rectangles  R(a,∂(a,u)). The next result now follows:

Lemma 2.4:  If Rj=(aj, bj)Œ L and  Rk=(ak, bk)Œ B,  then neither  Rj  fits in  Rk  nor  Rk  fits in
Rj.

[]
2.2 The Proof of the Rectangle Theorem

Let  ƒ:NÆR be a real function whose domain is an open convex set N  on the plane.  Assume
that ƒ is monotonically non-decreasing in both coordinates, i.e. (x,y)≤(w,z)  implies that  ƒ(x,y)
≤ ƒ(w,z).  Let   g(u)=au+b  be a line that intersects N, where  a=(a1,a2), b=(b1,b2), {a,b} ŒR2,
a1,a2≥0.  The following result can be easily proved:

Lemma 2.6: ƒ is continuous almost everywhere in the intersection of  g(u)  with N.
[]

For a definition of continuity almost everywhere, the reader can consult [30]. We can now
proceed with the proof of the rectangle theorem.

Theorem 2.1[34]: The containment problem for rectangles can not be reduced to a vector
dominance relation in  Rd  regardless of the value of  d.

Proof: By contradiction, assume that there is a function ƒ:RÆRd such that ƒ(Rj) ≤ ƒ(Rk) if
and only if  Rj  fits in  Rk.  Then there are  d  functions ƒi:R∅R (the components of ƒ) such that
ƒi(Rj) ≤ ƒi(Rk) if and only if  Rj  fits in  Rk,  i=1,…,d.  Extend  ƒ  to the whole positive quadrant
by setting  ƒ(a,b)=ƒ(b,a)  for  a>b. Consider the two lines Y={((√2-1)u,u): u≥0} and F={(u,u):
u≥0}.  By Lemma 2.6, each  ƒi  is continuous almost everywhere on  Y  and  F.  Thus there is a
constant  u0  such that each  fi  is continuous at  S0=(u0,u0)  and  R0=((√2-1)u0,u0).  Choose two
sequences  {Rj} ∅R0  and {Sk} ∅S0  in the line segments L0  and B0, respectively (see Figure
2.4),  of the containment curve of  S0. Since each  ƒi  is continuous at  S0 and R0, then
{fi(Rj)}jÆ•Æfi(R0) and {fi(Sk)}kÆ•Æfi(S0), for i=1,...,d.  Suppose w.l.o.g. that  ƒi(R0) = ƒi(S0)
for i=1,...,m,  and that  fi(R0)< fi(S0)  for  i=m+1,...,d.  Since  R0  fits in  S0,  then ƒi(R0) = ƒi(Sk)
= ƒi(S0)  for  i=1,...,m  and any positive integer  k.  Furthermore, since  Rj  fits in  S0, then  ƒi(Rj)
< ƒi(S0) = ƒi(Sk) for i=1,...,m  and any positive integers  j  and  k.  Let  e = mini=1,m{|ƒi(R0) -



ƒi(S0)|}  / 2.  Since each function  ƒi  is continuous in  R0  and  S0,  there exists an integer  ni
such that if  j,k > ni  then  |ƒi(Rj)-ƒi(R0)|<e  and  |ƒi(Sk)-ƒi(S0)|<e  for  i=1,...,m.  Let  n =
Maxi=1,m{ni}.  Therefore, if l>n it follows immediately that  ƒ(Rl)≤ ƒ(Sl)  which contradicts
Lemma 2.4.

[]
2.3 A Reduction of the Containment Problem to Vector Dominance with a 

Countable Number of Parameters

We now display a continuous function ƒ with a countable number of coordinates which
solves the rectangular containment problem.

Y    { R  }
   { S  }j x

k

Figure 2.4

Let  U={(w,l) : 0 ≤ w ≤ l < •; w,l rationals} ;  U represents all rectangles with rational width
and length.  Since U is countable, the elements of U can be put in a one-to-one correspondence
with the positive integers, yielding a sequence {(wj, lj) : 1 ≤ j < •} . Given a rectangle R with
width  w  and length  l,  let tj(R)=Max{t : (twj, tlj) fits in R}  and let ƒj(R)=2-j tan-1(tj(R)) for
1≤j<•. Let ƒ(R)=( ƒ1(R), ƒ2(R),...) where ƒ(R) has coordinates ƒj(R) for 1≤j<•. It is not difficult
(and it is left as an exercise to the reader) to show that the function ƒ so defined is such that
rectangle Ri fits in rectangle Rj if and only if ƒ(Ri)≤ƒ(Rj); that is,

Theorem 2.2 [34]: Geometric containment of rectangles can be reduced to vector dominance
with a countable number of parameters.



2.3 Generalizations of the Rectangle Theorem

The result presented in Theorem 2.1 can be extended to many families of geometrical
objects. The next results are proved in [35].

Theorem 2.3: Geometric containment can not be reduced to vector dominance in Rn

regardless of the value of  n  for the following families:

a) Rectangles
b) Isoceles triangles (and hence for triangles)
c) Right circular cylinders
d) Polygons with n sides

[]
These results are a consequence of the following result which is obtained from the proof of

Theorem 2.1.

 Fix a positive integer  k  and a cone K in  Rk
+ = {x = (x1,...,xk) Œ Rk: xi > 0 i=1,...,k} .

(That K is a cone means that K ≠ Ø and tx Œ K whenever x Œ K and t > 0).  We consider a partial
order n on K which satisfies the following monotonicity and homogeneity hypotheses:

(M)  x Œ K, y Œ K, x s y together imply x n y.
(H)  x Œ K, y Œ K, x n y, t > 0 together imply tx n ty.

Theorem 2.4 [35]: Suppose that K is a cone in Rk and n is a partial order on K that satisfies
(M) and (H).   Suppose that there are distinct points z, w in K and sequences (x(n)), (y(n)) in K
such that:

(1.1)  x(n) n w and z n y(n) n w for all  n.
(1.2)  x(n) n y(n) is false for all  n.
(1.3)  x(n) Æz and y(n) Æw in Rk as nÆ•.

Then n is not reducible to vector dominance in Rm for any finite  m.
[]

Not all interesting consequences of Theorem 2.4 involve geometric containment.  A natural
partial order a is given on the set of all polynomials with real coefficients by declaring that P1 a
P2   provided P1(x) ≤ P2(x) for all non-negative real numbers x.  It is easy to see that the
restriction of a to the class of linear polynomials is reducible to vector dominance in R2:
associating to P(x) = ax + b the point j(P) = (a,b) does the job.  It is perhaps surprising that this



result does not extend one step further to the class Q of quadratic polynomials P(x) = ax2 + 2bx
+ c with real coefficients a,b,c.

Theorem 2.5 [35]: The restriction of the partial order a to the set Q of quadratic polynomials
with real coefficients is not reducible to vector dominance in Rm for any finite m.

2.4 Containment for Compact Sets

In section 4 of [35] it was shown that the family r of congruence classes of plane rectangles
can be mapped into the space l2 of square-summable sequences of real numbers in a manner that
converts containment to vector dominance, and that this can be accomplished continuously, if l2
is equipped with the usual metric dl2(u, v) = [Ân=1,• (un - vn)2] 1/2 for u  = (un)n=1,• and
v=(vn)n=1,• in  l2.  We shall now indicate how to extend this result substantially.

Fix a positive integer k and endow Rk with its usual Euclidean metric dk.  Let F denote the
family of  non-empty compact subsets of Rk, ~ congruence for subsets of Rk, F the congruence
class of F Œ F,  F = { F : F Œ F } , tF = {tx : x Œ F}  and tF = (tF)~ for F ŒF and t > 0.  For
FiŒF (i=1,2) set

l1 (F1, F2) = supxŒF1   [inf yŒF2   dk (x, y)],
   l1 (F1, F2) = inf {l1 (F1,F2'):  F2' ~ F2} ,

 l(F1, F2)=l1 (F1, F2) + l1 (F2, F1),
 l (F1, F2) = inf {l (F1, F2') : F2' ~ F2} .

