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Abstract

A set S of light sources,  idealized as points,  illuminates a collection  F  of convex sets if
each point in the boundary of the sets of  F  is visible from at least one point in  S.  For any  n
disjoint plane isothetic rectangles,  Î(4n+4)/3˚  lights are sufficient to illuminate their
boundaries.  If in addition,  the rectangles have equal width,  then  n+1 lights always suffice and
n-1 are occasionally necessary.  For any family of n plane triangles,  Î(4n+4)/3˚   light
sources are sufficient.  For collections of  n  homothetic triangles,  n+1  light sources are
always sufficient and  n-1  are occasionally necessary.
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1.- Introduction
Let  F  be a collection of  n  disjoint  compact convex sets in the plane.  A set  L  of light

sources,  idealized as points in the plane,  is said to illuminate  F   if every point in the boundary of
each set in  F  is visible from at least one point of  L ;   that is,  if for each point  x  in the boundary
of every  set in  F,  there is  a point  y  of  L,  such that the segment   xy   meets the union of the sets
in  F   exactly  in  {x}.

How many light sources are sufficient to illuminate  F ?  This question is closely related to
the classical Art Gallery Theory,  where a typical problem is to determine how many guards are
sufficient to protect objects on the  n  walls of a polygonal art gallery.  For a survey of results in the
Art Gallery Theory the reader may wish to consult [4].

In [2],  L. Fejes Toth proved that  4n-7  lights are always sufficient to illuminate  n  disjoint
compact convex sets in the plane.  In this article we consider the particular case where the sets are
isothetic rectangles,  as well as the case in which the sets are triangles.

We show that  Î(4n+4)/3˚  lights are always sufficient to illuminate  n  disjoint isothetic
rectangles.  If,  in addition,  the rectangles are required to have equal width,  then  n+1  lights suffice
and  n - 1  are occasionally necessary.  For  n  triangles,  we prove that  Î(4n+4)/3˚  light sources
are always sufficient and for any collection of  n  pairwise homothetic triangles,  n + 1  lights
suffice and  n - 1  are occasionally needed. The bounds presented in this article for the general
cases of arbitrary isothetic rectangles and arbitrary triangles are not tight. The best lower bounds
that we now,  coincide with the ones given for the restrictive cases of isothetic rectangles with equal
width and homothetic triangles.

 Two sets  A  and  B are homothetic if there is a positive constant  t  and a point  x,  such that  
B =  x + t A.  A set of rectangles is said to be isothetic if all their sides are parallel to the coordinate
axis.

2.- Illuminating Rectangles

Consider a collection  F = {R1,...,Rn}  of  n  disjoint isothetic rectangles in the plane.
Assume they are contained in a big rectangle  R.  Let  R'1,...,R'n  be maximal rectangles with
pairwise disjoint interiors such that  R ⊇ R'i ⊇ Ri   for  i=1,2,...,n. See  Figure 1.  The rectangles
R'1,...,R'n  induce a partition  π = π(R, R'1,...,R'n)  of  R.  Notice that,  in addition to the rectangles
R'1,...,R'n, the partition  π  may contain some rectangular regions  R'n+1,...,R'n+h,  none of which
includes any of the rectangles in  F.   We shall call these regions holes of  π.
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Figure 1

Let us define a graph  G(π),  associated with the partition  π  in the following way:  the
vertices of  G(π)  are the corners of every region in  π.  Two vertices  u   and v   are adjacent in
G(π)  if they are joined by a line segment  s(uv),  contained in the boundary of some region  Ri,
and such that no other vertex of  G(π)  is included in  s(uv) .  Notice that the number of vertices in
G(π)  is  2n + 2h + 2.

Theorem 1.  Let  F  = {R1,...,Rn}  be a collection of  n  disjoint isothetic rectangles.  Let  R,
R'1,...,R'n,  π = π(R, R'1,...,R'n)  and  G(π)  be defined as above.  If the partition  π  contains no
holes,  then  F  can be illuminated with at most  Î(4n+4)/3˚  lights.

