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Abstract

Consider a set P of n points in the plane and n radars located at these points. The radars are rotating
perpetually (around their centre) with identical constant speeds, continuously emitting pulses of radio
waves (modelled as half-infinite rays). A radar can “locate” (or detect) any object in the plane (e.g.,
using radio echo-location when its ray is incident to the object). We propose a model for monitoring
the plane based on a system of radars. For any point p in the plane, we define the idle time of p, as the
maximum time that p is “unattended” by any of the radars. We study the following monitoring problem:
What should the initial direction of the n radar rays be so as to minimize the maximum idle time of any
point in the plane?

We propose algorithms for specifying the initial directions of the radar rays and prove bounds on the
idle time depending on the type of configuration of n points. For arbitrary sets P we give a O(n logn)
time algorithm guaranteeing a O(1/

√
n) upper bound on the idle time, and a O(n6/ ln3 n) time algorithm

with associated O(logn/n) upper bound on the idle time. For a convex set P, we show a O(n logn) time
algorithm with associated O(1/n) upper bound on the idle time. Further, for any set P of points if the
radar rays are assigned a direction independently at random with the uniform distribution then we can
prove a tight Θ(lnn/n) upper and lower bound on the idle time with high probability.

Keywords: Convex, Detection, Idle Time, Monitor, Orientation, Patrol, Plane, Points, Radar, Random,
(Light) Ray.

1 Introduction

Radar systems are able to detect, locate and identify (stationary and moving) objects located at great dis-
tances and in various kinds of weather conditions. They offer vast potential for effective monitoring of
objects in direct sight located within a terrain.

In our setting we view the plane or parts thereof as a critical region all of whose points need to be monitored
for important activities (such as animal migration, military activity, navigation guidance, weather condition
reporting, etc.) taking place. It is required that specific events that may occur at any location in the plane
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be detected, located and reported by at least one of the sensing radars. We assume the positions of radars
are fixed, for example, the radar infrastructure is already built. Our purpose is to use the “rotating radar”
as a paradigm for studying combinatorial aspects of surveillance and understanding the limitations and
capabilities of monitoring the plane. It is assumed that the ray of the radar can reach any point at any distance
in the plane, if appropriately rotated towards this point, and that the radars have identical rotating speeds.
This requires to determine in an effective manner the initial direction of the radar rays so as to optimize the
time a point in the plane is left unattended by a radar. We are concerned primarily with providing algorithms
for determining the initial direction of the radar rays so as to minimize the time a point in the plane may be
left unattended.

1.1 Preliminaries and notation

We consider n radars located at the points of a set P := {p1, p2, . . . , pn} of n arbitrary points in the plane.
The radars are rotating perpetually at constant identical speeds. Let the initial directions of the radar rays
be α1,α2, . . . ,αn, with the understanding that the ith radar has initial direction measured by an angle of αi,
0 ≤ αi < 2π , and rotates at constant (angular) speed perpetually thereafter, for i = 1,2, . . . ,n. At all times
during their rotation the radars are emitting a half-infinite ray, which for our purposes can be considered to
be a semi-line emanating from the point where the radar is located.

For any set Π = {α1,α2, . . . ,αn} of initial directions of the rays of the n radars we define the idle time of an
arbitrary point p, denoted by I (P,Π, p), as the maximum time that p may be left unattended by any of the
radars. Finally, we define the idle time of the system of radars as

I (P) := inf
Π

sup
p

I (P,Π, p),

where infΠ ranges over all possible initial directions Π of radar rays and supp over all possible points p in
the plane.

In what follows we will study our problem using an equivalent formulation based on floodlights. Floodlights
have been a source of several intriguing problems in discrete and combinatorial geometry. By a floodlight f
we mean a beam with a beam-width φ located at a point p of the plane called its apex (e.g., see [13]). Hence,
the floodlight with apex p illuminates a wedge delimited between two rays (inclusively) with the common
vertex p and angles αp (the starting ray) and αp +φ (the ending ray). In this setting, it is worth mentioning
the following illumination theorem from [4]:

Theorem 1.1. Let P be a collection of n points in the plane, and f1, . . . , fn a set of floodlights with beam-
widths φ1, . . . ,φn < π , such that φ1+φ2+ · · ·+φn ≥ 2π . Then there is an O(n logn) algorithm which assigns
floodlights to points in P and orients them in such a way that the plane is completely illuminated.