Thus (F, l ) and (F ,l) are metric spaces, and l1 (respectively l) is a good measure of
closeness of (congruence classes of) compact sets. Clearly l1 ≤ l and l1 ≤ l.

Let (Ln)n=1,• be an enumeration of all non-empty finite unions of boxes [a1, b1] •...• [ak, bk]
with ai, bi rational and ai < bi.  Define gn : FÆR by gn(F)= l1(F,Ln) and let fn = 2 -n/2 tan -1 gn.

Theorem 2.6 [35]: Let f = (fn) :F Æl2. Then f is continuous and converts K on F into vector
dominance in l2.

3. REPRESENTATIONS OF PARTIAL ORDERS USING SETS ON THE PLANE

Let F={S1,…,Sn}  be a family of sets. A partial order P(X,<) on a set X={x1,…,xn}  represents
F={S1,…,Sn}  if Si is contained in Sj implies  xi<xj in P(X,<). Conversely F={S1,…,Sn}  will be



called a set representation of P(X,<). Every partial order has a set representation. For instance, let
Si={xjŒX : xj< xi} ª{xi} . It is easy to see that {S1,…,Sn}  is a set representation of P(X,<). The
problem of set representations of partial orders becomes interesting when some restrictions are
imposed on the elements of F. For instance, what partial orders have a set representation using
circles on the plane?

Representation problems of posets as containment relations have been studied for some time.
For example, when the elements of F are intervals on the real line, P(X,<) is a partial order of
dimension 2 (see Fishburn [11]). When the elements of F are boxes in the n-dimensional space
Rn (i.e. sets of points {x=(x1,...,xn) : ai≤xi≤bi; ai, bi constants, i=1,...,n} ) the posets thus obtained

are exactly all 2n-dimensional posets (see Golumbic [14]).

In the following sections of this paper we shall be interested in representation problems of
partial orders using sets of circles, convex polygons and angular regions on the plane.
Representations of partial orders using convex sets on the plane are not hard to obtain. The
following theorem gives us our first result on representations:

Theorem 3.1: Every poset has a representation using convex polygons on the plane.

Proof: Let P(X,<) be a poset on a set X={x1,…,xn} .  Let S be a convex polygon with  n
vertices. Label the vertices of S using the elements x1,…,xn of X in the clockwise direction along
the boundary of S. For every  i  let Si=Conv({xjŒX : xj< xi} » {xi} ), i.e. the convex closure of
Si={xjŒX : xj< xi} » {xi} . It follows easily that {S1,...,Sn}  is a set representation of P(X,<).

[]
Before continuing our study on representations of partial orders, we will need to study some

of their properties.

3.1 Some Terminology and Definitions

A binary relation < over a set X defines a partial order P(X,<) on X if it satisfies

(i)   x<y, y<z implies x<z (transitivity), and
(ii)  x<x (antisymmetry).

The partially ordered set P(X,<) is a linear order if it also satisfies



(iii) x<y or y<x for all x,y Œ X.

Let P(X,<) be a poset.  A realizer of P of size  k + 1  is a collection of linear orders {Lo(X,<0),
L1(X,<1),..., Lk(X,<k)}  such that  Lo(X,<0) «  L1(X,<1) « ...«  Lk(X,<k)=P(X,<), where the
intersection is defined by x<y iff x<iy   for all i.

It can be easily proved that every poset can be obtained as the intersection of a number of linear
orders.  Dushnik and Miller [9] define the dimension of P, denoted dim P, to be the size of the
smallest possible realizer of P.  Such a realizer is called a minimum realizer of P.

3.2  Function Diagrams and the Crossing Number of a Partial Order

Before we start our study of containment problems for families of simple geometric objects
(i.e. circles, convex polygons, etc.), we need to study the crossing number  of a partial order.
  Let x={f1,…,fm}  be a family of continuous functions fi:[0,1] ÆR , i=1…m. The family
x={f1,…,fm}  is called normal if the following conditions are satisfied:

a) For any pair of elements fi, fj Œ x, i≠j, the set of values S(i,j)={xŒ[0,1] :  fi(x)=fj(x)}  
is finite.
b) fi(0)≠fj(0), fi(1)≠fj(1); i≠j.
c) Each time the graphs of two functions intersect, they cross each other; that is if 
fi(x0)=fj(x0) there exists an e>0 such that  x0-e<x< x0<y< x0+e implies that fi(x)<fj(x) 

and fi(y)>fj(y) or fi(x)>fj(x) and fi(y)<fj(y).

Informally speaking, a set of functions x={f1,…,fm}  is normal if the graphs of any two
elements fi, fj Œ x intersect a finite number of times and each time they intersect, they cross each
other.

 Let X={x1,…,xm}  be a set, and P(X,–) a partial order on X. P(X,<) is called a function order
(f-order for short) if there exists a normal set of functions x={f1,…,fm}  such that  xi < xj if
fi(x)<fj(x) for all xŒ[0,1]. The set of functions x={f1,…,fm}  will be called an f-diagram for
P(X,<) . We will also say that P(X,<) represents x. It is easy to prove that every poset is an f-
order.

3.2.2 The Crossing Number of a Partial Order



   The objective in this section is to study a parameter of partial orders called the crossing number
of a partial order. The intuitive idea behind the use of the crossing number in the study of
geometric problems arises from properties such as:

a) Any two different circles intersect in at most two points.
b) The boundaries of any two different convex n-polygons (not sharing a common line

segment in their boundaries) intersect in at most 2n points.

These properties will then be used to obtain f-diagrams F for circle orders and n-gon orders in
which any two functions of F intersect at most 2 and 2n times respectively.

Given an f-diagram x={f1,…,fm} , the crossing number  c(x) is defined as the maximum over
the set {|S(i,j)|:  fi, fj Œ x,i≠j} ; that is, the maximum number of times two elements of x intersect.
The crossing number  c(P(X,<)) of a poset  P(X,<) is now defined as  min{c(x):  x is an f-
diagram for P(X,<)}  [15]. Notice that if c(P(X,<))=0, then P(X,<) has an f-diagram x in which
no pair of functions of x intersect, thus P(X,<) is a linear order. It is also easy to prove that if
c(P(X,<))=1, then the dim P(X,<) is 2.

Let us consider a special type of f-diagram in which the curves are piecewise linear.  Let L0,
L1, . . . , Lk be vertical lines each labeled from bottom to top by a permutation of the numbers 1,
2, . . . , m.  For each i (1 ≤ i ≤ m) the curve  i  consists of the union of the  k  line segments which
join i on Li-1 with  i  on Li (1 ≤ i ≤ k).  When k=1, such an f-diagram is called a permutation
diagram ; when k≥2, it is called the concatenation of k permutation diagrams . (See Figure 3.1).
The next result follows easily:
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Lemma 3.1 [15]: The crossing number c(P(X,<)) of a poset of dimension  k+1  is at most  k.

Proof: Let P(X,<) be a poset on {1,...,m}  and {L0(X,<0), L1(X,<1),..., Lk(X,<k)}  a realizer of
P(X,<) of size  k+1. Each Li(X,<i) defines a permutation Li on X, i=0,...,k. The result now
follows.

[]
We now study some properties of a specific poset. Let Hn(X,<) be the poset with elements

X={u1,…,un ,v1,…,vn }  such that ui<vj , i≠j, and all other pairs of elements in Hn(X,<) are not
comparable. Hn(X,<) is called the Hiraguchi poset. It is well known that the dimension of
Hn(X,<) is  n.  It is easy to see that the crossing number of the Hiraguchi poset Hn(X,<) is 2, n≥3
[15]. (See Figure 3.2). The following well known property of Hn will be useful.

i ) In any linear extension of Hn(X,<), there exists at most one index  i  such that ui >vi  
and for any  k,  l≠i,  uk<vl.
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Let  x be an f-diagram for P(X,<),  xŒ[0,1] such that for any fi, fj Œx, fi(x)≠fj(x), i≠j. Then  x
induces a linear extension G(x) of P(X,<) in which xi < xj if fi(x)<fj(x).  When x=0, 1, G(0) and
G(1) will be called the initial and final linear extensions of P(X,<) with respect to x. The
following observation will be used later:



ii) Let x be an f-diagram represented by a poset P(X,<) and fi, fj Œ x such that fi, fj
represent elements which are not comparable in P(X,<), that is the graphs of fi and  fj  intersect.
Then there exists xŒ[0,1] such that fi(x)< fj (x); moreover  x  can be chosen in such a way that   x
induces a linear extension G(x) of P(X,<).