Proof -  Starting at any corner of  R,  the graph  G(π)  can be dismantled by deleting,  one at a time,
vertices of degree at most two.  This shows that  G(π)  is a 3-vertex colourable graph.  Take a  3-
colouring of  G(π)  and place a light at each vertex in the two less popular chromatic classes.  There
are at most  Î(4n+4)/3˚  such vertices.  

Each edge of  G(π)  has a light in at least one of its end points.  Let  S  be a side of a
rectangle  Ri  and let  S'  be the corresponding side of  Ri'.  At least one edge  e  of  G(π)  is
contained in  S' and there is a light placed at least at one end point of  e.  Clearly this light
illuminates S.

®



If  π = π(R, R'1,...,R'n)  contains  h  holes,  the graph  G(π)  has  2n + 2h + 2  vertices.  In
this case,  the  proof of Theorem 1 would give a set of  Î(4n+4h+4)/3˚  lights that illuminates
R1,...,Rn.  In Theorem 2,  we adapt this proof by eliminating the holes in  π  to form a partition  π',
whose corresponding graph  G(π')  has  2n + 2  vertices.

An extension of theorem 1 is the following stronger result.

Theorem 2.  For any collection F  of  n  disjoint isothetic rectangles,   Î(4n+4)/3˚   lights are
sufficient to illuminate  F.

Proof -  Let  F  = {R1,...,Rn}  be a collection of  n  disjoint isothetic rectangles.  Let  R,  R'1,...,R'n,
π = π(R, R'1,...,R'n)  and  G(π)  be defined as above.  Let  h  denote the number of holes in  π.

Each hole  H=H(R'i1,R'i2,R'i3,R'i4)  of  π  is  bounded by  four regions,  say   R'i1, R'i2, R'i3
and R'i4,  such that for  j = 1,  2,  3  and  4,  the region  R'ij  has a vertex  v(R'ij)  that lies in the
boundary of  R'ij+1.  A  rectangle  Rij,  in a hole  H,  is said to be exposed with respect to  H  if the
straight line that contains one of its sides crosses  H.  Otherwise  Rij  is retracted with respect to  H.
In the holes illustrated in Figure 2,  Ri2  is retracted,  while  Ri1,  Ri3  and  Ri4  are exposed.
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Figure 2

If every hole is eliminated,  by inserting one of its two diagonals and deleting the
corresponding edges as in Figure 3,  then  π  is modified to a  partition  π* = π*(R, R1*,...,Rn*)  of
R  into  n  polygonal regions  R1*,...,Rn*,  not necessarily convex,  such that  for  i=1,2,...,n,  
R ⊇ Ri* ⊇ Ri' ⊇ Ri.



Figure 3

 A graph  G(π*)  may be defined in the same way as  G(π).  Independently of the choice of
the diagonal used to eliminate each hole,  the  graph  G(π*)  contains  2n + 2  vertices and is  3-
vertex colourable.

We want the diagonals to be such that every rectangle  Ri  is illuminated whenever lights are
placed such that every edge of G(π*) has a light in at least one of its vertices.  To assure this we
have the following rules to chose the diagonal to eliminate a hole  H = H(R'i1,R'i2,R'i3,R'i4).  

a)  If one, but not all of the rectangles  Ri1, Ri2, Ri3  or  Ri4  is exposed with respect to  H,  then
there is an exposed rectangle,  say  Ri1,  followed by a retracted rectangle  Ri2.  Insert the 

dia
gonal of  H  whose end points are  v(R'i2)  and  v(R'i4)  and delete the segments joining 

v(R
'i1)  to  v(R'i2)  and  v(R'i3)  to  v(R'i4);  see Figure 4. Notice that,  since each hole is bounded by
exactly four regions,  whenever the two pairs of regions that bound a hole correspond to an
exposed rectangle followed by a retracted one, the same diagonal is to be inserted; therefore rule
(a) is well defined.

b)  If the rectangles  Ri1, Ri2, Ri3  or  Ri4  are all exposed or all retracted,  insert any of the two

diagonals and delete the corresponding edges.
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Modify  π  to  π*,  by eliminating the holes in  π,  using rules  (a)  and  (b)  and let  G(π*)
be the corresponding graph.  Take a  3-colouring of  G(π*)  and place a light at each vertex in the
two less popular chromatic classes.  Since  G(π*)  has  2n+2  vertices,  then the number of lights is
at most  Î(4n+4)/3˚.   We claim that every rectangle  Ri  is entirely illuminated.

