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Abstract. Let P be a set of n points in the plane. We solve the problem of computing the orientations
for which the rectilinear convex hull of P has minimum area in optimal ⇥(n log n) time and O(n) space.

Introduction
The interest in the rectilinear convex hull of planar point sets arises from the study of
ortho-convexity [10], a relaxation of traditional convexity. Unlike convex regions, an
ortho-convex region might be disconnected, which makes the study of the ortho-convex
closure for a point set [5, 8] harder. Several definitions have been presented by different
authors. We will use a definition stated by Ottman et al. [8] as the mr-convex hull, see
also Matousěk et al. [5, 7]. The study of rectilinear convex hulls has gained attention
partly because of some applications in digital image processing [3] and VLSI circuit layout
design [11].

The rectilinear convex hull of point sets is an orientation-dependent region, i.e., it
changes as the orientation of the plane changes. In this paper we are interested in
computing an orientation for which the rectilinear convex hull of P has minimum area.
We show that the set of orientations ✓ 2 [0, 2⇡) can be divided into a set of linear
intervals such that, within each interval I, the angle ✓ 2 I which minimizes the area of
the rectilinear convex hull of a point set (save the first one we process) can be calculated
in constant time. These intervals can be computed in O(n log n) time and O(n) space.
Using this result and based on techniques from Avis et al. [1], Bae et al. [2], and Díaz-
Báñez et al. [4], we present an optimal ⇥(n log n) time and O(n) space algorithm for this
problem. Our result improves the O(n2) time complexity presented by Bae et al. [2].

1 Terminology and notation
An orthogonal wedge is the intersection of two open half-planes whose supporting lines are
orthogonal. The apex of the wedge is the intersection point of these supporting lines. An
orthogonal wedge is P -free if it does not contain points of P in its interior. An orthogonal
wedge is called a ✓-wedge if its supporting lines can be obtained by first rotating the X-
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and Y -axis ✓ degrees, and then translating the origin to the apex of our wedge. The
rectilinear convex hull of P with orientation ✓ is the region

RH✓(P ) = R2 �
[

w2W✓

w,

where W✓ is the set of all P -free orthogonal ✓-wedges [2, 4, 8].
As ✓ changes, the set of orthogonal P -free ✓-wedges change, and, thus, RH✓(P )

changes (see Figure 1). A ✓-orientation of the plane, ✓ 2 [0, 2⇡), is the coordinate system
obtained by rotating the axes of R2 by ✓ degrees with respect to the origin. For a fixed ✓,
RH✓(P ) has a close relation to the maxima problem [6, 9]. A vertex of RH✓(P ) is a point
in P that lies on the boundary of RH✓(P ). Let X✓(P ) be the set of maximal points of
P with respect to vector dominance in the ✓-orientation of the plane. The set of vertices
of RH✓(P ) is equal to the set X✓(P ) [ X✓+⇡

2

(P ) [ X✓+⇡(P ) [ X✓+ 3

2

⇡(P ) [2, 8]. Given a
fixed ✓, RH✓(P ) can be computed in optimal ⇥(n log n) time and O(n) space [6, 9].

We say that a point p 2 P is ✓-maximal with respect to P if there is an orthogonal
P -free wedge with apex at p in a ✓-orientation of the plane. The set of orientations for
which p is ✓-maximal forms at most three intervals. The endpoints of each interval mark
the in- and an out- events of p, i.e., the ✓-orientations when p becomes and stops being
✓-maximal. The set of intervals corresponding to the elements of P and the set of angles
at which these points of P start and stop being ✓-maximal can be computed in optimal
⇥(n log n) time and O(n) space [4].

(a) (b) (c)

(d) (e) (f)

Figure 1. The rectilinear convex hull of P changes with the orientation.

Let X✓-axis and Y✓-axis denote the coordinate axes rotated ✓ degrees. For a ✓ orien-
tation, consider the coordinates of the points of P in terms of the X✓- and Y✓-axes. Since
RH✓(P ) is monotone with respect to the X✓-axis [8], the points of P can be re-labelled
as v

1

, . . . , vm in increasing order according to X✓. Two consecutive points vi, vi+1

2 P
with respect to X✓ define the step s✓(vi, vi+1

). Given two orientations ↵ and �, we say
that two steps s↵(vi, vi+1

) and s�(vj , vj+1

) are opposite to each other if |↵ � �| = ⇡; see
Figure 1(b). Every step s✓(vi, vi+1

) supports a P -free ✓-wedge. Let W
1

and W
2

be the
wedges supported by two opposite steps s✓(vi, vi+1

) and s✓+⇡(vj , vj+1

), respectively. If
W

1

and W
2

intersect, RH✓(P ) is disconnected. In such case, we say that s✓(vi, vi+1

) and
s✓+⇡(vj , vj+1

) overlap, and denote W
1

\ W
2

= t✓(i, j); see Figure 1(f).
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Consider four points vi, vi+1

and vj , vj+1

and let I be the the interval of orientations
✓ for which s✓(vi, vi+1

) and s✓+⇡(vj , vj+1

) overlap. As before, we call the ends of I
the start- and stop-events of t✓(i, j); see Figures 1(e) and 1(f). We wish to compute a
counterclockwise ordered start- and stop-event list that resembles the one we computed
for in- and out-events of the elements of P . Overlap events are not necessarily vertex
events and thus, they have to be computed independently.

