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Abstract

In this paper, we review a recently developed class of algorithms that solve global problems
in unit distance wireless networks by means of local algorithms. A local algorithm is one in
which any node of a network only has information on nodes at distance at most k from itself,
for a constant k. For example, given a unit distance wireless network N , we want to obtain a
planar subnetwork of N by means of an algorithm in which all nodes can communicate only
with their neighbors in N , perform some operations, and then halt. We review algorithms for
obtaining planar subnetworks, approximations to minimum weight spanning trees, Delaunay
triangulations, and relative neighbor graphs. Given a unit distance wireless network N , we
present new local algorithms to solve the following problems:

1. Calculate small dominating sets (not necessarily connected) of N .

2. Extract a bounded degree planar subgraph H of N and obtain a proper edge coloring of
H with at most 12 colors.

The second of these algorithms can be used in the channel assignment problem.

1 Introduction

Let Pn be a set of points in general position on the plane. The unit distance graph UDG(Pn)
associated to Pn is a graph whose vertex set consists of the elements of Pn, two of which are
connected if they are at distance at most one (see Figure 1). Unit distance graphs are used to model
various types of wireless networks, including cellular networks, sensor networks, ad-hoc networks,
and others in which the nodes represent broadcast stations with a uniform broadcast range. We
shall refer to networks that can be modeled using unit distance graphs as unit distance wireless
networks, abbreviated as UDW networks. A central assumption in the algorithms presented here is
that each element p (a processor in these wireless networks) of Pn will be assumed to have available
the coordinates of the position of p. We note that this is a quite realistic assumption for many
real-life networks of this type. (For example, the main computers at the Universidad Nacional
Autónoma de México are located in Mexico City, not in Tokyo.) For this reason, algorithms of the
type presented here are known as position-based algorithms. A few years ago, this supposition would
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have been hard to justify, but the advent of systems such as GPS make it a realistic assumption in
many cases. Moreover, GPS systems are constantly improving in precision, cost, and size; i.e. the
devices used to calculate the position of a processor are becoming ever smaller, cheaper to produce,
and more precise.

In this paper we will review a new class of algorithms that have been developed to solve several
problems in UDW networks. We consider algorithms that employ only local computations and the
position of the vertices of the networks to solve global problems on UDW networks. By a local
algorithm we mean an algorithm in which the only information possessed by the processor at each
node of a network is information on its own neighbors (in general, nodes at hop distance at most
k, k a constant, in most cases less than or equal to 4) and the fact that they belong to a UDW
network. No further information regarding the rest of the network is available to the processor, e.g.
neither the number of nodes, where they are located, the topology of the network, nor any other
global information.

d=1

Figure 1: A unit distance graph

A key consideration that led us to impose the local knowledge restriction on UDW networks is the
fact that modern networks are highly dynamic. The advent of networks such as the Internet has
imposed new constraints that are very challenging from a theoretical as well as from an applied
point of view. The traditional assumption that, up to some degree, we know the topology of the
networks is now less relevant to real-life networks and thus ever harder to justify. The inherent
nature of communication networks is becoming more dynamic; that is, nodes appear and disappear
constantly. In networks such as cellular phone networks, many of the nodes are not static; that is,
they change their position frequently or continually. As a consequence, the application of algorithms
such as Dijkstra’s shortest path algorithm [17] is no longer possible in many real life problems.

A natural question that comes to mind is whether under such stringent restrictions, we can solve
any meaningful and useful, or at least theoretically interesting problems? Surprisingly the answer
is yes. What is even more surprising is that many of the algorithms we will review here have
real applications to wireless networks that can be modeled with unit distance graphs, e.g. cellular
networks, sensor networks, ad-hoc networks, and others. We are confident that many of the results
presented here will be generalized in the near future to geometric networks—networks whose vertices
are sets of points on the plane, and whose edges are straight line segments joining pairs of adjacent
vertices.

Among the problems we will review here are the following: Given a connected UDW network, can
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a local algorithm be designed to extract a connected planar subgraph from it? Can a connected
subgraph of a UDW network be obtained such that the weight of the graph (the sum of the lengths
of its edges) is close to the weight of a minimum weight spanning tree of the UDW network?
Some new results such as the the calculation of small dominating sets (not necessarily connected),
edge colorings, and vertex colorings with few colors (with important applications to the frequency
assignment problem in wireless networks) in UDW networks will also be presented.