Suppose that for some   Rij,  one of its sides,  say  S,  is not entirely  visible from both end
points of any edge  of G(π*)  that is contained in the boundary of  Rij*.  Without loss of generality
assume  S  is the top side of  Rij.  Let  L  be the horizontal side of   Rij*  that lies above  S.  At least
one of the end points  of  L  must be obstructed from  S, say u ;  see Figure 5.
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 The point  u   must be an end point of a diagonal  uv   inserted when a hole  H  was
eliminated,  otherwise  S  would be entirely visible from  u .  Moreover,  Rij must be retracted with
respect to  H  and by  (a)  and  (b),  the rectangle  Rij-1  that precedes  Rij around the hole  H,  must



also be retracted.  Then  Rij-1  cannot be an obstruction between  u   and  S,  therefore such

obstruction must come from another rectangle  Rk,  as in Figure 5.  Notice that the lower side of the
region   Rij-1*  must then intersect  Rij *  in a point  w   that lies above  S˙  This leads to a

contradiction since now  S  would be entirely visible from the two end points of the edge vw.   This
ends the proof. ®

If in addition,  the rectangles are required to have equal width,  then we can improve the result
to the following:

Theorem 3 -  For any collection of  n  disjoint isothetic rectangles with the same width,  n+1  lights
are sufficient to illuminate them.

Proof -  Let  R = {R1,…,Rn} be a collection of  n  disjoint isothetic rectangles with the same width,
and let  L  be a line above all of the rectangles in R.

Extend the vertical sides of each  Rj,  upwards,  until they either reach   L  or they reach
another rectangle  in  R.  For each  Rj  a polygonal region  Sj  is  defined;  it is bounded by the top
side of  Rj,  some segments of bases of other rectangles in  R   and some segments of the extended
sides.  It is easy to see that since all the rectangles Rj have the same width, then all of the regions Sj

are star-shaped;  see Figure 6.
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 To illuminate each of the star-shaped regions  Sj,  a single light source is sufficient,  placed
near the top side of  Rj,  directly below a point in the top horizontal side of  Sj,  see Figure 6. At this
point,  all points in the boundaries of  R1,…,Rn,  contained in the boundary of some  Sj,  are
illuminated.  The reader may verify that two extra lights suffice to illuminate all the boundary points
of  R1,…,Rn  which are not located in any of the star-shaped regions Sj. These two lights should be
placed far enough below, one of them to the left of the collection  R   and the other to the right.

Observe that at least one of the  n+2  lights used to illuminate the collection may be saved in
the following way. Let  t  be the number of rectangles whose top sides are completely exposed from
above;  if  t ≥ 2 then all of the  t  highest lights may be replaced by a single one placed far enough
above L.  When t = 1, let  Ri1 ,  Ri2   and Ri3 be the rectangles with the highest top sides, in that
order. The three lights used to illuminate the star-shaped regions  Si1, Si2 and Si3  may be replaced
by two lights: one placed in the line  L,  far enough to the left,  and the other placed on the line that
supports the top side of Ri3, far enough to the right.

®

The following example illustrates that occasionally   n-1  lights are required to illuminate  n
isothetic rectangles with equal width.

...

Figure 7

3.- Illuminating Triangles

In this section we consider collections of arbitrary plane triangles and collections of pairwise
homothetic plane triangles. We shall prove the following results.

Theorem 4 .- Any  family  H  of  n  disjoint plane triangles can always be illuminated with at most
Î(4n+4)/3˚  lights.



Theorem 5 - For any collection of  n  disjoint pairwise homothetic triangles in the plane,  n + 1
lights are always sufficient to illuminate them.