Note this theorem gives the directions of static (i.e., non-rotating) floodlights.

In this paper, we assume that floodlights rotate at the same speed and direction starting from their initial
directions. The case when the floodlights rotate in different directions is briefly considered in Section 1.3.
An initial configuration of floodlights is given by the triple (P,{αp}p∈P,φ), where P is a finite set of points in
the plane each containing the apex of a floodlight, αp an initial direction angle of the starting ray of the beam
of the floodlight with apex p, and φ ≤ 2π is the beam-width of all floodlights. The sequence {αp}p∈P is
called the initial configuration of the floodlights. Given the initial configuration, the configuration at time t is
obtained from the initial one by rotating each floodlight counterclockwise by angle t. A configuration covers
(illuminates) the plane, if each point of the plane is illuminated by at least one floodlight (not necessarily
always the same) at all times during the rotation. An initial configuration is valid, if for every t ≥ 0, the
configuration at time t covers the plane.
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Given a finite set of points P, Φ(P) is the infimum over all beam-widths φ such that there exists an initial
configuration (P,{αp}p∈P,φ) that is valid. A useful observation first proved in [10] (Theorem 8) is that for
any set P of points in the plane the idle time definition I (P) and the angular floodlight definition Φ(P) are
identical.

1.2 Related work

The authors of [4] study the floodlight illumination problem but their results are not applicable since they
consider only static (i.e., non-rotating) floodlights. There are several related papers on floodlight illumina-
tion. [15] is concerned with the decision problem of illuminating a given wedge in the plane by n floodlights.
[12] develops an algorithm for a group of guards statically positioned in a non-convex polygonal environ-
ment with holes for solving the Searchlight Scheduling Problem: the objective of the proposed algorithm is
to compute a schedule to rotate a set of searchlights in such a way that any target in an environment will
necessarily be detected in finite time. [8] is concerned with placement and orientation of rotating directional
sensors so as to optimize some function of the “dark” time of the given points.

The first paper to investigate a similar problem concerning continuous coverage of a finite or infinite domain
using rotating floodlights (in that paper called antennae) of a given beam width is [10]. In [10], the authors
studied the Rotating Antennae Coverage Problem concerning uninterrupted coverage of a region in the plane
by rotating antennae and gave algorithms for determining the initial direction of the antennae and analyze
the resulting beam-width/range tradeoffs for ensuring continuous coverage of a given region or line in the
plane with rotating antennae of given fixed beam-width and range. Both instances of the problem were
considered: 1) rotating antennae with finite range and beam-width, and 2) rotating antennae with infinite
range and given finite beam-width (which is equivalent to the floodlight formulation of our problem). In
addition, to several results for uninterrupted coverage, they also proved that an angle of 3π/n is necessary
and sufficient for n ≥ 2 antennae all located on a line to cover a half-plane defined by this line at all times.
This easily implies that an angle of 6π/n is sufficient for n ≥ 2 antennae on a line to cover the plane at all
times.

They also proved that Φ(P) = π , for any set P of three points in the plane. However, [10] does not consider
algorithms for the more general case of arbitrary sets of points. Another related paper is [2] which studies the
problem of finding the minimum angle α such that one can install at each point of a pointset F a stationary
rotating floodlight with illumination angle α , initially oriented in a suitable direction, in such a way that, at
all times, every target point of another pointset P is illuminated by at least one floodlight.

The problem of monitoring a region to minimize idleness is studied in the mobile robot literature under the
name patrolling. It is usually defined as a perpetual process performed by mobile robots in a static or in a
dynamically changing environment. Patrolling has been studied intensively in robotics (see [1, 5, 6, 7, 9,
11, 16]), where it is often viewed as a form of coverage. It is defined as the act of surveillance consisting of
walking around an area in order to protect or supervise it.

The frequency of visits as a criterion for measuring the efficiency of patrolling was first introduced in [11]
where it was called idleness.

For a survey of diverse approaches to patrolling based on idleness criteria we refer to [1].

Standard investigations on patrolling have focused on one-dimensional models by ensuring that a boundary
encircling a given two-dimensional domain is patrolled by robots perpetually moving along the boundary.
Despite the fact that such one-dimensional models provide adequate solutions for patrolling the boundary
and thus monitoring potential incursions, they do nothing to address monitoring of the interior area delimited
by this boundary. Thus the model studied in this paper is more suitable for monitoring in the two dimensional
plane.
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Table 1: The time complexity of finding the valid initial direction with given beam-widths for n points in
the plane. The first column describes the configuration of points, the second the type of initial direction, the
third the beam-width and the last the time complexity for finding such an initial direction. (?) The initial
direction of floodlights is chosen independently and uniformly at random and is valid with high probability.