We begin by reviewing the basic mathematical structures that allow us to develop local algorithms
in unit distance wireless networks. Many important challenges remain before the results presented
here can be fully implementable in real wireless networks, such as the fact that in many cases the
nodes in real networks are not as uniform as one might want, and the presence of physical obstacles
(e.g. city buildings, mountains, etc.) that have an effect on the effective range of a broadcast
station; see [6, 12, 34, 37, 38]. An inspection of the list of references provided in this paper gives
an indication of the many issues arising from implementations of results similar to those reviewed
here.

2 The first algorithms: Face Routing and planarization of wireless
networks

Let us recall that a geometric graph G is a graph whose vertices are points on the plane and whose
edges are straight line segments joining pairs of adjacent vertices in G. We say that G is planar if
no two of its edges intersect except perhaps at their end points. The key factor that encouraged the
development of local algorithms for UDW networks, and thus for many types of wireless networks,
was the solution to the following problem [36].

Problem 1 Let G be a geometric planar graph. Assume that at each vertex v of G we have available
the position (coordinates) of v and the position of its neighbors in G. Is there a deterministic
algorithm that will allow an agent A standing at a vertex u to travel to a vertex v of G under the
following conditions:

1. A has a constant amount of memory; that is, at any point in time A knows the position of u
and v, and the positions of a constant number of nodes on G.

2. When the agent visits a vertex w of G, it can use the list of vertices (and their positions)
adjacent to w.

3. A is not allowed to leave any marks along its way.

Let us further clarify the first restriction. Under this condition, A has a constant amount of memory
in which it can store a constant number of positions of elements of G. After A has filled the memory
available to it, to remember a new position it must erase or forget the position of some other node
in its memory. It is clear from this restriction that the agent will never have global knowledge of
G.
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It might seem that some of these restrictions are unnecessarily strong, but if we consider the
behavior of networks such as the Internet, then it becomes clear that these conditions are relevant.
For example, if a message left a mark each time it passed through a given node in the network, all
the memory available at that node would soon be used up, hence the necessity of the third condition.
The restriction on learning is due to the limitation on having any kind of global knowledge about
G, some of the advantages of which will be highlighted presently. The same criterion applies to the
second condition, but in this case the restriction is imposed on the nodes of a network.

Some troublesome questions come to mind when trying to solve this problem, for example: How
will A detect that it has entered a dead end, and how can it escape from the cul-de-sac? Recall
that our agents cannot learn much, and if A returns to a previously visited node, it will likely not
remember that it has already been there. Problem 1 was solved in [36], where the algorithm now
known as Face Routing was first introduced (in that paper, the algorithm was called Geometric
Routing II ). It turns out that in traveling from u to v, A will need to remember, aside from the
positions of u and v, the following information:

• The position of the last two vertices it visited.

• A point s, initially set to u.

• A distance d, initially set to 0.

Let ` be the line segment joining u and v. Observe that ` will always be available to A, as A always
remembers the coordinates of u and v. A will now proceed as follows:

First it will detect the face F incident to u that is intersected by `. A will now traverse F until it
returns to u or, if v belongs to F , it arrives at v, in which case it stops. Each time an edge e of F
is traversed, A proceeds as follows:

i) If e intersects `, calculate the distance d′ of the intersection point of ` and e to u. If d′ > d then
reset d to d′.

ii) If e does not intersect `, continue the traversal of F .

If v is not a vertex of F , the agent A will return to s = u carrying a value d. At this point the
agent will again traverse F until arriving at the edge e such that the intersection point p of e and
` is at distance d from s. Edge e is in the boundary of two faces F and F ′. The agent now resets
F to be F ′, s to p, and restarts from s, i.e. it now proceeds to traverse F ′. It is straightforward to
see that following this strategy, if G is connected, A will always get to v. Note that it is necessary
to check for intersections of edges of G with `, not with the line determined by u and v. Figure 2
illustrates the route that will be taken by the agent traveling from u to v.

4



v
u

Figure 2: Traversal from u to v.