The main idea in our proofs is to create a convex partition  π  of the complement of the union
of the triangles,  such that a large number of disjoint pairs {Ri, Rj} of adjacent regions of π may be
matched. The triangles can be illuminated by placing a light source in  Ri«Rj for each pair {Ri, Rj}
of matched regions and one source of light for each unpaired region. Two well known results in
matching theory will be used in the proofs.

Theorem N ( T . Nishizeki, [3]).- If G is a planar 2-connected graph with m vertices and minimum
degree at least three,  then for all  m≥14,  G has a matching of size at least   Î(m+4)/3˚ and for
m<14,  G has a matching of size  Îm/2˚.

Theorem T ( W. T. Tutte, [5]).- Let G be a graph with 2m+1 vertices. If for every subset S of
vertices, the number of connected components of G-S,  with an odd number of vertices,   is at most
|S| + 1,  then G has a matching of size m.

Proof of theorem 4.  Let  H={T1,...,Tn}  be a family of  n  disjoint  triangles. Add three triangles
Tn+1, Tn+2  and  Tn+3,  together with three rays L3n+1 , L3n+2 and L3n+3 and six line segments
L3n+4,...,L3n+9,   as shown in Figure 8;  they are chosen such that for  i=1,2,...,n,  each  Ti  lies
within the hexagonal region bounded by  Tn+1, Tn+2, Tn+3, L3n+7, L3n+8 and L3n+9. The reader may
notice later that these triangles are added to facilitate the use of Nishizeki's theorem.
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Figure 8

Let  F  denote the collection {T1,...,Tn+3}  and let  T  be the union of all triangles in  F.  A
convex partition  π = π(F,  L1,...,L3(n+3))  of  R2/T  may be obtained as follows:  one at a time,
consider the vertices of the  triangles  T1,...,Tn.  When the vertex  pi  of the triangle  Ts  is being
considered,  draw a line segment Li  with an end point at  pi,  within the open angular region
Ang(pi)  which is defined by the extension of the sides of  Ts  incident in  pi.  The line segment Li
extends until it either reaches another triangle Tr  or it reaches a previously drawn line segment Lj.
See  Figure 9.

Lj

pi

Ts

Li

pi

Ts

Tr

Li

Figure 9

The partition  π = π(F, L1,...,L3(n+3))  depends on  L1,...,L3(n+3).  In all cases,  there are   
2(n+3) + 1  regions  R1,...,R2(n+3)+1  in  π.  Observe that two adjacent edges of a region  Ri  may be
collinear,  nevertheless,  they are considered as different edges. Let us define an adjacency graph  D
= D(π)  in a natural way:  there is a vertex  vi  in  D  for each region  Ri  and an edge  vivj  whenever
the boundaries of  Ri  and  Rj  have an edge in common.

The triangles T1,..., Tn+3  are disjoint,  hence regardless of the choice for the line segments
L1,...,L3n,  if a region  Ri  of π  has m≥5 edges, then Ri  shares an edge with at least three other
regions and thus has degree at least three in D(π).  We shall show that the line segments  L1,...,L3n
can be chosen in such a way that each region  Ri  has degree at least three in  D(π). Some
definitions will be useful.

For  m=1,2,...,3n,  let  πm  denote the partition of  R2/T  obtained when the line segments
L1,...,Lm,  have been drawn.   For a vertex  p  of a triangle  T,  we say that a triangle  T',  an edge  E
of a triangle  T' or a line segment  Lt  is  blocking  p   in  πm,  if every point in Ang(p),  which is
visible from p,  lies in  T',  E  or  Lt,  respectively.  A line segment  Lt,  with  t ≤ m  is a  special line
segment,  if its origin is a vertex  p  that is blocked in  πm  by an edge of a triangle.  Notice that,  for



any pair of triangles  Ti   and  Tj,  if an edge of  Tj  blocks a vertex of  Ti,  then no edge of  Ti
blocks any vertex of  Tj.