Point-set Initial direction Beam-width Complexity
Arbitrary Deterministic O(logn/n) O(n6/ ln3 n)
Arbitrary Deterministic O(1/

√
n) O(n logn)

Arbitrary Random (?) Θ(logn/n) O(n)
Convex Deterministic O(1/n) O(n logn)

1.3 Outline and results of the paper

We give algorithms providing the initial directions of the radar rays and provide various bounds for several
types of configurations of a set P of n points in the plane. Since the rotation of floodlights is a continuous
process, Section 2 discusses a discretization of the rotation of floodlights.

In Section 3, we prove an O(logn/n) upper bound on Φ(P) for any set P of n points in the plane. However,
since this algorithm for finding the initial direction of floodlights with beam-width Θ(logn/n) is not very
efficient, we will also present a fast O(n logn) algorithm for floodlights with beam-width Θ(1/

√
n) and a

randomized O(n) algorithm for floodlights with beam-width Θ(logn/n).

In Section 4, we consider points in convex position; we give an O(1/n) upper bound on the idle time for any
set P of n points in convex position.

We conclude in Section 5 with several open questions. Results of the paper are summarized in Table 1.

2 Discretizing the rotation of floodlights

Rotation of floodlights is a continuous process. In order to study the problem, we introduce a discrete model
of the floodlights’ rotation. Before proving the upper bound we define several concepts concerning the
relation between discrete and continuous movement of the floodlights.

Definition 2.1 (Discretely rotating floodlight). Let p be a point in the plane, and let k and m be positive
integers. Let b0, . . . ,bk−1 be beams originating at p with beam-width 2π/k such that the starting ray of bi has
angle 2πi/k. We will assume that for any integer p, bp = bp mod k. Note that the beams together illuminate
the whole plane. These beams do not rotate, but they do turn on and off. A discretely rotating floodlight at p
with beam-width 2πm/k, step-width 2π/k and initial direction i ∈ {0, . . . ,k−1} is the configuration of the
beams such that for any integer T , at any time t ∈ [T/k,(T +1)/k), only beams bT+i,bT+i+1, . . . ,bT+i+m−1
are on. Hence, this discretely rotating floodlight illuminates the region of the plane between rays with angles
2π(i+ btkc)/k and 2π(i+m+ btkc)/k at time t (see Figure 1 for an illustration of the concepts defined).

In terms of covering, continuously rotating floodlights and discretely rotating floodlights are equivalent up
to constant factors of their beam-widths as stated in the following theorem.

Theorem 2.1. Let p be a point in the plane, and let k and m be positive integers. A floodlight with beam-
width φ ≤ 2π/k rotating (continuously) around a point p can be covered by a discretely rotating floodlight
at p of beam-width 6π/k and step-width 2π/k. Conversely, a discretely rotating floodlight at a point p
with beam-width 2πm/k and step-width 2π/k can be covered by a continuously rotating floodlight at p with
beam-width 2π(m+1)/k.
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Figure 1: Discretely rotating floodlight at a point p with beam-width 3π/10, step-width π/10 and initial
direction i = 1. On the left the floodlight at times 0 ≤ t < 1/20 and on the right the floodlight at times
1/20≤ t < 1/10.

Proof. Consider a continuously rotating floodlight f with beam-width φ ≤ 2π/k at a point p and initial
direction α . Let f ′ be the discretely rotating floodlight at p with beam-width 6π/k, step-width 2π/k and
initial direction i such that beams bi and bi+1 of f ′ cover f at time t = 0. Since the beam-width of the union
of these two beams is larger than the beam-width of f , such an i must exist. At time 0≤ t ≤ 2π/k, f has not
moved by more than 2π/k from its initial direction, so it is covered by bi, bi+1 and bi+2. At time t = 2π/k,
f ′ switches off bi and on bi+3 and f has moved at least 2π/k, but not more than 4π/k, hence f is covered
by beams bi+1, bi+2 and bi+3 at time 2π/k ≤ t ≤ 4π/k. This argument can be extended to all other time
intervals, in particular, at any time t, f is covered by beams bi+bktc,bi+bktc+1,bi+bktc+2, which are turned on.