2.1 Extracting a planar subgraph from a unit distance graph

To simplify the presentation, all networks considered from this point on will be UDW networks.
Suppose now that we wish to route in a UDW network N . The existence of Face Routing makes
the following problem very appealing:

Problem 2 Given a UDW network N , can a local algorithm be found to extract a planar subgraph
such that if N is connected, then the subgraph is also connected?

Solving Problem 2 and using face routing in the resulting planar subgraph would immediately give a
powerful on-line local algorithm for routing in UDW networks [10]. Recall that in a local algorithm
a processor ofN can communicate only with its at distance at most k, and that the only information
it can learn about them is their positions (not even their degree or any further information), k a
constant. After learning its neighbor’s positions, each processor performs some operations and then
terminates. We may note that to solve Problem 2, a node of N only needs information about its
neighbors at most one hop away; in fact it never receives or collects information about neighbors
two or more hops away.

To obtain the planar subgraph of N , we will calculate what is known as its Gabriel subgraph [27].
An edge joining two vertices u and v in N is called a Gabriel edge if the circle whose diameter
is the line segment joining u to v contains no other vertex of N . The Gabriel subgraph of N is
the subgraph containing all the Gabriel edges of N ; all other edges are discarded. For example, if
P4 is the set of points shown in Figure 3(a), then the edges joining p to r and t will be kept, and
the edge joining p to q will be discarded. The Gabriel subgraph of the graph shown in Figure 1 is
given in Figure 3(b). It is well known that the Gabriel subgraph of any unit distance network N
is planar, and that if N is connected, then its Gabriel subgraph is also connected [10]. It is clear
that if a node v of a UDW network knows the position of all its neighbors, it can easily identify its
Gabriel edges (if an edge v−w is eliminated by a node r of N , r is closer to v than to w, i.e. r is
also adjacent to v). This solves Problem 2.
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Figure 3: Edges p−t and p−r will be kept; edge p−q will be removed.

2.2 Proximity graphs and UDW networks

Although the first way found to planarize UDW networks was by using Gabriel graphs, it is by
no means the only method known. In the computational geometry literature, there are several
classes of planar geometric graphs arising from what are known as Proximity Graphs [33, 59], most
of which can be extracted from UDW networks using local algorithms. We briefly review some of
them.

2.2.1 Relative neighbourhood graphs

Given two points p and q on the plane, let δ(p, q) be the distance from p to q. We define C(p, δ(p, q))
as the circle with center at p and radius δ(p, q). The lune Λpq is now defined as C(p, δ(p, q)) ∩
C(q, δ(q, p)). The relative neighbourhood graph RNG(Pn) of a point set Pn is defined as follows:
The vertices of RNG(Pn) are the elements of Pn, two of which, say p and q, are adjacent if there
are no elements of Pn in Λpq. The edges of RNG(Pn) are called rng edges. RNGs, introduced by
Toussaint [59] in 1980, can be constructed in O(n lnn) time [58].

In a similar way to that used to show that the Gabriel subgraph of a connected unit distance graph
G is connected, it is easily seen that the subgraph of G containing only those edges of G that are
rng edges is always planar, and that if G is connected, the subgraph is also connected. It is also
clear that rng edges can be identified locally [2, 43]. Figure 4 gives the rng subgraph of the unit
distance graph shown in Figure 1.

It is easy to see that any rng edge is also a Gabriel edge of G, but the converse is not true. As a
consequence, for some applications such as routing, it is usually better to work with the Gabriel
subgraph of G.

In a different setting, RNGs have also been analyzed in [41] in connection to minimum weight
spanning trees in unit distance graphs. Li shows that in general, the weight of RNG(Pn) can
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Figure 4:

be arbitrarily large compared to the weight of the minimum weight spanning tree, abbreviated
MWST . It should be pointed out however, that in general the number of edges in the RNG(Pn) is
close to (1.278 + o(1))n (the expected degree of almost all vertices of a RNG is 2.5575...); see [16].
Moreover, since the RNG of any point set contains a minimum weight spanning tree, the expected
number of edges in a RNG that are not in a minimum weight spanning tree is approximately .27n,
and thus in general we can expect RNG graphs to be good approximations to MWST .