Suppose the line segments  L1,...,Li-1  have been chosen in such a way that the corresponding
partitions  π1,..., πi-1,  satisfy the following conditions:
i)    No region  of  πj  has exactly three edges.  
ii)   If a  region  RiŒ πj  has exactly four edges,  then  Ri  has an edge in common with three other           
regions in  πj.   
iii)  For each  j=1,2,...i-1,  either  Lj  is a special line segment or there is a line segment  Lm  with           
m<i  such that one of the line segments  Lj  and  Lm  hits the other .

We may assume also that no line segment  Lj,  with  j<i,  reaches a triangle at a vertex.  Let  p
be a vertex of a triangle  T  such that no line segment  Li  has yet been drawn from p.  To chose  Li,
several possibilities will be considered:

Case 1 -  Throughout this case,  no point  y  visible from  p,  with y ŒAng(p),   is contained in any
line segment  Lt,  such that  t < i.        

a) If  p  is blocked in  πi-1  by an edge  E  of a triangle  T',  then let  x  be a point in  E«Ang(p),  x
visible from  p,  and let  Li  be the line segment joining p and x;  see Figure 10.
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b)  If  p  is blocked in  πi-1  by a triangle  T'  but is not blocked by any edge of  T',  then there is a
vertex  q  of  T',  with  q Œ Ang(p)  which is visible from  p.  Since  T'  blocks  p,  then no line
segment  Lt  has been drawn from  q.  Let  Li+1  be a line segment drawn from  q,  within  Ang(q),
such that  Li+1  does not reach  T;  this is possible since  T  cannot block  q.  Now let   Li   be a line
segment joining  p  with a point  xŒLi+1«Ang(p),  x  visible from  p;  see Figure 11.
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c) If  p  is not blocked in  πi-1  by any triangle in  F,  let  q  be a vertex of a triangle  T',  closest to  p
with the following properties:  the point  q  is visible from  p,  qŒAng(p)  and q  is not blocked in
πi-1  by  T.  Such a vertex exists since  T1,...Tn  are surrounded by  Tn+1,  Tn+2, Tn+3  and
L3n+1,...,L3n+9.  Let  Li  be any line segment drawn from  p,  going through a small neighborhood
of  q,  and let  Li+1  be a line segment drawn from  q,  within  Ang(q)  that reaches  Li;  see Figure
12.
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Case 2 -  Some line segment  Lt,  with  t<i,  has a point   y Œ Ang(p),  y  visible from  p.

a)  If  p  is blocked in  πi-1  by  Lt,  then let  Li  be a line segment drawn from  p,  within Ang(p),
and such that  Li  reaches  Lt;  see Figure 13.
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b) If  p  is not blocked in  πi-1  by  Lt  and  Lt  does not reach T,  then proceed as in Case 2a.

c) Every  line segment  Lt  that has a point  y,  visible from  p,  with  y Œ Ang(p),  is such that  Lt
reaches  T.  Let  Ls  be the line segment in  L1, ...,Li-1  that has the closest point in
Ang(p)«(L1»,...,»Li-1)  that is visible from p.

c')  If  Ls  is not blocked in  πi-1  by  T,  then  Ls  is not a special segment,  by  (iii)  there must be at
least one other line segment  Lm  such that  Lm reaches  Ls  in a point  r≠q.  Let  x  be a point in  Ls
between  q  and  r;  note that  x  must be visible from  p.  Let  Li  be the line segment  px;  see Figure
14.
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c'') If  T  blocks  Ls  in  πi-1,  let  T' be the triangle where  Ls  originates.  Observe that  T' must lie
completely within  Ang(p),  in particular another vertex  q'  of  T'  is visible from  p;  proceed as in
cases  (1c)  or  (2a),  whichever applies with  q'  in place of  q.

Cases  (1a),  (1b),  (1c),  (2a),  (2b),  (2c')  and  (2c'')  cover all possibilities.  In each case,  the
line segment  Li  is either a special line segment,  it reaches a line segment  La  or is reached by a
line segment  Lb.  When  Li+1  is chosen together with  Li,  one of them reaches the other.  No



region with only three edges is created and if any region of  πi  has exactly four edges,  then it has
three neighbors in πj.