2 Computing the start- and stop-overlap events list
The apex of a step is the apex of the wedge that it supports. As ✓ changes from 0 to 2⇡,
the ✓-orientation of the plane rotates counterclockwise, and the apex of every step traces
a circular arc. We orient the arcs traced by the elements of P as shown in Figures 1(a)–
1(c). The arc-chain A(P ) of P is the closed curve formed by the union of the set of
arcs traced by the elements of P which, at some point in time are ✓-maximal for some
✓ 2 [0, 2⇡), let A(P ) = ha

1

, . . . , ali (Figure 2(a)). Since there is a linear number of steps
in a complete rotation, l = O(n). Observe that the endpoints of the arcs in A(P ) include
the points in P that are ✓-maximal for some ✓ 2 [0, 2⇡).

Let {e
1

, . . . , eh}, be the set of edges of the convex hull CH(P ) of P in counterclockwise
order. A sub-chain Ai(P ) of A(P ) is a subsequence of consecutive elements of A(P ),
whose endpoints are the endpoints of ei. It is easy to see that Ai(P ) is monotone in the
direction determined by ei. Thus the orthogonal projection of Ai(P ) on ei defines a total
order (�i) on the set of endpoints of its arcs. Moreover, using the fact that every point
in Ai(P ) is an apex of a P -free wedge, the next lemma follows easily.

Lemma 2.1. Let a, b, c be three points in Ai(P ) such that a �i b �i c. Then, the angle
\abc is such that ⇡

2

 \abc < ⇡.

Suppose that we relabel the endpoints of the arcs in Ai(P ) as p
1

, . . . , pm so that,
if r < s, then pr �i ps. Let `r,s be a subsequence pr, . . . , ps of Ai(P ) such that for
r < t < s, pt /2 P and pr, ps 2 P . We call any such `r,s a link. Observe that, if two
opposite steps overlap, then the arcs traced by their apices belong to links that intersect;
see Figure 2(a). The open area bounded by Ai(P ) and ei is P -free, since it is covered
by P -free wedges. Thus, two intersecting links have at least two intersection points. By
Lemma 2.1, this number is tight, as none of the intersecting links can cross a line segment
joining its intersection points; see Figure 2(b). Thus we have the following result, that is
a central tool for computing the start- and stop-overlap event list in O(n log n) time.

(a)

e
i

A
i

(b)

Figure 2. The arc-chain A(P ) of P .
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Theorem 2.2. There are O(n) intersections between links in A(P ).

3 Computing the orientation of RH✓(P ) with minimum area
The event points obtained in the previous section generate a set of intervals of orientations,
in which the set of vertices of RH✓(P ) remain unchanged, and the set of overlaps among
the steps of RH✓(P ) does not change. Let I

(✓
1

,✓
2

)

be one such interval. Then, for any
✓ 2 (✓

1

, ✓
2

), the area of RH✓(P ) is given by the following formula [2]:

area(RH✓(P )) = area(P) �
X

area(s✓(vi, vi+1

)) +
X

area(t✓(i, j)).

It is easy to see that the areas of the steps s✓(vi, vi+1

) and overlaps t✓(i, j) of RH✓(P )
can be expressed as a function of sin 2✓ and cos 2✓. Doing the derivative, we obtain:

(1)
X

area0(s✓(vi, vi+1

)) = �
⇥

X

Ai

⇤

sin 2✓ +
⇥

X

Bi

⇤

cos 2✓,

(2)
X

area0(t✓(i, j)) =
⇥

X

Ci

⇤

cos 2✓ �
⇥

X

Di

⇤

sin 2✓,

and thus the value ✓ 2 (✓
1

, ✓
2

) for which the area of RH✓(P ) is minimized can be com-
puted in linear time. For each new event interval, we update these values in constant time
by subtracting or adding new constant values. There can be more than one ✓-orientation
in which RH✓(P ) has minimum area, but our algorithm is able to report all of them.
From the discussion above and from the fact that the convex hull of P can be computed
from the rectilinear convex hull of P in O(n) time, we obtain the following:

Theorem 3.1. Computing the set of orientations for which the rectilinear convex hull
of P has minimum area can be done in optimal ⇥(n log n) time and O(n) space.
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