2.2.2 Delaunay graphs

Given a set of points Pn in general position, the Delaunay triangulation Del(Pn) is the graph with
vertex set Pn such that two vertices p and q of Del(Pn) are adjacent if there is a circle passing
through p and q that does not contain any other element of Pn. It is easy to see that Del(Pn) induces
a triangulation of the convex hull of Pn, Conv(Pn), in which for any triangle t of this triangulation,
the circle passing through the vertices of t contains no other element of Pn (see Figure 5).

Figure 5: A Delaunay triangulation.

Although it is not possible to construct the Delaunay subgraph of a UDW network locally (the circle
through three almost aligned points whose pairwise distances are less than or equal to one may be
arbitrarily large), they have an important property that makes them desirable for routing; namely
that Compass Routing works on them [36]. In other words, the most elementary form of greedy
routing (directional, hence the name Compass Routing) works for for Delaunay subgraphs. There
is, however, a closely related family of graphs, localized Delaunay triangulations [28, 20, 41, 44] that
inherits many properties of Delaunay triangulations, and which can be calculated locally. Let N be
a UDW network, and u, v, w three nodes of N . We say that the triangle ∆(u, v, w) is a k-localized
Delaunay triangle of N if the circle passing through u, v and w does not contain any node in N
at distance less than or equal to k hops from u, v, or w, k ≥ 1. The k-localized subgraph of N
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is the graph with the same set of nodes as N , and whose edges are all those edges of N that are
contained in a k-localized Delaunay triangle of N .

There are several reasons why k-localized Delaunay triangulations are desirable. First of all, they are
planar, and perhaps more importantly, they contain all the Gabriel edges of N . This is desirable, as
Face Routing will, in general, terminate faster in geometric graphs with many edges (in particular
if many of these faces are triangles); see [44]. Moreover, as mentioned above, compass routing
works very well in Delaunay triangulations [36]. This idea was used in [20] to route in k-localized
Delaunay graphs.

2.2.3 Minimum weight spanning trees

It is easy to see that it is not possible to calculate the MWST of a UDW network with a local
algorithm. For example, if we have n points on a circle C such that the distances between consec-
utive nodes on C are 1− εi, i = 1, . . . , n, finding the MWST of N involves identifying the smallest
εi. On the other hand, it is possible to find a planar subgraph H of N such that the weight of H
(i.e. the sum of the lengths of its edges) is within a constant factor of the weight of a MWST . The
following algorithm was proposed by Li [43].

Given a vertex v ∈ N , let H(v, k) be the subgraph of N induced by the vertices of N at distance
less than or equal to k from v, including v itself. Given a constant k, proceed as follows:

First, define a linear ordering on the edges of N as follows: an edge u−v is smaller than an edge
r−s if the length of u−v is less than the length of r−s. In the event that they have the same length,
the edge with the rightmost topmost node is taken to be longer. If they have the same length and
the same rightmost vertex, the one with the leftmost topmost vertex is considered as the longer.

Algorithm LocalMSTk

1. Each node v computes the minimum spanning tree Tk,v of the subgraph of H(v, k) (according
to the linear ordering defined above).

2. An edge u−v of N is kept if it appears in both Tk,u and Tk,v.

In [43], it is proved that the weight of the resulting subgraph is within a constant factor of the
weight of a minimum weight spanning tree of H. In [12] it is proved that the weight of the solution
obtained is in fact at most k+1

k−1 times the optimal solution, k ≥ 2. The various local MWST k can
be used to perform energy-efficient broadcast [43].

2.2.4 Some comments on the complexity, robustness and maintenance of Face Rout-
ing, the extraction of planar subgraphs, and future work

It is well known that the Gabriel subgraph of a geometric graph can be calculated in O(n lnn)
time [33, 47]. The same is true of RNGs, Delaunay graphs, and minimum weight spanning trees of

8



geometric graphs. However in practice, most UDW networks have the property that their vertices
tend to be configured in such a way that all their nodes have few other nodes within distance
one (in most cases “few” means a constant). Under these circumstances, to extract the edges
incident to each vertex, it is preferably to use an algorithm that is simple, easy to implement and
maintain. The obvious quadratic time algorithms are recommended. Moreover, since the graphs
are all planar, the average number of edges a vertex must keep is at most six. Thus under most
practical circumstances, the amount of work that a node in a UDW network has to do to extract
and maintain the chosen subgraph is minimal.