The next result follows trivially.

Lemma 3.2:  Let x ={f1,…,fn,g1,…,gn}  be any f-diagram for Hn(X,<) in which ui is
represented by fi and vi is represented by gi respectively, i=1,…,n. Then there exist  n  points
x1≠x2≠…≠xn such that g1(x1)< f1(x1), g2(x2)< f2(x2),…, gn(xn)< fn(xn).

Let Yn be the poset obtained from Hn(X,<) as follows: For each subset Sk of {1,…,n}   with
exactly În/2˚ and  Î(n+1)/2˚ elements (if  n  is even both values are the same; if  n  is odd they are
different), insert in Hn(X,<) a new element sk such that sk>uj, jŒSk , sk< vi, i œ Sk. (See Figure
3.3).

Lemma 3.3: The dimension of  Yn is  n.

Proof: To prove this, we notice that Yn  is contained in the poset 2n (under containment)
which has dimension  n.  To see this, let ui represent the set {i}  , vi be the subsets {1,2,…,n} -{i}
and sk the subset Sk of {1,2,…,n}  . The result now follows from the well known result that
dim 2n is  n.

[]
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Theorem 3.2 [38]: The crossing number of Yn is n-1.

Proof: Let x' be an f-diagram represented by Yn  in which ui  is represented by fi, vi is
represented by gi, i=1,…,n and vertices sk are represented by functions hk. Clearly x' contains an
f-diagram x for Hn(X,<) (the one obtained considering the  f  and  g  functions only). By Lemma
3.2, there exist x1≠x2≠…≠xn such that g1(x1)< f1(x1), g2(x2)< f2(x2),…, gn(xn)< fn(xn). Let us
assume without loss of generality that x1<x2<…<xn. Let Sk={1,3,5,…}  and Sk'={1,…,n } -
Sk={2,4,6,…} . We now prove that the graphs of hk and hk' intersect in at least n-1 points. To see
this, notice that since Sk={1,3,5,…} , sk<v2,v4,v6,… . Then hk(x)<gi(x), i=2,4,6,… . Moreover
since sk>u1,u3,u5,… it follows that hk(x)>fi(x), i=1,3,5,… . Similarly, we can prove that
hk'(x)>fi(x), i=2,4,6,… and hk'(x)<gi(x), i=1,3,5,… . Hence for i=1,3,5,… we have hk'(xi)< gi(xi)<
fi(xi)< hk(xi), i.e. hk(xi)< hk'(xi). Similarly hk(xi)< gi(xi)< fi(xi)< hk'(xi), i.e. hk'(xi)< hk(xi),
i=2,4,6,… . However since  x1<x2<…<xn, hk intersects hk' in each interval (xi,xi+1), i=1,…,n-1,
i.e. hk intersects hk' at least n-1 times. Then  c(Yn)≥ n-1. But since dim Yn=n, by  Lemma 3.1,
c(Yn)≤n-1. Therefore c(Yn)=n-1.

[]
We are now ready to study circle orders, angle orders and n-gon orders.

3.3 Circle Orders

Let X={x1,…,xm}  be a set, and P(X,<) a partial order on X. P(X, <) is called a circle order if
there exists a family F={P1,...,Pm}  of circles on the plane such that xi  < xj  iff circle Pi is
contained inside Pj. F={P1,...,Pm} will be called a circle representation of P(X,<). It is easy to see
that all partial orders of dimension 2 are circle orders. In this section we will prove that there are
partial orders of dimension 4 that are not circle orders. At present we do not know if all partial
orders of dimension 3 are circle orders or not. We will also prove that the dual of a circle order is
a circle order and that the composition of two circle orders is also a circle order.

A circle representation F={P1,...,Pm}  of a circle order P(X,<) is called a normal
representation of P(X,<) if  int(P1)«…«int(Pm)≠∅; where int(S) denotes the interior of S.

The next result follows:

Lemma 3.4 [38]: Any circle order P(X,<) has a normal representation.

Proof:  Let F={P1,...,Pm}  be a circle representation of P(X,<). Let a be the maximum



distance among the centres of the circles in F . For any circle Pi with radius ri in F , let
Pi(ri+2a) be the circle concentric with Pi with radius ri+2a. Then Pi is contained inside Pj if and
only if Pi(ri+2a) is contained in Pj(rj+2a). Hence F'={P1(r1+2a),...,Pm (rm+2a)}  is also a circle
representation for P(X,<). It is now easy to see that F'={P1(r1+2a),...,Pm (rm+2a)}  is a normal
representation of P(X,<).

[]

An important consequence of Lemma 3.4  is the next result:

Theorem 3.3 [38]: The crossing number of a circle order is at most two.

Proof:  Let F ={P1,...,Pm} be a normal representation of a circle order P(X,<). Let Q be a
point in the common intersection of P1,...,Pm and LQ a ray starting at Q which does not meet any
point in which two circles of F ={P1,...,Pm}  intersect. (See Figure 3.4). Then using what in
topology is known as surgery, cut the plane along  LQ and stretch it so that one side of the cut
goes to the Y-axis and the other to the line x=1. Then we obtain an f-diagram x for P(X,<) in
which every circle Pi of F is mapped into a function fi. (See Figure 3.4). Moreover, since any
two circles intersect in at most two points, any two functions of x intersect in at most two points.
Then c(x)=2 and c(P(X,<))≤2.

[]
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Figure 3.4

Corollary 3.1 [38]: Y4 is not a circle order.

We notice here that Y4 is critical in the sense that if any element fron Y4 is deleted, the partial
order thus obtained becomes a circle order. Moreover, Y4 is the smallest partial order known to
us that is not a circle order. We conjecture that Y4 is the smallest poset which is not a circle



order.

Conjecture 3.1: All finite posets of dimension ≤3 are circle orders.

In a recent paper, Scheinerman and Wierman proved the following result:

Theorem S.W. [36]: Z3 is not a circle order.

This proves that the infinite version of Conjecture 3.1 is false. Another open problem in this
direction is this:

Problem 3.1: Is it true that all partial orders with crossing number at most 2 are circle orders?
If not, find a partial order with crossing number 2 which is not a circle order.

At this point, we should mention that Hn is a circle order for all values of  n.  Thus for every  n
there are partial orders of dimension  n  which are circle orders. However the crossing number of
Hn is 2. Thus the importance of Problem 3.1.

3.3.1 Some Properties of Circle Orders

Using a similar technique to the one used in Lemma 3.4, we can prove the following result:

Theorem 3.4: The dual of P*(X,<), a circle order P(X,<), is also a circle order.

Proof:   Let F={P1,...,Pm}  be a circle representation of P(X,<). Let a be the maximum
distance among the centers of the circles in F. For any circle Pi with radius ri in F, let Pi(|ri-
2a|) be the circle concentric with Pi  with radius |ri-2a|. The reader can easily verify that
F'={P1(|r1-2a|),...,Pm(|rm-2a|)}  is a circle representation for P*(X,<).

 []
Given two partial orders Q(X,<') and R(Y,<") we define their composition P(X•Y,<) as

follows: (x1,y1)<(x2,y2) if x1<' x2 and y1<" y2. Next we prove:

Theorem 3.5: The composition P(X•Y,<) of two circle orders Q(X,<') and R(Y,<") is a circle
order.

Before we prove Theorem 3.5 we need the following results:



A representation F={P1,...,Pm} of a circle order P(X,<) is called an (r,e)-circle representation
of P(X,<) if all the elements of F are contained in the annular region determined be the circles
with center in the origin of radius  r  and  r+e.