Consider a discretely rotating floodlight f with beam-width 2πm/k, step-width 2π/k and initial direction i.
Let f ′ be the continuously rotating floodlight with beam-width 2π(m+1)/k and initial direction 2π(i−1)/k.
Note that f ′ covers beams bi−1, . . . ,bi+m−1 of f at time t = 0, and beams bi, . . . ,bi+m−1 at time 0≤ t < 2π/k,
which are all beams turned on. For any integer T , at time 2πT/k ≤ t < 2π(T + 1)/k, f ′ covers beams
bi+T , . . . ,bi+m−1+T , which are all beams turned on at this time.

In the rest of the paper we will prove all upper bounds for discretely rotating floodlights. By Theorem 2.1,
these bounds extend to continuously rotating floodlights with double beam-width.

3 Algorithms on Arbitrary Sets of Points

We start with the O(n logn) algorithm for finding the initial direction of floodlights with beam-width O(1/
√

n).

Theorem 3.1. There is an O(n logn) algorithm that for any set P of n points in the plane, finds a valid initial
direction of discretely rotating floodlights with beam-width and step-width O(1/

√
n) at points in P.

The proof uses the following corllary of the main illumination theorem from [4]:

Corollary 3.1. Let P be a collection of n ≥ 3 points in the plane, each with floodlight having beam-width
2π/n. Then there is an O(n logn) algorithm which orients the floodlights in such a way that the plane is
completely illuminated.

Proof. Let m = b
√

nc. Pick m mutually disjoint subsets S0, . . . ,Sm−1 of P of size m. For each j = 0, . . . ,m−
1, find the direction of static floodlights with the beam-width 2π/m at points in S j that illuminate the plane
using the O(m logm) algorithm from Corollary 3.1. For each point p in S j, define the discretely rotating
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floodlights with beam-width 4π/m, step-width 2π/m and initial direction i such that at time t = 2π j/m, the
floodlight covers the static floodlight at p. It follows that for every T = 0, . . . ,m− 1, the floodlights in ST

cover the plane at any time 2πT/m ≤ t < 2π(T + 1)/m, hence, the place is covered at all times. The time
complexity of this algorithm is O(mm logm) = O(n logn).

Next, we will present an O(n6/ ln3 n) algorithm for finding the initial direction of floodlights with beam-
width Θ(logn/n). We will need the following result about partitioning a plane into regions by a collection
of lines.

Lemma 3.1 (Chapter 8.3 in [3]). Given n lines in the plane, there is an O(n2) algorithm, which reports all
regions (faces) determined by these lines.

Theorem 3.2. There is an O(n6/ ln3 n) algorithm that for any set P of n≥ 2 points in the plane, finds a valid
initial direction of discretely rotating floodlights at points in P with beam-width φ and step-width φ , where
φ ∈ O(logn/n).

Proof. Let P = {p1, p2, . . . , pn} and let k ≤ bn/(18lnn)c. At each p ∈ P, construct a discretely rotating
floodlight with beam-width π/k and step-width π/k. For each point p ∈ P the boundaries of its 2k beams is
the union of k lines through p. The union of these boundary lines is a collection of at most kn lines which
partition the plane into at most (

kn+1
2

)
+1≤ k2n2

regions. We denote this set of regions by R. Note that each region is included in exactly one of the 2k beams
of each floodlight. Also note that the plane is covered at time t by the floodlights if and only if each region is
included in at least one beam that is on at time t. Since floodlights will return to their initial direction at time
t = 1, the plane is covered at all times, if it is covered at times t ∈T = {0,π/k,2π/k, . . . ,(2k−1)π/k}. To
verify that the plane is covered, we define the coverage function C on a set of floodlights S which returns all
pairs (r, t) ∈R×T such that region r is covered by at least one of the floodlights in S at time t. In what
follows we assign the initial directions to floodlights such that the coverage function of all n floodlights
returns exactly 2k|R| pairs, i.e., all regions are covered at all times in T . The main algorithm is as follows.

1. Assign the initial direction of the floodlight at p1 arbitrarily.

2. Suppose we have already assigned the initial direction of floodlights at points p1, . . . , p j−1, j < n.
Pick the initial direction of the floodlight at p j such that the number of pairs returned by the coverage
function of the first j floodlights is maximized.