On the other hand, the advantages of using Face Routing on planar subgraphs of UDW networks
are well known and considerable. The first is based on the robustness of Face Routing. Consider
an agent A, running face routing on a geometric planar graph G while traversing from node u to
node v. Suppose that before A reaches v, a failure occurs somewhere on the network, i.e. a node
w goes permanently down (this is commonly the case in sensor networks). Observe that by the
nature of Face Routing, unless the failure happens just where the agent is located and kills A (i.e.
a failure occurs at the node or edge where an agent is located) or disconnects G, it will not prevent
A from reaching v. The reason for this is obvious. To make the situation more interesting, assume
that the node w is on what would have been the path followed by A in its traversal of G from u
to v, and that w fails before it is reached by A. Since until A reaches any node of G, it is never
aware of its existence, Face Routing will simply proceed as if the initial graph was G − w instead
of G. Thus if G−w is connected, A will reach v. More potentially disruptive to Face Routing are
failures of nodes or edges followed by recoveries. This could make a message fall into a cycle away
from `.

Face routing also eliminates the need to maintain global structures such as routing tables which, in
highly dynamic networks such as UDW networks, have to be updated on a regular basis. Finally, we
observe that in ideal conditions, Face Routing sends a single copy of a message. This considerably
reduces the amount of traffic generated, especially when compared to broadcast algorithms.

We believe that one of the most important problems to solve in this area of research is to overcome
Face Routing’s limitation of working only on planar networks. For some reason that we have not
yet fully understood, it is extremely hard to deal with even a small number of edge crossings in
an otherwise almost planar network. An extremely challenging area of future research is that of
developing routing algorithms for UDW networks in R3. Is there an equivalent to Face Routing
in R3? Another problem that we believe is very interesting is to develop algorithms similar to face
routing for networks in which the broadcast stations have different broadcast ranges. A satisfactory
solution is lacking even for networks in which any station has either one or the other of two
possible broadcast ranges. The basic problem here is that this kind of network has directed edges.
Face Routing looks deceptively easy, but as soon as the conditions on the planarity of a network
are relaxed even slightly, we are essentially back to square one, that is, we must return to older
techniques such as broadcast algorithms. The alert reader will infer from these comments that the
problem of generalizing Face Routing to R3 is, at least for now, impossible to achieve, as it requires
development of a technique to deal with non planar graphs.

9



3 New local algorithms for edge colorings and dominating sets

We now present two new algorithms; the first colors the edges of a planar subgraph of a UDW
network, and the second obtains small dominating sets of vertices. These algorithms are local, and
use a new idea that employs tilings of the plane. The basic idea is to subdivide the plane into
squares of size k× k. Since each processor in a UDW network has its coordinates available, we can
solve a particular problem, i.e. finding a dominating set, by first solving it within each square, and,
in a second iteration, merge the solutions obtained for each square.

3.1 Edge coloring

We now proceed to solve the following problem: Given a UDW wireless network N , using a local
algorithm, extract a planar subgraph H from N and produce a proper edge coloring of H. A proper
edge coloring of a graph G is a coloring of its edges such that any two edges that share a common
vertex receive different colors. The chromatic index of G is the smallest integer k such that there
is a proper k-edge coloring of G. We proceed as follows.

Begin by obtaining the subgraph H of N generated by the LocalMST2 algorithm. It is known
that the maximum degree in H is at most 5; see [12]. A classical graph theory result known
as Vizing’s Theorem [8] asserts that the chromatic index of a graph is less than or equal to its
maximum degree plus one. It follows that the chromatic index of H is at most six. To apply
Vizing’s Theorem however, we would need to know all of H, and we are allowed to use only a local
algorithm. We show next how to obtain an edge coloring of H using at most 12 colors.

Subdivide the plane into subsquares of size 2× 2; for example take the set of squares Si,j such that
the vertices of Si,j are the points {(2i, 2j), (2(i + 1), 2j), (2(i + 1), 2(j + 1)), (2i, 2(j + 1))}. A node
v with coordinates (x, y) in N is assigned to Si,j if 2i ≤ x < 2(i + 1) and 2j ≤ y < 2(j + 1).