By induction all line segments L1 , L2 ,..., L3n+3  may be chosen such that they satisfy (i), (ii)
and (iii).

Let  D = D(π)  be defined as above. D  has minimum degree at least three;  it is clear that  D
is  2-connected and planar.  By Nishizeki's result,  D  has a matching  M  of size at least
È((2(n+3)+1)+4)/3˘ = È(2n+11)/3˘.

For each pair  {Ri, Rj}  of regions matched by  M,  place a light source in  Ri«Rj.  Add one
source of light for each unmatched region.  This gives a set of   (2(n+3)+1) - È(2n+11)/3˘  =
Î(4n+10)/3˚   light sources that entirely illuminates the regions  R1,...,R2n+7.  In particular, the
boundary of each triangle in  F   is illuminated.

Finally,  notice that at least two lights are placed within the closure of the three unbounded
regions of π;  since this regions do not meet the hexagonal region bounded by  Tn+1, Tn+2, Tn+3,
L3n+7, L3n+8 and L3n+9, then at least two of the Î(4n+10)/3˚  lights are not needed to illuminate the
original collection.

®

For collections of homothetic triangles we make a similar construction; there we can find a
matching of size n+3 in the corresponding graph D(π) by using Tutte's theorem.

Proof of theorem 5 -  Let  T1,...,Tn  be disjoint pairwise homothetic triangles. Add three
homothetic triangles  Tn+1, Tn+2  and  Tn+3,  together with six rays L3n+1 , L3n+2 ,..., L3n+6 and three
line segments  L3n+7, L3n+8 and L3n+9,   as shown in Figure 15. They are chosen such that for
i=1,2,...,n,  each  Ti  lies within the hexagonal region bounded by  Tn+1, Tn+2, Tn+3, L3n+7, L3n+8 and
L3n+9.  
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 Figure 15

Let  T  be the union of  T1,...,Tn+3.   A convex partition  π = π(T1,...,Tn+3)  of   R2\T  may be
obtained as follows:  consider the vertices of the triangles  T1,...,Tn   one at a time.  When  a vertex
pi of a triangle Tt is being considered,  draw a directed line segment  Li  with an end point  in pi and
extending one of the sides of the triangle that meet at pi. See  figure 16.

Figure 16

 Each side is extended until it either reaches another triangle or it reaches a previously
extended side. See figure 17.

The  partition  π  contains exactly  2(n+3)+1  regions  R1,R2,.....,R2n+7. Observe that two
adjacent edges of a region  Ri  may be collinear,  nevertheless,  they are considered as different
edges.  Define the adjacency graph     D = D(π)  as in theorem 4. We claim that  D  satisfies the
conditions on Tutte's theorem.   In fact,  we shall prove that the total number of connected
components of  D-S  is at most  ˙S˙+1. For this purpose, we use a counting argument which was
used in a similar connection in [1].



For each set  U ={v1,...,vu}  of vertices of  D  let   U = {R1,...,Ru} be the  corresponding set
of regions in  π.   A component  C  of  D-U,  containing some vertices vi1,vi2,...,vir  of  D

corresponds to the  connected region  C   formed by the union of the corresponding regions
Ri1,Ri2,.....,Rir.  We shall call  C  a component of  R/T.

Let us specify certain vertices and edges of the regions and components.  A  corner   of a
region  Ri  (or component C)  is a vertex of  Ri  (of C),  where two directed line segments  Ls  and
Lt  meet in opposite directions,  as seen from inside  Ri  (from C).  Note that the point where a line
Ls  meets a triangle  Tj  is not a corner .  For instance,  in Figure 10,  u   is a  corner of  Ri  but is not
a corner of  Rk,  while v   is a corner of  Rh  but not of  Ri