Lemma 3.5: Any circle order has an (r,e)-circle representation.

Proof: Let F={P1,...,Pm}  be a normal representation of a circle order. Suppose that the origin
belongs to P1«...«Pm. Let us consider two circles C0 and Ca of radius 0 and a with center in the
origin such that Ca contains all the elements of F. Let F(d) be the representation obtained from
F by increasing the radii of the elements of F by d. Then all the elements of F are contained
within the annular region determined by C0(d) and Ca(d), the circles with center in the origin and
radii d and a+d. Choosing d such that (a+d)/d<(r+e) and reescaling d down to  r  gives us the
desired result.

 []
We are ready to prove Theorem 3.5.

Proof of Theorem 3.5: Let F={P1,...,Pm}  be a normal representation of a circle order
Q(X,<') on X={1,...,m} . We can assume that no two elements of F are tangent. For each PiŒF

with radius ri there exists an ei such that if each Pi is substituted by the annular region Ai
determined by Pi and Pi(ri+ei) then the containment structure of F remains unchanged, i=1,...,m.
Let us substitute each Ai by an (ri,ei)-representation of Q(Y,<"). This will produce a circle
representation for the composition of P(X,<') and R(Y,<").

 []

3.4 Representations of Partial Orders Using Regular Convex Polygons

 A partial order P(X,<) on a set X={x1,…,xm}  is called a polygonal partial order if there
exists a family of polygons F={P1,…,Pm}  such that  Si is contained within Sj if and only if  
xi<xj in P(X,<). F={P1,…,Pm}  will be called polygonal representation of P(X,<). From now on,
we shall assume that a point cannot be a vertex of more than one polygon of a polygon
representation of a partial order and that any two edges of different polygons intersect at most in
one point..  In this section we study the problem of representing partial orders using convex
polygons on the plane. By Theorem 3.1 every partial order has a polygonal representation. In this
section we will study partial orders arising from families of regular polygons with parallel sides ;
for instance we will consider families of equilateral triangles with bases parallel to the x-axis.The



next result was our original motivation to study these families of partial orders.
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Theorem 3.6 [32]: Every poset of dimension 3 can be represented using equilateral triangles.

Proof: Let P(X,<) be a poset of dimension 3 on a set X={x1, .., xn}  and L1, L2, L3 linear
extensions of P(X,<) such that  L1«L2 «L3=P(X,<). Take 3 rays R1, R2, R3 emanating from the
origin at 120˚ angles. Label n points in Ri using the elements of X in the order determined by  Li,
i=1,2,3. For a point xj in Ri let Li,j be the line perpendicular to Ri through xj, i=1,2,3, j=1,...,n.
Each such line determines a semiplane Si,j containing the origin. For each xiŒX let Ti be the
triangle defined by S1,j«S2,j«S3,j. It follows that Ti is contained within Tj if and only if xi< xj in
P(X,<). (See Figure 3.5).

 []
Thus a natural question to ask is what posets can be represented using regular n-gons.  For

instance: What posets can be represented using equilateral triangles, squares, pentagons...? Can
we extend the result in Theorem 3.6 to higher dimensions?  Unfortunately the answer to the last
question is negative. In fact we will prove that Y4 is not representable using regular n-gons
regardless of the value of  n.  We recall that in this section, we shall be concerned only with
regular n-gons all having the same orientation. A representation F={S1,…,Sn}  of a partial order
P(X,<) is called normal  if S1«…«Sn≠ø.

A poset will be called a regular n-gon order  if it can be represented using regular n-gons all



with the same orientation. Our first result concerning regular n-gon orders is this:

Lemma 3.6 [32]: Any regular n-gon order has a normal representation.

Proof: Let  F={P1, .., Pk}  be a representation of an regular n-gon order P(X,<) on a set
X={x1, .., xk}  using regular n-gons. Suppose that all elements of F are contained in a circle of
radius 1. For each element Pi of F let Pi' be the regular n-gon obtained from Pi as follows: For
each edge ej of Pi let Sj be the semiplane containing Pi defined by the line Lj parallel to ej at
distance 1 from ej, j=1,...,n. Let Pi' be the regular n-gon determined by  S1«...« Sn .  It follows
immediately that  R'={P1',... Pk'}  is a normal representation of P(X,<).  (See Figure 3.6).

 []
We can now prove

 Theorem 3.7 [32]: The dimension of every regular n-gon order is at most  n.  Moreover, there
are regular n-gon orders with dimension  n.

Proof: Let  F={P1, .., Pk}  be a normal representation of a regular n-gon order P(X,<).
Suppose that the origin belongs to the common intersection of P1,...,Pk. For each edge ei of P1 let
Ri be the ray emanating from the origin that intersects ei perpendicularly. Each Ri  defines a
linear extension Li of P(X,<)  (the order in which the elements of F are intersected by Ri ),
i=1,...,n. It is easy to see that L1,...,Ln is a realizer of P(X,<). (See Figure 3.6).

fi1

2

3

4

L1

2

3

4L

L

L

L1={1,2,4,3)} , L2={3,1,2,4}
L3={3,1,4,2} , L4={1,4,2,3}

Figure 3.6



Next we shall prove that the Hiraguchi poset Hn is a regular n-gon order set. We will prove
this result for the case n=3. The proof can easily be adapted for other values of n. Take an
equilateral triangle T on the plane. Let us extend each edge ei of T at both ends by a constant ei to
obtain e'i, i=1,2,3. Using e'i, let us construct an equilateral triangle Ti containing T, one of whose
edges is e'i. It is easy to see that Ti  is well defined, i=1,2,3.  In the perpendicular to the mid-point
of ei, we can always choose a point pi  not contained in Ti, i=1,2,3. Then the partial order
representing {T1, T2, T3 ,p1, p2 , p3}  is H3. (See Figure 3.7).

 []
We now proceed to prove that there are partial orders of dimension 4 which are not regular n-

gon orders regardless of the value of n. In order to prove this, we need the next lemma.
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Lemma 3.7 [32]: Let P(X,<) be a regular n-gon order (n≥3) . Then the crossing number of
P(X,<) is at most two.

 Proof:  Let F={P1,...,Pn}  be a normal representation of P(X,<) using regular n-gons all with
the same orientation. Let p be a point in P1«...«Pn. Let Lp be a ray emanating from p that does
not meet any point in which the boundaries of any two elements of F intersect. Then using
surgery (as in Theorem 3.3), we can cut the plane along Lp and stretch it so that one side of the
cut goes to the y-axis and the other to the line x=1. In doing so, the boundary of each Pj is
mapped into a continuous function fi[0,1]ÆR. Then we obtain an f-diagram x={f1,…,fm}  for
P(X,<) with crossing number at most 2. (See Figure 3.8).

[]



Theorem 3.8 [32]: There are posets with dimension  n>3  which are not  regular n-gon orders.

Proof: By Theorem 3.2 there are posets of dimension  n  and crossing number n-1, n≥1. For
n>3 these posets have crossing number n-1≥3, and then by Lemma 3.7 can not be represented
using regular n-gons.

[]

Figure 3.8
 Corollary 3.2 [32]: Y4  is not a regular n-gon order regardless of the value of  n.

 Y4 is the smallest partial order known to us that is not a regular n-gon order. It has only 14
elements. We strongly believe that Y4 is the smallest ordered set that is not a regular n-gon order.

As in the case of circle orders, we can prove the following results in a similar way:

Theorem 3.9: The dual of a regular n-gon order is also a regular n-gon order.

Theorem 3.10: The composition of two regular n-gon orders is also a regular n-gon order.

The proofs for these results are very similar to those of Theorems 3.4 and 3.5. The equivalent
of Lemma 3.5 can also be easily obtained.