Let Hi,j be the subgraph of H induced by the vertices of N assigned to Si,j . Hi,j is not necessarily
connected. In fact two vertices within a given square can have an arbitrarily large hop distance
in N ! Observe, however, that the hop distance between any two vertices in a component of Hi,j

is at most 4 in Hi,j . Then any vertex v of H can calculate the connected component of Hi,j to
which it belongs by collecting the coordinates of all its neighbors at (hop) distance at most 4 in H,
discarding those elements that do not belong to the subraph Hi,j . We can now select a vertex in
each component of Hi,j (e.g. the topmost leftmost vertex) that will then apply Vizing’s Theorem
locally and 6-color the edges of its component using colors {1, . . . , 6}.

The remaining problem is to color the edges that join vertices in adjacent squares. It is well known
that any two edges incident to a vertex v in a minimum weight spanning tree of a geometric graph
induce angles of size at least π

3 at v. It follows easily that H has the same property. The following
lemma is an immediate consequence.

Lemma 1 Let v be any vertex assigned to H that belongs to Si,j. Then v is adjacent to at most 3
vertices of H above or on the horizontal line y = 2j + 2. See Figure 6.
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Let v be as in this lemma, and v−w an edge such that w is above y = 2j +2. We now assign a color
to v−w according to the following criterion. If the angle in the counter clockwise direction between
y = 2j + 2 and the line segment joining v to w is less than or equal to π

3 , we color v−w with color
7; if the angle is greater than π

3 but smaller than or equal to 2π
3 , v−w is colored 8, otherwise it

is colored 9; see Figure 6. It is now easy to see that if a vertex w above y = 2j + 2 is adjacent to
two vertices below y = 2j + 2, the edges connecting w to these vertices receive different colors. In
a similar way we can color the remaining uncolored edges joining vertices of H that cross vertical
lines of the form x = 2i + 2 with colors 10, 11 and 12. Thus we have proved:

Theorem 1 Let N be a UDW network. Then a planar subgraph H of N with maximum degree 5
can be extracted using a local algorithm; indeed if N is connected, H is also connected. Furthermore,
the edges of H can also be 12-colored using a local algorithm. The local algorithm is such that each
vertex of N collects information of vertices at distance at most 4 from itself.

To conclude this section, we note that this algorithm can be modified to obtain edge colorings of
a UDW network N in which, for any two vertices at distance less than or equal to k, the edges
incident to them receive different colors. This algorithm is useful in the channel assignment problem
for wireless networks. The details will be given in a forthcoming paper. The number of colors used
will obviously depend on the density of the vertices of N . For example, if there are at most m
nodes within any unit square and all of them broadcast with the same power, at least cm colors
are required, for a constant c.

3.2 Dominating sets

Given a graph G with vertex set V (G), a dominating set is a subset S ⊂ V (G) such that every
vertex of G is in S or is adjacent to a vertex in S. There has been much research on calculating
connected dominating sets for unit distance wireless networks; see [2, 3, 63, 43, 54, 52, 61, 64]. One
of the motivations for studying connected dominating sets is the construction of a backbone network
in a wireless network. The algorithms used to obtain connected dominating sets are, however, not
local in our terminology, since in these algorithms, there are times when a node has to wait for
some information to disseminate through large portions of the network.

In this section, we develop a local algorithm to obtain a dominating set of a UDW network that
generates a dominating set whose size is within a constant of the optimal solution. One of our
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motivations is the fact that these vertices can be used to store backup information on a network;
e.g. see [29]. We prove the following.

Theorem 2 Given any UDW network, a dominating set of size at most 15 times the size of the
optimal dominating set of N can be calculated using a local algorithm.

We remark again that the dominating sets obtained here are not necessarily connected. The
algorithm used follows a similar idea to the edge coloring algorithm above; that is, the plane is
partitioned into convex regions of bounded size. The size of the dominating sets obtained is bounded
using an approach similar to that used in [24]. An independent set I of a graph G is a subset of
vertices of G such that no two of them are adjacent. We say that I is maximal if any vertex of G
not in I is adjacent to at least one element in I.

We use the following well known lemmas.

Lemma 2 Let G be any graph, and D a minimal dominating set of G, and let I be a maximal
independent set of G. Then |D| ≤ |I|.

The following lemma is easy to prove for unit distance graphs.