Let C j denote the set of pairs returned by the coverage function for the first j ≤ n floodlight configured
by the algorithm. It is easy to see that |C1| = |R| (“a floodlight illuminates all regions in one rotation”).
In addition, we will show that |C j| ≥ |C j−1|+ |R| −

|C j−1|
2k . Note that 2k possible initial directions of the

floodlight at p j partitions R×T into 2k subsets S0, . . . ,S2k−1 of the same size |R|, where Si is the subset of
pairs covered by the floodlight at p j with initial direction i. The algorithm will choose the initial direction
i of the floodlight at p j so that the size of the intersection of C j−1 and Si is minimized, i.e., it has size at
most |C j−1|

2k . Hence, the number of newly covered pairs by the floodlight at p j is at least |R|− |C j−1|
2k , and the

bound follows. Now using that |C1|= |R| (for the base case) and this inequality (for the inductive step), it
is easy to prove by induction on j that |C j| ≥ 2k|R|(1− (1− 1

2k )
j).

If we show that (1− 1
2k )

n < 1
2k|R| , then |Cn| > 2k|R|− 1, and since |Cn| is an integer, we have that |Cn| =

2k|R|. To show this observe that for n≥ 2,(
1− 1

2k

)n

≤ e−
n
2k ≤ e−9lnn <

183 ln3 n
2n5 ≤ 1

2k3n2 ≤
1

2k|R|
, (1)
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where the second and fourth inequalities follow from the bound on k.

Implementation and complexity. By Lemma 3.1, the set of all regions R determined by kn lines can be
constructed in time O(k2n2). To represent the result returned by the coverage function, we will use a boolean
array with an entry for each pair in R ×T . In the j-th iteration of the algorithm, we count for each of
2k initial directions of the floodlight at point p j how many new pairs will be returned by the coverage
function as follows. For each region in R, we determine in O(1) time in which beam of the floodlight
at p j it lies, and hence, at what time it will be covered by this floodlight. After that we pick the best
direction and update the array correspondingly. This takes time O(|R|k) = O(k3n2), for j ≥ 2 and time
O(|R|) = O(k2n2) for j = 1, since we can pick any initial direction. Since we have n points, the total
running time is O(k3n3) = O(n6/ ln3 n).

We remark that the constant 9 in the previous theorem can be replaced by any c > 10, and the theorem still
holds for n sufficiently large (depending on c).

Next, we will modify the argument in the previous proof to obtain a randomized O(n) algorithm for flood-
lights with beam-width Ω(logn/n). This algorithm picks the initial directions of all floodlights at random.
We have the following theorem.

Theorem 3.3. Let P be a set of n ≥ 2 points in the plane. Let k ≤ bn/(20lnn)c. If the initial directions of
discretely rotating floodlights at P with beam-width and step-width π/k is chosen randomly and indepen-
dently, then the plane is covered at all times with high probability. If all n floodlights are placed at the same
point and k ≥ d2n/ lnne and the initial directions of discretely1 rotating floodlights with beam-width and
step-width π/k are chosen independently and uniformly at random, then the plane is not covered at all times
with high probability.

Proof. As in the proof of Theorem 3.2, sets C j of pairs (r, t) ∈R×T returned by the coverage function,
j = 1, . . . ,n. We still have |C1| = |R|, however, for j ≥ 2, we can show by the same argument as in the
previous proof that the expected size of C j is E[|C j|] = E[|C j−1|]+ |R|−

E[|C j−1|]
2k , and hence also E[|Cn|] =

2k|R|(1− (1− 1
2k )

n). We have

Pr(|Cn|= 2k|R|)≥ E[|Cn|]−2k|R|+1 = 1−2k|R|(1− 1
2k )

n .

Similarly as in (1), we have (
1− 1

2k

)n

<
1

2kn|R|
for n ≥ 2. Notice that the extra n in the denominator on the right hand side of the inequality comes from
replacing constant 18 with 20 in the assumption on k. Therefore, Pr(|Cn| = 2k|R|) > 1− 1/n, i.e., the
floodlights cover the plane at all times with probability going to 1 as n goes to infinity.