3.5  Dimension 3

One of the most interesting areas in the study of geometric containment problems is the study



of circle orders. In Section 3.4 we proved that the crossing number of circle orders is at most 2.
This gives us partial orders of dimension 4 which are not circle orders. On the other hand, it is
easy to see that all partial orders with dimension 2 are circle orders. Then from a dimension point
of view, the standing problem is that of deciding if all partial orders with dimension 3 are circle
orders. This seems to be a very hard problem. In this section, we shall present a result which
provides good evidence that the answer to the above problem is positive. We will prove that
partial orders with dimension 3 are regular n-gon orders, regardless of the value of n, n≥3. Notice
that as  nÆ•  the polygons thus obtained converge to circles. Unfortunately, we cannot apply a
limit type argument to our result to solve the circle orders problem.
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L1={1,2,3} , L2={1,3,2} , L3={2,1,3}
Figure 3.9

Theorem 3.11 [32]: Every partial order with dimension 3 is a regular n-gon order, n≥3.

Proof: As in previous cases, we will prove our result for n=4. For larger values of  n,  the
proof can be easily adapted to obtain the desired result. Let P(X,<) be a partial order of
dimension 3 on  X={1,...,m} .

Let {L1(X,<1), L2(X,<2),L3(X,<3)}  be a realizer of P(X,<). Suppose w.l.o.g. that L1(X,<1) is
the linear extension in which i <1 j iff as integers i<j. Each Li(X,<i) defines a permutation πi on
{1,...,m} , i=2,3. Using π2, label the points with coordinates (km2, 0) on the x-axis with the
element π2

-1(k), k=1,...,m. Similarly, label the points (-km2, 0) on the x-axis with the element -π3
-

1(k), k=1,...,m. (See Figure 3.9).



For each  i  let l(i) be the line segment contained in the line  y=i  determined by the
perpendiculars to the x-axis at the two points labelled  i.  Each l(i) uniquely determines a square
S(i) with base  l(i), i=1,...,m. Notice that  i<j in P(X,<) implies:

a)  The base l(j) of S(j) is at least 2m2 units longer than l(i).
b) The projection of l(j) on the x-axis contains the projection of l(i).
c) l(j) is at most m-1 units below  l(i).

From a), b) and c) it follows immediately that S(i) is contained in S(j). It is now easy to verify
that  F={S(1),...,S(m)}  is a representation for P(X,<).

 For the general case, instead of using the perpendiculars to the x-axis at the two points
labelled  i,  we use a line forming a  2p/n  angle with the positive x-axis at the point labelled  i
and another line at a (n-2)p/n angle with the negative  x-axis at the point labelled  -i.  The points
on the y-axis should also be repositioned closer to the x-axis.

[]
3.6 N-gon Orders

In the last subsection, we studied partial orders arising from families of regular n-gons; in this
section, we will study partial orders arising from convex polygons with  n  sides. Let P(X,<) be a
partial order on  X={1,…,m}. P(X, <) is called an n-gon order if  there exists a family
F={P1,...,Pm}  of convex polygons with n sides (n-gons) on the plane such that xi < xj if polygon
Pi is contained within Pj. We will assume that each time two polygons intersect, they cross each
other (as we did in the definition of normal families of functions), that no vertex belongs to two
different elements of F and that there are no polygons whose boundaries intersect in a proper line
segment . For the case when the elements of F={P1,...,Pm}  are triangles, P(X,<) is called a
triangle order. We can now prove the following result:

Theorem 3.12 [38]: The crossing number of n-gon orders is at most  2n.

Proof:  We will prove our result for the case when P(X,<) is a triangle order. The general case
can be easily obtained from this case. We first notice that the boundaries of two different
triangles intersect in at most six points. Thus if P(X,<) has a normal representation, the result
follows in the same fashion as in Theorem 3.3. Suppose then that P(X,<)  has a non-normal
representation F={P1,...,Pm}. For each triangle Pi Œ  F  let Pi(a)={(x, y)ŒR2: the euclidian



distance between (x, y) and Pi is smaller than or equal to a} . Then for any two triangles Pi, Pj Œ

F there exists a number b  large enough that Pi(b)«Pj(b)≠∅  and the boundaries of Pi(b) and
Pj(b) intersect in at most six points. Furthermore if Pi is contained in Pj  then Pi(b) is also
contained in Pj(b). Let C be a circle of radius a that contains all the elements of F. Then
P1(a)«P2(a)«…«Pm(a)≠∅. Moreover, the boundaries of P1(a),P2(a),…,Pm(a) form closed
curves such that any pair of them intersect in at most six points. Using surgery again, we obtain
an f-diagram x for P(X,<) with crossing number at most six. The proof generalizes easily for n-
gons, thus obtaining the desired result.

 []

An immediate consequence of this result is :

Theorem 3.13 [38]: There are partial orders of dimension 2n+2 which are not n-gon orders.

Proof: By Theorem 3.2 there are partial orders of dimension 2n+2 and crossing number 2n+1.
Clearly these partial orders cannot be n-gon orders by Theorem 3.12.

[]

3.6.2  N-gon Orders and 2n-dimensional Partial Orders

The main objective of this section is to prove the following result:

Theorem 3.14 [38]: Every poset with dimension  ≤ 2n is an n-gon poset.

We will need some results before proving this theorem.
Let P(X, <) be a poset of dimension 2 on the set {1,…,m}  and {L1(X, <1), L2(X, <2)}  a

realizer of P(X, <). Then L1(X, <1) and L2(X, <2) define two permutations ∏1={π1(1),…,π1(m)}
and ∏2={π2(1),…,π2(m)}  on {1,…,m} . Using ∏1 and ∏2 we construct a "caged" representation
D( P(X, <)) of P(X, <) as follows:

Let D(h, k) be a rectangle with width h, length k > 1 and sides S1, S2, S3 and S4. Then a

"caged" representation of P(X, <) is obtained as follows: Divide each of the two opposite sides
S1, S3 of D(h, k) with length h into m+1 segments of length h/m+1 using points p1,…,pm in  S1
and q1,…,qm in S3. (See Figure 3.10).  Place π1(i) on pi and π2(i) on qi, i=1,…,m.  Finally if π1(i)
= π2(j) join pi to qj by a line segment L(pi, qj). (See Figure 3.10).
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Lemma 3.8: Let  p  be the intersection point in D(h, k) of two line segments L(pi, qj) and
L(pk, ql). Then the distance of  p  to each of S1 and S3 is at least  k/m.

Proof: The result follows immediately from the fact that the triangles with vertices {pi, p, pk}
and the triangle with vertices {qi, p, ql}  are similar, and that the maximum ratio between the
distance of pi to pk  and the distance between qj and ql is at most  m.

[]
For example, in Figure 3.10 the distance between  p  and S1 and S3 is at least k/4.

Corollary 3.3: If k ≥ 2m then the distance between  p  and S1 and S3 is at least   2.
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We are now ready to prove Theorem 3.14.

Proof:  We carry out the proof for the case n=4.  For different values of  n  the proof easily
generalizes. Let P(X,<) be a poset with dimension 8 and {L1(X,<1),..., L8(X,<8)}  be a realizer of
P(X, <).  Assume w.l.o.g. that X={i,…,m} . Then each  Li(X,<i) defines a permutation Pi on X,
i=1,…,8. Let  Pi,i+1(X, <i,i+1)= Li(X,<i) « Li+1(X,<i+1) and  D( Pi,i+1(X, <i,i+1)) be a caged
representation using a rectangle with width  1  and length  2m,  i=1,3,5,7.   Let  W4 be a square on
the plane with sides labelled  w1,w3, w5,w7 of length  2m.  Place D(Pi,i+1(X, <i,i+1)) in the interior
of W4 in such a way that the top of D(Pi,i+1(X, <i,i+1)) lies on wi, i=1, 3,5,7 (See Figure 3.11). For
each x Œ X there is a segment  L i(x) in D(Pi,i+1(X, <i,i+1)), i=1,3,5,7. If we take
C(x)=L 1(x)» L 3(x)» L 5(x) »L 7(x) it divides the plane into two regions one of which
(the interior of C(x)) is the interior of an n-gon N(x); xŒX. Since
P(X,<) = P1,2(X, <1,2) « P3,4(X, <3,4) « P5,6(X, <5,6) « P7,8(X, <7,8), it now follows that N(x) is
contained in N(x) iff x<y in P(X,<).

