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Although it is not yet well understood, the most commonly used graphical scheme to
represent an ordered set is a diagram.  For elements a and b in an ordered set P, say that a
covers  b  or  b  is covered by  a, and write a>-b,  if a > b  and, for each x in P, a > x ≥ b
implies  x=b.  A diagram of  P  is a pictorial representation of  P  on the plane in which
small circles, corresponding to the elements of   P, are arranged in such a way that, for a
and  b  in  P,  the circle corresponding to  a  is higher than the circle corresponding to b
whenever  a > b and a line segment is drawn to connect the two circles just if a covers b.
Although any diagram determines the corresponding ordered set, there is considerable
variation possible in the pictorial realization of it. In fact, we may even (and often do)
relax the requirement that straight line segments connect circles, by using monotonic
curves, that is, curves on which no two distinct points have the same second coordinate
(see Figure 1(c)).

Diagrams of the lattice       of all subsets of a three-element set, ordered by set inclusion.23
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                                                                     Figure 1
Closely related to the diagram of P is its covering graph which is the graph whose

vertices are the elements of P and with an edge joining two vertices a and b just if a



covers b or  b  covers  a.  A covering graph may have many "orientations', that is, there
may be (and usually are) many different ordered sets with the same covering graph.
Unlike the diagram there are no monotonicity constraints at all on the edges joining
vertices in the covering graph.  (See Figure 2.)
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Figure 2

 As for diagrams, it is common to identify a pictorial representation of the covering
graph with the covering graph itself.  Thus, a (covering) graph is planar if it has a
representation (drawing) in which no edges intersect, except possibly at their endpoints.

It is a major unsolved problem to characterize the covering graphs of ordered sets [9],
although it is now known that the problem of recognizing graphs which are diagrams is
NP-complete [J. Nesetril and V. Rödl (1986)]. The problem to enumerate or describe the
orientation of a covering graph is also unsolved. A specific variation of this problem is to
describe an invariant of the covering graph, that is, a (nontrivial) property which, if
satisfied by an ordered set is also satisfied by any orientation of its covering graph (cf.
[3], [8]).  Our main result draws a connection between a property of the covering graph
and a property of the order.

For an ordered set P, we consider order subsets Q of  P, that is, subsets of P with the
ordering induced from P. We also say  Q  is an order contained in P, or even just "subset"
of  P.  This containment relation for orders does not, however, correspond to the usual
(induced) containment relation for graphs.
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The few known advances bearing on covering graphs concern lattices, that is, ordered
sets in which, for each pair a, b of elements, both the supremum a+b and the infimum a.b
exist (cf. [1], [4], [10]). A frequent sufficient condition is that the ordered set be a
truncated lattice, that is, after adjoining a top and a bottom element, it becomes a lattice.
Of course, any lattice is itself a truncated lattice.  Here is our main result.

Theorem.  Let P be a finite ordered set with planar covering graph and let cov(P) be a
planar representation of it. Let L be a truncated lattice contained in P. Then the covering
graph of  L  has a representation  cov(L)  in which, whenever  b  covers  a  in  L , the
edge joining   a  to  b  may be taken as a curve following some covering chain in  P  from
a  to  b. Moreover, this representation  cov(L) is planar, too.

Our main result has several striking consequences.
Quite some time ago D. Kelly announced the following, apparently similar, result (cf.

[5]). A diagram is planar  if no edges joining covering pairs intersect except possibly at
their endpoints.

Corollary 1.  Let P be a finite ordered set. If P has a planar diagram then any truncated
lattice contained in P has a planar diagram too.

On the other hand, this result fails for arbitrary ordered subsets contained in P, for the
ordered set {a, b, c, e, f, g}  of Figure 3 is a subset of the planar ordered set P yet it is not



planar.

We hasten to mention that a graph with a planar representation also has a planar
representation in which all edges are straight line segments [I. Fáry (1948)]; [K. Wagner
(1936)].  Similarly an ordered set with a planar diagram also has a planar diagram in
which all edges are straight line segments too [D. Kelly (1987)].

We came to these results from an apparently different direction, a problem initiated
recently by R. Nowakowski and I. Rival (1987) (cf.[11]) about graphical data structures
for ordered sets.  Given an ordered set  P,  what is the smallest number  k(P)  such that
there is an ordered set  Q  of width  k  such that a diagram of  P  is a subdiagram of a
diagram of  Q?  For instance, if  P  is the disjoint sum of chains then  k(P)=1.

P Q P Q
k(P) = 2k(P) = 1

Figure 4

We shall verify, for instance, that  k(P)=2  whenever the diagram of P is a binary
tree.Moreover, any dimension two ordered set is contained in an ordered set Q satisfying
k(Q)=2.  Nowakowski and Rival (1987) have shown that every finite ordered set  P  has a
subdivision which is a subdiagram of an ordered set of width at most three.