To prove the second part of the statement, suppose k ≥ d2n/ lnne. Since all floodlights are placed at the
same point, it is enough to show that the initial configuration, when chosen independently and uniformly
at random, does not cover the plane with high probability. Indeed, if the initial configuration covers the
whole plain, then the plain remains covered at all times. The beams of floodlights partition the plane into
2k regions. Let X be the random variable counting the number of uncovered regions by floodlights in the
initial configuration. We have that

E[X ] = 2k
(

1− 1
2k

)n

≥ 2n3/4

lnn

1A similar result can be proved for continuously rotating floodlights using a result of M. Penrose [14].
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for sufficiently large n, since E[X ] approaches 4n3/4

lnn as n goes to infinity. Since changing the initial direction
of one floodlight changes the number of uncovered regions in the initial configuration by at most one, by
Azuma’s Inequality, we obtain

Pr(|X−E[X ]|< t)≥ 1−2e−t2/(2n).

Now if we set t to E[X ], we have

Pr(X ≥ 1)≥ 1−2e−
E[X ]2

2n ≥ 1−2e−
2n1/2

ln2 n

which approaches 1 as n goes to infinity.

We again remark that the constant 20 in the first part of the previous theorem can be replaced by any c > 12
and 1/2 in the second part can be replaced by any c < 1, and the theorem still holds for n sufficiently large
(depending on c).

4 Algorithms for Points in Convex Position

In this section we restrict ourselves to the set P of n points in convex position.

Without loss of generality, we will assume that at least bn/2c of the points of P lie above the x-axis and
at least bn/2c below the x-axis. We need additional concepts of sweep line, and east and west subsets of a
convex set.

Definition 4.1 (Sweep line hitting a set). Given an angle α , let dir(α) be the unit vector with angle α .
Given a set S of points in the plane, and an angle α , the sweep line with angle α hits S at p if p ∈ S and if
` is a translation of the sweep line such that p ∈ ` and H is the half-plane with boundary ` containing point
p+dir(α−π/2), then S⊆H. We also say that p is a hitting point of the sweep line and S. Note that p does
not have to be unique.

Definition 4.2 (East and west subsets). Given a convex set of points S, let the north pole of P, denoted s0, be
the point at which the sweep line with angle 0 hits P (and has the smallest x-coordinate if there are several
such points). Let s1,s2, . . . ,sn−1 be the remaining points of P as they appear along the convex hull of P
starting from s0 in the clockwise direction. The south point of S is defined similarly with respect to the sweep
line with angle π . Suppose st is the south pole. The east subset of P is the set {s0, . . . ,st} and the west subset
of P is the set {st+1, . . . ,sn−1}.

The east subset behaves very nicely with respect to sweep lines with angles between 0 and π as stated in the
following lemma whose proof can be found in the Appendix.

Lemma 4.1. If S = {si1 , . . . ,sik}, where 0 ≤ i1 < · · · < ik ≤ t, is a subset of the east subset of P, then the
sweep line with angle between 0 and π hits S at either si1 or sik .

Proof. Let T be the intersection of three halfplanes:

• the halfplane with the boundary line through si1 and sik containing si1 +dir(0),

• the halfplane with the boundary line with angle 0, passing through si1 and containing sik , and

• the halfplane with the boundary line with angle 0, passing through sik and containing si1 ,

cf. Figure 2. It is easy to see that one of hitting points of the sweep line with angle between 0 and π and T
is at either si1 or sik . Since S is a subset T and contains si1 and sik , the same holds true for S.
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s0

st

si1

sik

T

Figure 2: The intersection of three halfplanes that contain the set S. Any sweep line with angle between 0
and π hits T at either si1 or sik .

The following key lemma shows how to illuminate a half plane using a subset of the east subset of points.

Lemma 4.2. Let S be a set of points of size at least 6k−2 all lying below the x-axis and in the east subset of
P. Then there exist initial directions of discretely rotating floodlights with the beam-width and the step-width
φ = π/k at these points such that the half-plane above the x-axis is covered at all times.

Proof. Let sm1 , . . . ,sm6k−2 be 6k− 2 points of S such that m1 < · · · < m6k−2. For every i = 1, . . . ,3k− 1,
set the initial direction of the floodlights at smi and sm6k−1−i to i mod 2k. It is enough to show that for any
t ∈ {0,1/2k, . . . ,(2k−1)/2k}, the half-plane above the x-axis is covered at time t. For every such t, we can
choose 2k points sl1 , . . . ,slk ,srk , . . . ,sr1 out of these 6k−2 points such that l1 < · · · < lk < rk < · · · < r1 and
for every i = 1, . . . ,k, the direction of the floodlights at sli and sri at time t is i−1. Among these 2k points
we will choose k using the following procedure. For each i = 1, . . . ,k, let point pi be a hitting point of the
sweep line with angle iφ and the set {sli , . . . ,slk ,srk , . . . ,sri}. By Lemma 4.1, pi can be chosen to be either sli
or sri . Next, we show by induction on i that

• the floodlights at points p1, . . . , pi cover an angle βi with the starting ray with angle 0 (lying on the
x-axis) and the ending ray with angle iφ (lying on the line Li passing through pi). We call the common
vertex of these two rays ci.