[]
When the dimension of P(X,<) is 4, we have two caged representations D(P1,2(X, <1,2))

and D( P3,4(X, <3,4)) of L1(X,<1) « L1(X,<1) and L1(X,<1) « L1(X,<1) respectively. In this case,
using only two adjacent sides of our square and properly respacing the elements pi and qi in
D(P1,2(X, <1,2)) and D(P3,4(X, <3,4)), i=1,…n,  we obtain angle orders [13].

We proved that all posets with dimension 2n are n-gon orders and that there are posets of
dimension 2n+2 which are not n-gon orders. For posets with dimension  2n+1  the following
problem was posed in [38]:

 Problem 3.2. Are there are posets with dimension 2n+1 which are not n-gon orders?

In a recent paper, Alon and Scheinerman [1] showed that there are partial orders of dimension
2n+1 which are not n-gon orders thus solving Problem 3.2. The proof given in [1], however, uses
a counting argument and does not produce an specific family of posets of dimension 2n+1 not n-
gon orders. It would still be of interest to find specific families of 2n+1 posets which are not n-
gon orders.

3.7 Angle Orders

We now proceed to study representations of partial orders using families of angular regions.



Angle orders were introduced in Fishburn and Trotter [13]. An angular region  is a closed region
A of R2 bounded by a pair of rays R1 and R2 emanating from a point  p  containing all points
swept out by rays from  p  in the clockwise direction from R1 to R2. A poset P(X,<) is called an
angle order if it has a representation using angular regions in the plane. In [13] it was proved that
all posets of dimension at most four are angle orders. Moreover, in the same paper it was proved
that the poset consisting of all elements xŒ27 (under containment) with at most four elements is
not an angle order (this poset has 198 elements). The following questions were posed in [13]:

Problem 3.3: What is the dimension of the least dimension poset which is not an angle order?

Problem 3.4:  Is 25  an angle order?  And in general what is the smallest n such that 2n is not
an angle order?

In the rest of this section, we shall produce a poset of dimension 6 with 64 elements which is
not an angle order. Thus Problem 3.2 reduces to the following: Are all posets of dimension 5
angle orders?  The problem of deciding if 25 is an angle order remains open. The technique used
to prove our results follows some ideas presented in [13] combined with the crossing number of
posets.

Let A be an angular region bounded by two rays R1 and R2. If the angle between R1 and R2 is
less than 180°, A is called a little angle; if the angle exceeds 180°, A will be called a big angle.
The point p will be called the vertex of A. Notice that if the angle between R1 and R2 is 180° then
the vertex of A is not unique.

An angle order P(X,<) that has a representation using only little angles will be called an l-
angle order. If P(X,<) has a representation using only big angles, P(X,<) will be called a b-angle
order.

For a given angular region A in the plane let A*=R2-A. Clearly if A is a little angular region,
A* is a big angular region. The next result follows immediately from observations made in [13].

Lemma 3.9 [13]: If P(X,<) is an l-angle (b-angle ) order, then the dual P*(X,<) of P(X,<) is a
b-angle (l-angle) order.

Proof: Let R={A1,...,An}  be a representation of P(X,<) using little (big) angular regions.
Then R*={A*1,...,A*n}  is a representation for P*(X,<) using big (little) angular regions.



[]
Next, we observe that the boundaries of two different angular regions intersect in at most four

points. This lead us to the following result:

Lemma 3.10 [32]: The crossing number of an l-angle order is at most 4.

Proof: Let R= {A1,...,An}  be a representation of P(X,<) using little angular regions. Assume
without loss of generality that all the intersection points of the boundaries of the angular regions
of R are contained in a circle of radius 1 with center in the origin.

Let us assume that x1< x2<...<xn is a linear extension of P(X,<). For each element xiŒX let Si
be the region determined by the intersection of Ai with the circle of radius  i  and center in the
origin. Clearly xi<xj if and only if Si is contained in Sj, i≠jŒ{1,...,n} . Let Si(1) be the set of
points in R2 at distance ≤1 from Si. Since the origin belongs to Si(1),i=1,...,n,  S1 «...« Sn ≠Ø.
Moreover, the boundaries of any two such sets intersect in at most four points. Let L0 be a ray
emanating from the origin that does not meet any point in which the boundaries of any two
elements Si(1), Sj(1) intersect. Using surgery again as in Lemma 3.4, our result follows.

 []

Lemma 3.11 [32]: The crossing number of a b-angle order is at most 4.

Proof: By Lemma 3.9 the dual P*(X,<) of an angle order P(X,<) is an l-angle order. Thus the
crossing number of P*(X,<) is at most 4. But the crossing number of a poset is equal to the
crossing number of its dual. The result now follows .

[]
The next result trivially  follows:

Lemma 3.12 [32]: Let P(X,<) be a poset with crossing number greater than or equal to 5.
Then if P(X,<) is an angle order, any representation R={Ai,..., Ai}  of P(X,<) contains a little and
a big angular region.

Theorem 3.15 [32]: There are posets of dimension 6 which are not angle orders.

Proof:  The idea used in the proof of this theorem is similar to the one used by Fishburn and
Trotter in their proof of Corollary 2 in [13].  Let P(X,<) be any poset with crossing number at
least 5. Let us construct a new poset Q consisting of two isomorphic copies P1(X,<), P2(X,<) of



P(X,<) such that if xŒP1(X,<) and yŒP2(X,<) then x<y. We claim that Q is not an angle order.
For if Q is an angle order, then there is a representation R of Q using angular regions in the plane.
By Lemma 3.12, there is a big angular region Ai representing an element xiŒP1(X,<). Similarly
there is a small region Bj representing an element yjŒP2(X,<). However, since by definition xi<
yj, Ai is contained in Bj which is impossible. Letting P(X,<)= Y6 gives us the desired result.

[]
Since Y6 has 12+ C(6,3) elements, Theorem 3.15 gives us a poset with 64 elements which is

not  an angle order.  Some open problems are now presented. We proved that the crossing
number of l-angle orders and b-angle orders is at most 4. This leads us to the following question:

Is it true that the crossing number of angle orders is at most 4?  More specifically, is Y6 an
angle order?  So far we have been unable to verify whether Y6 is an angle order or not.

What about partial orders with crossing number ≤4; is it true that any partial order with
crossing number at most 4 is an angle order?

Similar questions can be asked about regular n-gon orders. For instance, is it true that all
partial orders with crossing number 2 are regular n-gon orders for some  n?

W.T. Trotter has pointed out that Problem 3.3 can be solved using the argument used here.
Problem 3.3 can be solved by observing that the boundaries of any two little angles, containing a
third one, intersect at most 3 times. Thus the crossing number of an l-angle order with a 0
element is at most 3. We can now apply the same techniques as in Theorem 3.15 to obtain the
desired result. Thus we have:

Theorem 3.16: There are partial orders of dimension 5 which are not angle orders.

3.8 Comparability Graph Invariants

An undirected graph G=(V,E) is called a comparability graph if there exists an orientation D
of the edges of G in which xÆy and yÆz imply xÆz. A transitive orientation D of G produces a
partial order in P(V,<) in which u<v in P(V,<) if uÆv Œ D. A comparability graph G may admit
many different  transitive orientations, each of which produces a different partial order on V. A
property Q is called a comparability graph invariant if Q is satisfied by all partial orders on V
obtained from transitive orientations of G. A well-known comparability graph invariant is, for
example, the dimension of G.  One geometrical "invariant" of a comparability graph is "interval



order", that is;

Theorem 3.17:  Let  G be a comparability graph such that a transitive orientation  D of G
produces an interval order on V(G). Then any transitive orientation D' of G produces an interval
order on V(G).