A  side   of a region  Ri  (or component C)  is an edge of  Ri  (of C),  completely contained
in a line segment or ray  Ls  and such that none of its end points is a corner of  Ri  (of C).  Note
that the edges of T1,...,Tn+3  are not part of any sides.  In Figure 10,  l   is a side  of  Ri  but is not a
side of  Rh,  while m  is a side of both  Ri  and  Rj.
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Figure 17

Each of the unbounded regions  Ri1, Ri2  and  Ri3  of π,  identified in Figure 18,  has two

sides and no corners. Each other region  Ri  contains  exactly three sides or corners.  Each
component  C,  which is not by itself one of the regions   Ri1, Ri2  or  Ri3,  contains at least three

sides or corners.
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Let  S  be a set of  s  of the regions  R1,...,R2n+1;  without loss of generality,  we may assume
S = {R1,...,Rs}.  Delete,  from  R2/T,  the regions in  S   and denote by  W0  the set of components
hereby  obtained.  The total number  ß0  of  sides and corners among the elements of W0   is  at least
3t - 3,  where  t =˙ W0˙.  Replace the regions  R1,...,Rs  one at a time.  For  
i = 1,2,...,s,  let  Wm   denote the set of components  obtained after the regions  R1,...,Rm  have been
replaced and let  ßm  be the number of  corners and sides among the elements of  Wm .  

Notice that at the  mth  step,  several components may be joined by  Rm  but the difference
between  ßm-1  and  ßm   does not exceed  3  since at most one corner (side) is lost for each corner
(side) of  Rm.

Clearly  ßs = 0  since  Ws = {R2/T}.  Thus  s  must be large enough so that   3s ≥ 3t - 3   and
therefore   t  ≤  s+1  as claimed.
 Let  M  be a matching of  D  with size  n+3.  For every pair  {Ri, Rj}  of regions matched by
M,  place a light source in any point in  Ri « Rj. This light illuminates both regions since they are
convex.  Complete the set of lights by placing a source inside the sole unmatched region.  Notice
that at least two lights are placed within the closure of the three unbounded regions of π;  since this
regions do not meet the hexagonal region bounded by  Tn+1, Tn+2, Tn+3, L3n+7, L3n+8  and L3n+9,
then at least two of the n + 3 lights are not needed to illuminate the original collection.

®



We end this article by describing a collection of  n  pairwise homothetic triangles for which
at least  n-1  lights are required:

Let  T1, T2  and  T3  be mutually tangent triangles. Insert a triangle  T4  in the gap bounded
by  T1, T2  and  T3 .  Three gaps are now created;  in each gap insert a triangle so as to create nine
new gaps.

Continue inserting triangles until  3k  gaps are created.  In the final step,  insert triangles
S1,S2,...,S3k,  one in each gap and add three triangles  S3k+1, S3k+2  and  S3k+3  outside  T1, T2  and
T3.  Finally,  shrink all triangles by an amount,  small enough,  so that no light source may
illuminate more than two of the  3(3k+3)  edges of the triangles  S1,S2,...,S3k+3.  The number of
triangles in the collection is  n = 3+1+3+....+3k-1+(3k+3)  =  (3k+1+11)/2,   and the number of
lights needed is  m ≥ (3( 3k+3 ))/2 = n-1.  Figure 19  illustrates the collection with  k=2.

T1

T 2

T 4T 3

Figure 19

4.- Conclusions and remarks.

The bounds presented in this article for the general cases of arbitrary isothetic rectangles and
arbitrary triangles are not tight. We believe that there are constants c1 and c2  such that  n+c1 lights
are always sufficient to illuminate a collection of n isothetic disjoint rectangles,  and n+c2 are
always sufficient to illuminate n disjoint triangles. The best lower bounds that we now,  coincide
with the ones given for the restrictive cases of isothetic rectangles with equal width and homothetic
triangles.



Our definition disallows illumination by grazing contact. An alternative definition would
permit a point x to illuminate a point y if the line segment xy intersects the boundary of some set in
F, but does not meet the interior of any set in F. Clearly all the results in this article remain valid
under this alternative definition;  nevertheless, it is posible that with this definition tighter bounds
may be found.
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