For i = 1, let L1 be the line passing through p1 with angle φ and c1 be the intersection point of L1 and the
x-axis. Obviously, the angle β1 with the starting ray with angle 0, the ending ray lying on L1 and common
vertex c1 satisfies the invariant.

x-axis
ci

Li

βi

ci+1

Li+1

βi+1

pi+1

Figure 3: Illustration how angle βi and the flood light at point pi+1 cover angle βi+1.

Suppose that the induction invariant holds for i < k. Let Li+1 be the line passing through pi+1 with angle
(i+ 1)φ and ci+1 be the intersection point of Li+1 and the x-axis. Since point pi+1 lies in the right closed
half-plane determined by Li, angle βi and the floodlight at point pi+1 cover angle βi+1, cf. Figure 3. Hence,
the first i+1 floodlights cover angle βi+1.
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Note that if i = k, the above invariant implies that floodlights at p1, . . . , pk ∈ S cover the half-plane above the
x-axis at time t.

We now state and prove the main theorem of this section, which is valid for a set P of n points in convex
position. Recall that in this section we assume that at least bn/2c of the points of P lie above the x-axis and
at least bn/2c below the x-axis.

Theorem 4.1. Let P be a set of n points in the plane in convex position. Then there exists a valid initial
direction of discretely rotating floodlights at points in P with beam-width and step-width φ = π/bn/24c,
which can be found in time O(n logn).

Proof. Let P−E (P−W ) be the subset of P containing all points of the east (west) subset of P that lie below
the x-axis. At least one of the sets P−W and P−E contains at least bn/4c > 6bn/24c− 2 points. If it is the
set P−E , it follows by Lemma 4.2, that there exist initial directions of discretely rotating floodlights with the
beam-width and step-width φ = π

bn/24c such that the halfplane above the x-axis is covered at all times. If it
is P−W , we apply Lemma 4.2 on the reflection of P−W about the vertical line through the south pole st , since
this reflection has the properties of the east subset. To each point p ∈ P−W , assign the reflection of the initial
direction of the floodlight at the reflection of p, i.e., if the floodlight at the reflection of p has initial direction
i, assign the initial direction (k− i) mod 2k to the floodlight at p. Since the floodlights at the reflected points
cover the halfplane above the x-axis at all times, so do the floodlights at P−W . By symmetry, the floodlights
at points above the x-axis can be set up to cover the half-plane below the x-axis.

To find the order of points of P along the convex hull takes time O(n logn), after which assigning of initial
directions can be done in linear time.

By Theorem 2.1, Theorem 4.1 holds for continuously rotating floodlight with beam-width 2φ .

5 Conclusion and Open Problems

In this paper we have investigated the idle time of rotating floodlights in the plane. We derived monitoring
algorithms for radars located on arbitrary sets of points, and for points in convex position. As an interesting
problem we note that no general lower bound result is known for the case of a regular n-gon other than
the straightforward 2π/n. For any set of n points, we also derived the idle time O(lnn/n) when the radars
are orientated randomly and independently with the uniform distribution. Further, in view of Theorem 3.3,
Θ(lnn/n) is also a lower bound assuming all the floodlights are located at the same point in the plane.
However, in general, it is not known whether the problem of minimizing the idle time for floodlights on a
general point set is NP-hard.

Aside from improving our bounds, several intriguing open problems remain. In all point-sets considered
in this paper the floodlights had identical angles. An interesting problem concerns the possibility of gen-
eralizing the static floodlight coverage theorem to rotating floodlights f1, . . . , fn with arbitrary angle sizes
φ1, . . . ,φn, respectively, such that φ1 + · · ·+ φn = cπ , for some constant c independent of n. Another in-
teresting question concerns the possibility of having floodlights with arbitrary rotating speeds. Similarly,
computing the idle time for the case of faulty radars, which may malfunction during the rotation, provides a
challenging set of questions.
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