An easy consequence of Theorems 3.4, 3.5, 3.9 and 3.10 and the decomposition theorem  for
comparability graphs is the next result:

Theorem 3.18 [40]: Let G be a comparability graph such that a transitive orientation D of G is
a circle order (regular n-gon order). Then any transitive orientation of G produces a circle order
(regular n-gon order) on V.

Similarly we can prove:

Theorem 3.19 [40]: The crossing number of a partial order is a comparability graph invariant.

3.8 Some Open Problems

 Let W  and S  be families of orders such that  c(P(X,<))≤m and c(Q(Y,<))≤n for
P(X,<)ŒW and Q(Y,<)ŒS ; m<n.  It is obvious that if Q(Y,<)ŒS exists for which c(Q(Y,<))=n
then S is not contained in W.  A natural question arises: When is W  contained in S ?

For instance it is not very hard to show that the crossing number of interval orders is at most
2. We also known that there are angle orders with crossing number greater than 2. Then there are
angle orders which are not circle orders. In the case of interval orders and angle orders  the
following result is known:

Theorem 3.20 [13]. Every interval order is an angle order.

In a recent paper P. Fishburn proved the following result:

Theorem 3.21 [12] Every interval order is a circle order.

Two questions remain open:



Problem 3.5. Is it true that every circle order (crossing number at most 2) is an n-gon (regular
n-gon) order ?

Problem 3.6. Is every circle order an angle order ?

4. RELATED RESULTS ON POINTS AND CIRCLES

A complete characterization of circle orders seems at this point to be very hard to obtain. For
this reason we studied a much simpler version of the above-mentioned problem, namely: What
partial orders are circle orders representable using circles of two different sizes?

It is easy to see that in this case, the problem is equivalent to studying containment relations
among families of points and circles (all of the same radius) on the plane. For let F={C1,...,Cm}
be a circle diagram in which C1,...,Ci have radius  a  and Ci,...,Cm have radius  b, a<b.  Then if we
reduce the radii of all the elements of F by a, C1,...,Ci will become points and Ci,...,Cm become
circles of radius  b-a.

This led us to study the general problem of containment relations among families of points
and circles. In this section, our aim is to prove the following result as well as some results related
to it.

Theorem 4.1 [27]: For any collection Pn  of  n  points on the plane, there exists a pair of
points  uo, vo  such that any  circle containing them contains at least (n-2)/60 points of Pn.

Some notation and definitions will be needed to prove this result. A graph G = (V(G), E(G))
consists of a collection of points V(G) called the vertices of G and a set E(G) of unordered pairs
of elements of V(G) called the edges of G.  If the pair {u, v}  belongs to E(G), we say that  u  and
v  are adjacent.  An edge {u, v}  will be denoted by  u—v.  We say that u—v joins  u  to  v.   A
complete graph Kn is a graph with  n  vertices such that for any pair of vertices  u, v  of V(Kn),
u—v is an edge of Kn.  For a pair of points  u  and  v  on the plane let l(u,v) be the open segment
of line joining  u  to  v.   The following lemma will prove useful.

Lemma 4.1 [27]: Let  u, v, x, y  be points in the plane such that l(u,v) and l(x,y) intersect.
Then any circle containing  u  and  v  contains at least one end point of l(x,y) or any circle
containing  x  and  y  contains at least one end point of l(u,v).



Proof: It is easy to see that  u, v, x and y  form the vertices of a convex quadrilateral. (See
Figure 4.1).

u x

y v

Figure 4.1

In any such quadrilateral there exist two internal opposite angles such that their sum is greater
than or equal to 180°.  Without loss of generality let us assume that it is the angles of  u  and  v
that satisfy this property.  Then any circle containing  x  and  y  contains at least one of  u  or  v.

 []

Let Pn be a collection of n points on the plane.  An imbedding of Kn on the plane can be
obtained by representing the vertices of Kn with the points of Pn and the edges of Kn with the
segments l(u,v), u≠v;  u,vŒPn.

Let us define I(Pn), the intersection number of Pn as follows:  I(Pn) is the number of different
segments l(u,v), l(x,y) such that l(u,v) «l(x,y)≠Ø;  u, v, x, yŒPn.

Lemma 4.2 [27]: I(Pn) ≥ C(n,5)/(n-4).

Proof: Since K5 is not a planar graph, for each subset S of Pn with exactly five elements, there
exist four points  u, v, x, y ŒS such that l(u,v) «l(x,y)≠Ø.  Furthermore, the subset {u, v, x, y}
appears in exactly  n-4  subsets of Pn with five elements.

[]
Finally, let us define a graph G(Pn)  (the intersection graph of Pn) as follows:

 V(G(Pn)) = {l(u,v);  u, vŒPn, u≠v}   and two vertices l(u,v), l(x,y) of G(Pn) are adjacent if
l(u,v) «l(x,y)≠Ø.  (See Figure 4.2).
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Figure 4.2

Clearly G(Pn) has exactly I(Pn) edges, one for each  pair of intersecting segments l(u,v), l(x,y).

Corollary 4.1 [27]: |E(G(Pn))| ≥  C(n,5)/(n-4).

We now obtain an orientation D(Pn) of G(Pn) as follows:  An edge l(u,v)—l(x,y) is oriented
l(u,v)Æ l(x,y) if any circle containing  u  and  v  contains   x  or  y,  otherwise we orient
l(x,y)Æl(u,v).  This orientation is consistent because of Lemma 4.1.  We should notice that if  u,
v, x  and  y  lie on a circle, then we could choose either orientation;  l(u,v)« l(x,y) or
l(x,y)«l(u,v). Let d+(u) be the out-degree of a vertex  u  in a directed graph D, ie. the number of
vertices  x  such that uÆxŒE(D).

Lemma 4.3 [27]: There exists a vertex l(uo,vo)ŒV(G(Pn))  such that d+(l(uo,vo)) ≥ (n-2)(n-

3)/60.

P r o o f :  From Corollary 4.1, |E(G(Pn) ) | ≥ C(n,5)/(n-4). We also know that
∑d+(l(u,v))=|E(G(Pn))|. Then ∑d+(l(u,v)) ≥ C(n,5)/(n-4). Since we have exactly C(n,2) vertices
in G(Pn), there exists a vertex l(uo,vo) with d+(l(uo,vo)) ≥[C(n,5)/(n-4)]/C(n,2)=(n-2)(n-3)/60.

 []
We can now prove Theorem 4.1.

Proof of Theorem 4.1: By Lemma 4.3, there exist two points, uo, vo in  Pn  such that



d+(l(uo,vo)) ≥ (n-2)(n-3)/60.  Then there exist at least (n-2)(n-3)/60 segments l(x,y), x,yŒPn  such
that any circle containing uo and vo contains one end point of each one of these segments.
Eliminating redundancies (no point x different from uo and vo can belong to more than n-3 line
segments) we obtain the desired result.

 []
In Lemma 4.3, we showed that there exists a vertex l(u,v) in D(Pn) with d+(l(u,v))≥(n-2)(n-

3)/60.  Using the same arguments as for Lemma 4.3, we can obtain the following  corollary.

Corollary 4.2 [27]: The average out-degree d+(l(u,v)), l(u,v)ŒV(D(Pn)) is greater than or

equal to (n-2)(n-3)/60.

For a pair of points   u, v ŒPn,  let C(u,v) be the minimum number of points of Pn that are
contained in any circle containing  u  and  v.  Let A(Pn) be the average over all C(u,v), u,vŒPn.
A result which is much stronger than Theorem 4.1 now follows:

Theorem 4.2 [27]: A(Pn) ≥  (n-2)/60 .

Theorem 4.1 was later improved by R. Hayward, D. Rappaport and R. Wegner [22]. They
proved that A(Pn) ≥  n/27.  R. Hayward has improved this result even further; in a very nice way
he proved:

Theorem 4.3 [21]: For any collection Pn  of  n  points on the plane, there exists a pair of
points uo, vo such that any  circle containing them contains at least È5(n-2)/84˘ points of Pn.

Theorem 4.2 was recently improved and generalized to higher dimensions. The next result,
given without proof, is proved in [2]. Let r=n+3, m=Œn+3˚/2 and cn=[m! (r-m+1)!]/r! .