Lemma 3 Let D be the smallest dominating set of a unit distance graph N . Then the size of any
independent set of N is at most 5|D|.

Proof: Let D be a dominating set of N . For each vertex v of D consider the circle of unit radius
centered at v. Then all vertices of N lie in at least one of the circles centered at an element of D.
Observe now that an independent set S can have at most five elements in each of these circles. The
result follows.

To obtain a small independent set using a local method, we now proceed as follows.

In a procedure similar to that given in the previous section, split the plane into a set of regular
hexagons with edges of unit length. Assume that the center of one of these hexagons is the origin;
see Figure 7.

For each hexagon Hk of this hexagonal partition of the plane, let N k be the subgraph of N induced
by the nodes ofN within Hk. In a similar way to that described in the previous section, the elements
of N can decide to which cell Hk of the hexagonal partition they belong to. Proceed to calculate a
minimum dominating set Dk of Nk in each hexagon. Let Ik be the largest independent set in each
N k. By Lemma 2, |Dk| ≤ |Ik|. Therefore to bound the size of the union of the dominating sets it
is enough to bound the size of the union of the sets Ik.
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Figure 7:

We now prove that the cardinality of the union of the set of independent sets Ik over the set of
hexagons of the partition is at most 15 times the size of the smallest dominating set of N . To see
this, observe that the set of hexagons of the hexagonal partition can be 3-colored in such a way that
adjacent hexagons receive different colors; see Figure 7. Observe that for each color i, 1 ≤ i ≤ 3,
the union of the independent sets of all hexagons with the same color also forms an independent
set in N , and thus by Lemma 3 has at most five times the size of the smallest dominating set of N ,
i = 1, . . . , 3. Thus the union of all the dominating sets of all the hexagons has cardinality at most
15 times that of the cardinality of the smallest dominating set of N . This proves Theorem 2.

Figure 8 illustrates an example in which the error is five times the optimal. To construct the
example, we take a hexagon with sides of length 1, and five points within it such that the dis-
tances between them are greater than one; see Figure 8(a). We then paste multiple copies of this
configuration, as shown in Figure 8(b). The local algorithm would then produce five elements per
hexagon. However in the global solution, we need to take only one point per hexagon, the one close
to the bottom vertex of the leftmost edge of each hexagon (except for those hexagons lying on the
boundary of the union of the hexagons).

It is worth noting that that in several examples we have tried, the local algorithms for obtaining
dominating sets produce sets of size at most twice the size of a minimum dominating set. An
interesting problem is to improve on the 15 times factor with respect to the minimum dominating
set. From an algorithmic point of view, within each hexagon Hk, the size of the largest independent
set contained in it is at most five, and thus the smallest dominating set is bounded above by the
same constant. This implies that we can calculate it in polynomial time.

A closing comment

We would like to mention that in a forthcoming paper [13] using similar techniques to those in-
troduced in Section 3 of this paper, we obtain a local algorithm to extract a connected planar
subgraph of a UDW network and 7-color its vertices.
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(a) (b)

Figure 8:

3.3 Conclusions

In this paper, we have reviewed and presented some local algorithms on UDW networks. We
concentrated only on the basic mathematical principles of local solutions for global problems. There
are numerous issues involved in improving or implementing the algorithms presented here, however
a complete review is beyond the scope of the present paper, as hundreds of papers in this area
have been published since 2000. Many papers have studied strategies to improve on Face Routing,
in some cases developing strategies that extract planar spanners of UDW networks with more
edges, such as localized Delaunay graphs. In other cases, mixed strategies have been proposed.
For example, one might start with a greedy strategy such as Compass Routing, and if a message
gets stuck somewhere or the distance to the destination does not decrease, switch to Face Routing.
Energy consumption is also an important factor in networks such as sensor networks. Research
in this direction has focused on developing networks closely related to minimum weight spanning
trees, e.g. connected dominating sets, Voronoi diagrams and geometric spanners with small stretch
factor, among others. We provide a list of references, by no means exhaustive, that can be helpful
to those interested in the areas of research covered in this paper. Finally, we would like to thank the
organizers of Adhoc Now 2005, Violet R. Syrotiuk and Edgar Chavez, for inviting and encouraging
us to write this paper.
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