Corollary 2.  There are finite ordered sets P for which any ordered set Q containing P
cannot be a subdiagram of an ordered set of width two.

Proof of the Theorem.  Let  aŒL.  We consider the set of all covering chains in P joining
a to its upper covers in L. Then successively delete edges from the collection of the
covering edges in these covering chains until the removal of any further edge would
"disconnect" a from one of its upper covers in  L.  In this case, this union of the
remaining covering chains is a tree with root a. By splitting the paths slightly we can
produce a tree Ta in which for any distinct upper covers  x,  y  of a the path from  a  to  x



does not meet the path from  a  to  y,  except in  a  (see Figure 5).
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Now, consider a planar representation of  cov(P)  and distinguish the vertices of  P
which correspond to  L.  For the edge joining a covering pair  x >- a  of  L  choose the
unique path in Ta  from  a  to  x.  If two such edges cross but not at an endpoint, say a to x
and b to y (b -< y in L) then the crossing point must correspond to a point of P,
obviously not in L. As these paths were generated by covering chains in P it follows that
y > a  and  x > b, too. Since L is a lattice  a,b < a+b < x,y and, in particular, y cannot
cover b nor x can cover  a. Therefore, such edges do not cross at all and this
representation of cov(L)  induced by  cov(P)  is planar too. This completes the proof.

The ordered set P in Figure 5 shows that we cannot expect to use edges following any
path from a in L to its upper covers b and c for the paths a < p < r < c and a < q < r < b
will surely intersect, even after any small splitting. An example illustrating the Theorem
is drawn in Figure 6.
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Figure 6

The proof of Corollary 1 is now obvious for, if we start with a planar diagram of P
then all paths in P constructed from covering chains in P are actually monotonic arcs.
Therefore, the edges chosen for the planar representation of cov(L) in the Theorem will
be monotonic too. This yields a planar representation of the diagram of L.

The proof of Corollary 2 is slightly more intricate.  Let Q be an ordered set of width
two.  We may visualize any such ordered set as consisting of two vertical chains with
edges joining them, some with positive slope, never intersecting, and the others with
negative slope, also never intersecting (see Figure 7).
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We may furthermore draw this same diagram on a vertical cylinder such that the two
vertical chains form  parallel stripes on either side of the cylinder, that the edges with
positive slope are all drawn on the back of the cylinder, and that the edges with negative
slope are all drawn on the front of the cylinder, say.  As any graph which can be
embedded on a cylinder is planar it follows that any ordered set of width two must have a
planar covering graph.  Moreover, any ordered set whose diagram is a subdiagram of an
ordered set of width two must be planar too.

Now, let P be any finite lattice with a nonplanar covering graph, for instance, the
lattice illustrated in Figure 8.

A lattice whose covering graph
contains K     .

3,3



Figure 8

 Note that while any subdiagram of a width two ordered set cannot contain elements with
three or more upper or lower covers, an ordered set of width two may well contain
subdiagrams with elements which do cover, or are covered by, three or more elements
(cf. Figure 9).

A subdiagram of an ordered
set of width two containing an

element with three lower covers.

Figure 9
Suppose there were an ordered set Q containing the lattice P illustrated in Figure 8

which in turn were a subdiagram of an ordered set of width two.  Then cov(Q) must be
planar and, according to Theorem 1, cov(P)  would be planar, too.  This is a
contradiction.

We conclude this note with a construction scheme to produce ordered sets P
satisfying k(P) = 2. Let P(m,n) be the ordered set with  m  levels and with n elements at
each level such that each consecutive pair of levels consists of a 2n-cycle (cf. Figure 10).
Next construct  Q(m,n)  from

P(3,4) Q(3,4)

Figure 10

P(m,n)  by subdividing one particular edge at each level,  m  times.  Then  k(Q(m,n)) = 2
(cf. Figure 11).



k(Q(3,4))=2.

Figure 11
Any two-dimensional grid is contained in P(m,n), for sufficiently large m and n — in

the upset generated by a minimal element of P(m,n). As every two-dimensional order is
contained in a two-dimensional grid it is a subset of an ordered set which is a subdiagram
of one of width two.  A binary tree too is embeddable in a two-dimensional grid.  At the
same time it is easy to verify that P(n-1,n) contains the ordered set of singletons and (n-
1)-element subsets of an n-element set, whence the dimension of P(n-1,n) is at least  n,
yet there are ordered sets  Q  containing  P(n-1,n)  such that k(Q) = 2.
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