Theorem 4.4 [2]: For each n≥1 there is cn>0 such that for any finite set X of Rn there is a
subset  A  of X of cardinality |A|≤(n+3)/2 such that any n-ball B containing A contains at least
cn⋅|X| elements of X.

This result seems to be optimal in a strong way. Let ß(t) = (t, t2,…,tn)   and Pm = {ß(ti);
0<t1<t2<…<tm} .  ß(t), called the momentum curve, was first discovered by Carathéodory [5],
[6].  In [17] (pages 61- 62) the following result is proved:



Theorem 4.5: For any k-pointed subset A of Pm,  k ≤ Î(n+3)/2˚  there exists a supporting
hyperplane H of the convex hull of Pm such that H«Pn = A.

As a consequence of this result, we can easily prove the following:

Theorem 4.6 [27]: For any subset A of Pm with |A| ≤Î(n+1)/2˚, there exists a 2d-dimensional
sphere S(A) containing all elements of A such that S(A) «Pn= A .

An interesting subproblem occurs when the elements of Pn are the vertices of a convex
polygon. The next result was proved in [27]:

Theorem 4.7 [27]: Let Pn be the vertices of a convex polygon.  Then there exist two vertices
u  and  v  of Pn such that any circle containing them contains at least (n-2)/4 elements of Pn.

In the same paper the following problem was stated:

Problem 4.1: Show that in any convex polygon P with  n  vertices, there exist two opposite
vertices  u  and  v  such that any circle containing them contains at least half of the vertices of P.

In [22] it was proved that the bounds stated in Problem 4.1 were incorrect. The next results
were proved:

Theorem 4.8 [22]: Let Pn be the vertices of a convex polygon.  Then there exist two vertices
u  and  v  of Pn such that any circle containing them contains at least n/3 elements of Pn. This is
best possible.

J. Schmerl proved the following result independently:

Theorem 4.9 [37]: Let  P  be a convex (3n+1)-gon.  Then there exist two vertices  u  and  v  of
P  such that any circle containing them contains at least  n+2  vertices of  P.

Proof: Let  X  be the set of vertices of  P.  For  x,y Œ  X, let  (x, y)  be the points of  X
between  x  and  y  (in the counterclockwise direction).  If there are  u,v Œ X  and a circle  C
through  u  and  v  such that  X  is contained in  C  and such that |(u, v)| ≥ n  and  |(v, u)| ≥ n, then
we are done, as any circle through  u  and  v  will contain either  (u, v)  or  (v, u)  as a subset.



Choose  u, vŒ X  and circle  C  through  u  and  v  containing  X  such that |(u, v)| < |(v, u)|
and  |(v, u)|  is minimal.  Clearly |(v, u)| ≥ 2n  (for otherwise |(u, v)| ≥n  and we are done).
Therefore there is  wŒ(v, u)  and a circle  C  through  u, v, w  containing  X.  Without loss of
generality, suppose |(v, w)|  ≥ n,  so |(w, v)|  < n.  But this implies |(w, v)| < |(v, w)| < |(v, u)|,
contradicting the minimality of |(v, u)|.

 []

4.1  Generalization of Points and Circles

A natural question arises from Theorems 4.1 and 4.2, namely: Is Theorem 4.1 or 4.2  a
characterization of the circle?

Formally speaking, given a closed curve S, we denote by W(S) the set of all curves on the
plane homotopic to S (for instance if E[a,b] is an ellipse with minor and major axis  a  and  b
respectively, then W(E) is the set of all ellipses E'[x,y] with minor and major axis  x  and  y
respectively such that x/y=a/b).

Let Pn be a collection of points on the plane, u,vŒPn. We define S(u,v) to be the minimum
number of elements of Pn (different from u  and v) contained within any curve S'Œ W(S)
containing  u  and  v.  Thus if S is a square, S(u,v) is obtained by finding a square containing  u
and  v  which contains as few points of Pn as possible. When C is a circle, C(u,v)  coincides with
the definition of C(u,v) given before Theorem 4.2. Finally, we define A(S,Pn) to be the average
value of S(u,v) taken over all pairs {u,v}  contained in Pn.

Theorems 4.1 and 4.2 could now be restated as follows:

Theorem 4.1': For any collection Pn  of n points on the plane, there exists a pair of points uo,
vo such that  C(uo, vo)≥ (n-2)/60.

Theorem 4.2': A(C,Pn) ≥ (n-2)/60.

We can now state the following conjectures:

Conjecture 4.1: Let S be a closed curve such that for any  collection Pn of points, there are
u,vŒ Pn such that  S(u,v)≥n⋅c, c>0. Then S is a circle.



Conjecture 4.2: Let S be a closed curve such that for any  collection Pn of points A(S,Pn)≥n⋅c,
c>0. Then S is a circle.

At first glance, one might suspect that the results stated in Theorem 4.1' and 4.2'  must hold
for some curves S which are not circles. For instance if E[a,b] is an ellipse which is almost a
circle, i.e. if a/b=1-e, e sufficiently small, our intuition tells us that for any Pn,  A(E[a,b], Pn)≥ n⋅c,
c>0. This, as we shall prove later, is not the case. In fact we will prove:

Theorem 4.10 [33]:  Let E[a,b] be an ellipse which is not a circle. Then there are collections
of points Pn such that  A(E[a,b], Pn )=0.

The following lemma, given without proof, will trivially imply Theorem 4.10.

Lemma 4.4 [33]: Let E=E[a,b] be an ellipse which is not a circle, u,v two points on a circle C.
Then there exists an ellipse E'Œ W(E) such that E'«C={u,v} .

Proof of Theorem 4.10: Let Pn be any set of  n  points on a circle. By Lemma 4.4, for any
u,vŒ Pn, there exists  E'Œ W(E) such that E'«C={u,v} . Then E(u,v)=0. This proves that
A(E,Pn)=0.

 []
Using techniques similar to the ones we used in Theorem 4.10, we can prove that A(S,Pn)=0

for the case when S is an n-sided polygon. In fact, for all closed curves S we have analysed, we
have always been able to prove that A(S,Pn)=0.

5. TWO CHARACTERIZATIONS OF THE CIRCLE

To finish this paper, we will present two characterizations of the circle. These results were
motivated by the results previously obtained in this paper.

 In Problem 3.1 we ask if crossing number 2 is a characterization of circle orders. A way to
attack this problem is to determine first if there is another family of curves F homothetic to a
closed curve C for which we could obtain, under a containment relation, partial orders with
crossing number 2. The reason why the crossing number of circle orders is at most two is a
consequence of the following property:

P1: Any two different circles intersect in at most two points.



It is thus natural to ask for the existence of another closed curve C for which the following
property holds:

P2: Let C' be any curve homothetic to C, C≠C'. Then C intersects  C' in at most two points.
We can now state our first characterization of the circle:

Theorem 5.1: Let C be any curve that satisfies P2, then C is a circle.

Our second characterization is motivated by Lemma 4.1 and Conjecture 4.2. In Lemma 4.1 we
prove that for any four points  u, v, x, y   in the plane such that l(u,v) and l(x,y) intersect, any
circle containing  u  and  v  contains at least one end point of l(x,y) or any circle containing  x
and  y  contains at least one end point of l(u,v). It is not hard to prove that if Lemma 4.1 were true
for a family of curves homothetic to a curve C not a circle, then Conjecture 4.2 would be false.
Thus for Conjecture 4.2 to make any sense, we need to prove that Lemma 4.1 is indeed a
characterization of the circle.

Theorem 5.2: Let  u, v, x, y  be any four points in the plane such that l(u,v) and l(x,y)
intersect.  Let F be a family of curves homothetic to a curve C which satisfies: any element C' of
F containing  u  and  v  contains at least one end point of l(x,y) or any C' in F containing  x   and
y  contains at least one end point of l(u,v). Then C is a circle.

The proofs of these results will be given in a forthcoming paper.
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